JPS5861664A - Josephson circuit chip - Google Patents

Josephson circuit chip

Info

Publication number
JPS5861664A
JPS5861664A JP56160204A JP16020481A JPS5861664A JP S5861664 A JPS5861664 A JP S5861664A JP 56160204 A JP56160204 A JP 56160204A JP 16020481 A JP16020481 A JP 16020481A JP S5861664 A JPS5861664 A JP S5861664A
Authority
JP
Japan
Prior art keywords
circuit
josephson
power
input terminal
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56160204A
Other languages
Japanese (ja)
Inventor
Nobuo Kodera
小寺 信夫
Yutaka Harada
豊 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56160204A priority Critical patent/JPS5861664A/en
Publication of JPS5861664A publication Critical patent/JPS5861664A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/12Josephson-effect devices

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To inhibit the hang-up of a circuit at the beginning of power source make, by providing a pi type filter which connects a DC input terminal to an active circuit part on the periphery of an IC chip having a Josephson circuit of DC power source drive system. CONSTITUTION:In the periphery of the IC substrate 1, the power source terminal 22 and earth terminal 21 which carry high currents are provided resulting in the prevention of the malfunction of the Josephson circuit sensitive to the magnetic field. Further, a filter 3 is provided in the neighborhood of the power source input terminal 22, i.e. substrate periphery, and then a power is introduced via an input line 51 and supplied into the active circuit 4 in the substrate via an output line. The concentration is formed in pi type, the alloy wherein Pb or Nb is the main constituent or the superconductive thin film of Nb single substance is used for input/output lines 51, 52 and inductance 6, and the same material is used also for capacities 71, 72. For an element 6, an alloy resistor 8 of Au-In, etc. can be used. A superconductive film for the earth is adhered on the substrate, and the superconductive film applied to patterning is mounted via an SiOx (x=1-2). In this constitution, the input of the Josephson circuit can be maintained at zero potential, and accordingly the hang-up can be inhibited.

Description

【発明の詳細な説明】 本発明はジョセフソン・デバイスを用いた集積回路チッ
プに係り、特に直流電源、駆動回路への直流電源の給′
区方法および信号入力端の給電時制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an integrated circuit chip using a Josephson device, and particularly to a DC power supply and a DC power supply to a drive circuit.
The present invention relates to a method for controlling a signal input terminal during power supply.

従来ジョセフソン回路、特に論理回路では、交流′電源
駆動の方式が主に研究開発されている。一般にこの駆動
方式は、数100メガヘルツの正負の梯形波パルスを給
電するもので、正負の切替の瞬間に電圧または′電流が
ゼロになることをもって特徴とする。これは論理回路の
論理ゲートが基本的にラッチングゲートであり、電源を
ゼロに落さない限り新らしい演算を開始できないための
処理であった。この交流電源駆動方式でrよ、チップ内
外の論理ゲートに対して、同じ位相で電源をオン。
Conventionally, research and development of Josephson circuits, especially logic circuits, has mainly focused on AC power drive systems. Generally, this drive system supplies power with positive and negative trapezoidal pulses of several hundred megahertz, and is characterized by the fact that the voltage or current becomes zero at the moment of switching between positive and negative. This was done because the logic gates of the logic circuits are basically latching gates, and new calculations cannot be started unless the power is turned off to zero. With this AC power supply drive method, the power is turned on with the same phase to the logic gates inside and outside the chip.

オフしなければならぬ九め、電源供給のために薄膜トラ
ンスなどをチップ内に設けその@電果の長さを論理回路
ブロック毎に規格化するなどチップ設計が複雑になる大
きな欠点を有していた。ざらに全チップに対して電源の
クロックを同期させるためのシステム設計が必要になシ
、ジョセフソン回路チップを多数個用いて計!!!、機
を構成する上で著しい困難を生じていた。
It has the major disadvantage of complicating the chip design, such as having to turn it off, and installing a thin film transformer etc. inside the chip to supply power, and standardizing the length of the output for each logic circuit block. was. It was necessary to design a system to roughly synchronize the power supply clocks for all chips, and it was possible to do so by using a large number of Josephson circuit chips! ! ! , which caused significant difficulties in configuring the aircraft.

一方、ジョセフソン回路の中には、直流電源で駆動でき
る)luffle回路などが知られている。これらの直
流電源、駆動方式の回路は、上記した交流電源唱動の論
理ゲートの中のラッチ回路や、メモリ回路のデコーダー
として必要になることも知られている。これらの用途は
主に7リツプ・70ツブとしてであり、たえず信号を保
持しておくために便用される。また、将来は一般の論理
ゲート自身がすべて上記した直流電源駆動方式の回路で
構成されると予測されている。これは、前記したように
交流電源駆動方式のラッチングゲートでは。
On the other hand, among the Josephson circuits, a luffle circuit (which can be driven by a DC power supply) is known. It is also known that circuits using these DC power sources and drive systems are required as latch circuits in the logic gates of the above-mentioned AC power sources and decoders in memory circuits. These are mainly used as 7-lips and 70-tubs, and are useful for constantly holding signals. Furthermore, in the future, it is predicted that all general logic gates themselves will be constructed of the above-mentioned DC power supply driven circuits. This is the case with AC power-driven latching gates, as mentioned above.

給電系に著しい設計の繁雑さがある友めと、チップ上の
給電系が集積度を低下させる要因となるため、さらにラ
ッチングゲート自身が誤信号(Hazard )入力に
対しても誤って応答し計算結果にエラーを生じる確率が
高いためであった。
The power supply system has a significant design complexity, and the power supply system on the chip is a factor that reduces the degree of integration, and the latching gate itself also responds incorrectly to erroneous signal (hazard) input, causing calculation problems. This is because there is a high probability that errors will occur in the results.

しかし、直流電源駆動方式の1(uffle回路におい
ても、現状ではその回路の一部を構成するジョセフソン
接合自身が本質的にラッチング動作モードで機能するた
め、給電系に高い尖頭値を本つパルスが混入したり信号
入力に異常パルスが重畳したりすると回路がハングアッ
プ(HungUp  )という不感能状態尤陥いる危険
性があった。このハングアップは一般には、回路中のジ
ョセフソン接合がすべて有限電圧をもつ状態にラッチさ
れることを言う。このハングアップは、チップに電源を
投入する給電初期に生じ易い。
However, even in the case of DC power drive system 1 (Uffle circuit), the Josephson junction itself that constitutes a part of the circuit essentially functions in a latching operation mode, so a high peak value is not present in the power supply system. If a pulse gets mixed in or an abnormal pulse is superimposed on the signal input, there is a risk that the circuit will hang up, which is an insensible state.In general, this hangup occurs when all the Josephson junctions in the circuit are connected. This means that the device is latched into a state with a finite voltage.This hang-up is likely to occur during the initial stage of power supply when power is applied to the chip.

本発明の目的は、主として前記した困難を克服できる、
ジョセフソン回路チップへの提供することにある。
The purpose of the present invention is mainly to overcome the above-mentioned difficulties.
Josephson circuit chip to provide.

以下に本発明の実施例を詳細に述べる。第1図はジョセ
フソン・デバイスを用いた集積回路を形成するための基
板の一部を示す。基板1の周辺にはポンディングパッド
またはCCB (ControlledCollaps
e 13onding  )パッドなどによる接続端子
2が複数個設けられる。この接続端子は多くは基板1の
周辺に設けられる。この接続端子は信号の入出力に用い
られるものと電源または接地に用いられるものに大別さ
れる。第1図では21が接地端子、22が電源入力端子
、23,24.25が回路入力端子をあられす。電源線
は一般には他回路からの干渉(雑音)により尖頭値の大
きいノくルスが重畳することがあり得るため、さらに゛
電源線が一般に大電流を運ぶものであシその周辺に強い
磁界を発生するものであるため、基板周辺に電源端子2
2およびそ9接地端子21を設けることが好ましい。こ
れは、一般にジョセフソン・デバイスが著しく磁界に感
能するもので、電源線から発するパルス的また静的磁界
が干渉信号としてジョセフソン回路の動作を誤まらせる
可能性をもつA7tめである。このような゛電源線に起
因する干渉信号を基板周辺でしゃ断すべく、第1図の実
施例ではフィルター回路3は電源入力端子22の近傍、
すなわち基板外周近傍に設置されている。このフィルタ
ー回路へは電源入力端子から入力線51により電力を導
入し、出力線52により基板内の他の能動回路部4に給
電す込。ここに、フィルター回路の結線は第2図に示す
π型フィルター結線を用いる。入力線51.インダクタ
ンス6、出力線52、はここでは超電導性の薄膜材料、
例えば鉛を主成分とする合金またはニオブを主成分とす
る合金またはニオブ単体を用いる。またキャパシタンス
71,72、も同じ超電導性材料を使用する。
Examples of the present invention will be described in detail below. FIG. 1 shows a portion of a substrate for forming an integrated circuit using Josephson devices. There are bonding pads or CCBs (Controlled Collapses) around the substrate 1.
e13onding) A plurality of connection terminals 2 such as pads are provided. Most of these connection terminals are provided around the substrate 1. These connection terminals are roughly divided into those used for signal input/output and those used for power supply or grounding. In FIG. 1, 21 is a ground terminal, 22 is a power input terminal, and 23, 24, and 25 are circuit input terminals. In general, power lines can have noises with large peak values superimposed on them due to interference (noise) from other circuits. Because it generates
It is preferable to provide grounding terminals 21 and 9. This is because Josephson devices are generally extremely sensitive to magnetic fields, and a pulsed or static magnetic field emitted from a power supply line can act as an interference signal and cause errors in the operation of the Josephson circuit. In order to block such interference signals caused by the power supply line near the board, in the embodiment shown in FIG.
That is, it is installed near the outer periphery of the substrate. Power is introduced into this filter circuit from a power input terminal through an input line 51, and power is supplied to other active circuit sections 4 in the board through an output line 52. Here, the π-type filter connection shown in FIG. 2 is used for the connection of the filter circuit. Input line 51. The inductance 6 and the output line 52 are made of superconducting thin film material,
For example, an alloy containing lead as a main component, an alloy containing niobium as a main component, or niobium alone is used. The same superconducting material is also used for the capacitances 71 and 72.

・  通常の電気回路で知られるπ型フィルター回路と
著るしく異なる点は、これらの共通な接地線(第2図の
斜線部)が面状の超電導性膜によって構成される点であ
る。どの意味でキャパシタンス71゜72、の接地側電
極はニオブなどの接地面となる超電導性膜そのものによ
って構成される。これらのπ型フィルター回路の作製手
順は、基板上に接地面となる超電導性膜を被着したのち
、s 1Qx(x=1〜2)などの絶縁性膜を被着載置
して、さらにバターニングされた超電導性材料からなる
金、v4を載置することである。バターニングは一般に
公知のり7トオフ技術によって行うことができ、とれに
よって入力線51、出力線52、インダクタンス6、キ
ャパシタンス71,72.を絶#&膜上に作成できる。
- A significant difference from the π-type filter circuit, which is known as an ordinary electric circuit, is that these common ground lines (the shaded area in Figure 2) are constructed from a planar superconducting film. In any sense, the ground side electrode with a capacitance of 71°72 is constituted by the superconducting film itself, which serves as a ground plane, such as niobium. The manufacturing procedure for these π-type filter circuits is to first deposit a superconducting film as a ground plane on a substrate, then deposit an insulating film such as s1Qx (x = 1 to 2), and then The method is to place gold, V4, made of patterned superconducting material. Patterning can be performed by generally known glue-off techniques, and depending on the patterning, the input line 51, output line 52, inductance 6, capacitance 71, 72 . can be created on absolute #& membranes.

このπ型フィルター回路が電源線に重畳して侵入する不
要のパルス干渉信号や高周波信号を除去する機能をもつ
ことは明らかであり、特に不要のパルス入力信号をきら
う回路内のジョセフソン・デバイスに安定に直流電力を
給電できるようになる。さらに重要なことは、上記のよ
うな構成によれば、チップに電源を投入する時(址下パ
ワーオンと称す)に、電源電力自身の突入パルスを緩や
かな立上りをもつものに変換してジョセフソン回路自身
がこの起動待電力パルスによって[(uug Up す
るのを防止できる特徴をもつことである。
It is clear that this π-type filter circuit has the function of removing unnecessary pulse interference signals and high-frequency signals superimposed on the power supply line and intruding into the power supply line, and is especially suitable for Josephson devices in circuits that dislike unnecessary pulse input signals. It becomes possible to stably supply DC power. More importantly, according to the above configuration, when power is applied to the chip (referred to as power-on), the inrush pulse of the power supply itself is converted into one with a gradual rise. The circuit itself has the characteristic of being able to be prevented from going up due to this start-up standby power pulse.

前記したπ型フィルター回路(第2図)は導体金属材料
としてすべて超電導性材料を用いたが。
The aforementioned π-type filter circuit (Fig. 2) uses superconducting materials as all conductor metal materials.

第3図に示したようにインダクタンス6の替シに有限の
抵抗値をもつ薄膜金属材料、例えばAu−Iu金合金G
e−CLI合金などによる抵抗体8を用いても構わない
As shown in FIG. 3, a thin film metal material having a finite resistance value, such as an Au-Iu gold alloy G
A resistor 8 made of e-CLI alloy or the like may be used.

ジョセフソン回路自身が起動待電力パルスによって仮に
ハングアップしたとして、再度電源を入れ直す場合を考
えると、チップへの電源をしゃ断した時(以下パワーオ
フと称す>宇−司=零Hの電源の電位がゼロになれば一
般にジョセフソン回路のハングアップは解゛除されるこ
とは良く知られている。回路自体が超電導材で構成され
るため、ゼロ電位を作るために有限の抵抗体薄膜を用い
るよりもはるかに低電位にできる超電導性の要素部品を
用いることが好ましい。
Assuming that the Josephson circuit itself hangs up due to the start-up standby power pulse, and if we turn the power back on again, when the power to the chip is cut off (hereinafter referred to as power-off), the potential of the power supply It is well known that the hang-up of a Josephson circuit is generally resolved when It is preferable to use superconducting components that can be made to have a much lower potential than the above.

このための工夫として、第4図のように電源入力端子2
2にX印の記号であられすジョセフソン接合9を設置し
た。接合は1個でも複数個直列につないだものでもよい
。ただし、この接合9の他端は接地面に接続する。周知
のようにジョセフソン接合はある電流値Imまでは超電
導性の電流を通過させることができ、このとき接合両端
の電位はゼロである。パワーオンの直前はこの意味で電
源端子は「超゛鑞導性のゼロ電位」に保つことが出来る
。しかし電源電力が供給されはじめ、接合9を貫ぬいて
流れる′に流が1mを越えると接合9自身は有限の抵抗
を示すようになる。第4図のように接合を直列に接続す
れば、このときの抵抗値がその個数分だけ大きくなるの
で好ましい。第4図ではさらに、該接合9に磁束結合入
力線10を設け、電源電力が供給されはじめると入力線
10に同時に電流が流れて磁束を発生し得るようにした
As a device for this purpose, as shown in Figure 4, the power input terminal 2
A Josephson junction 9, marked with an X symbol, was installed at 2. The number of junctions may be one or a plurality connected in series. However, the other end of this joint 9 is connected to the ground plane. As is well known, a Josephson junction can pass a superconducting current up to a certain current value Im, and at this time the potential across the junction is zero. In this sense, the power supply terminal can be maintained at "superconducting zero potential" immediately before power-on. However, when power starts to be supplied and the current flowing through the junction 9 exceeds 1 m, the junction 9 itself begins to exhibit a finite resistance. It is preferable to connect the junctions in series as shown in FIG. 4 because the resistance value at this time increases by the number of junctions. In FIG. 4, a magnetic flux coupling input line 10 is further provided at the junction 9, so that when power starts to be supplied, a current flows through the input line 10 at the same time to generate magnetic flux.

この入力線への電流はインダクタンス61,62  。The current to this input line is inductance 61, 62.

の途中から供給するようにした。このようにすると前記
したImが磁束の影響によシ小さくなって速やかに接合
9がゼロ電位から有限抵抗をもつ状態に転移できる。(
この意味で磁束結合入力線lOは、必ずしも本発明の主
なる構成要件ではなく、よシ好ましい条件であるにすぎ
ない。)次にパワーオフのタイミングで如何に接合9が
「超電導性のゼロ電位」に復帰できるか、を述べる。電
源をしゃ断すると第4図で22→61→62の方向に向
う電流が減少してゆく。この電流は徐々に減少してゼロ
に近づく場合と、振動的に逆方向に流れたシもとの方向
に戻ったりしながらゼロに近づく場合がある。いずれに
しても電流がゼロに近づき、接合9を流れる電流が接合
復帰電流I m1mより小さくなった瞬間から、接合9
は「超電導性のゼロ電位」に数psの時間ののちに復帰
する。
We started supplying it from the middle of the process. In this way, Im becomes smaller due to the influence of magnetic flux, and the junction 9 can quickly transition from zero potential to a state with finite resistance. (
In this sense, the magnetic flux coupling input line IO is not necessarily a main component of the present invention, but is merely a highly preferable condition. ) Next, we will discuss how the junction 9 can return to the "superconducting zero potential" at power-off timing. When the power is cut off, the current flowing in the direction 22→61→62 in FIG. 4 decreases. This current may gradually decrease and approach zero, or it may approach zero while oscillatingly returning to the original direction where it flowed in the opposite direction. In any case, from the moment when the current approaches zero and the current flowing through the junction 9 becomes smaller than the junction return current I m1m, the junction 9
returns to the "superconducting zero potential" after several ps.

このあと電流が振動しても、その振幅がimを越えない
かぎり、はぼ1ops以内に振動が止む。
Even if the current oscillates after this, the oscillation stops within about 1 ops as long as the amplitude does not exceed im.

その結果電源入力端子22は安定に「超電導性のゼロ電
位」を保持できる。
As a result, the power input terminal 22 can stably maintain a "superconducting zero potential".

第5図に示した実施例では、第4図に加えて新らたに遅
延回路と信号入力端制御手段を設置した。
In the embodiment shown in FIG. 5, a delay circuit and signal input terminal control means are newly installed in addition to those shown in FIG.

これは、電源投入初期において集積回路の信号入力端を
超電導性のゼロ電位に保持できるようにするためである
。このために、回路入力端子23゜24.25.にそれ
ぞれ第5図のようにジョセフノン接合27,28.29
を接続しそれぞれ他端を接地した。このジョセフソン接
合27,28゜29の動作は端子22における接合9の
役割と同じである。ただし、この接合では磁束結付人力
方式をとっておく必要があり、電源投入初期からある時
間遅れてこの接合の最大超電導トンネル直流Imをゼロ
にするようにされている。こうすれば。
This is to enable the signal input terminal of the integrated circuit to be held at superconducting zero potential at the initial stage of power-on. For this purpose, the circuit input terminals 23°24.25. Joseph non junctions 27, 28 and 29 as shown in Figure 5, respectively.
and grounded the other end. The operation of the Josephson junctions 27, 28 and 29 is the same as that of the junction 9 in the terminal 22. However, this junction requires a manual magnetic flux coupling method, and the maximum superconducting tunnel direct current Im of this junction is set to zero after a certain time delay from the initial power-on. If you do this.

接合は強制的に非線形抵抗になり超電導性は示さない。The junction is forced to have a nonlinear resistance and does not exhibit superconductivity.

この工mをゼロにする之めに、ジョーヒフノン接合27
,28.29の近傍に入力端制御線30が配置されてい
る。この制御信号は抵抗89゜インダクタンス69、キ
ャノくシタンス79.からなる遅延回路に接続されてい
る。抵抗89は制御用の電流の大きさを調整するために
用いる。
In order to reduce this process to zero, we made a jaw-heavy non-junction 27.
, 28 and 29. This control signal has a resistance of 89 degrees, an inductance of 69 degrees, a capacitance of 79 degrees. connected to a delay circuit consisting of A resistor 89 is used to adjust the magnitude of the control current.

このように構成した信号入力端制御手段の動作は次のよ
うである。例えば端子23に到来する信号電流のうち接
合に分流する電流値がImを越えるか、入力端制御線制
iIt&流が印加されるか、いずれかの場合に接合は超
電導性を失う。制御電流が印加されない場合には、端子
23に小さなパルス的信号が到来しても端子23は超電
導性のゼロ電位でいられる。この保護効果により、ジョ
セフソン回路の入力はゼロ電位に維持しておくことがで
き、回路に電源電力が供給されはじめる時機に回路の入
力端に種々の信号が到来することはない。
The operation of the signal input end control means configured as described above is as follows. For example, the junction loses superconductivity when the value of the current that is shunted to the junction among the signal currents arriving at the terminal 23 exceeds Im, or when the input end control line control iIt & current is applied. When no control current is applied, even if a small pulse-like signal arrives at the terminal 23, the terminal 23 remains at superconducting zero potential. Due to this protective effect, the input of the Josephson circuit can be maintained at zero potential, and various signals will not arrive at the input end of the circuit at the time when the supply power starts to be supplied to the circuit.

したがってジョセフソン回路がハングアップを起こすの
を抑止できる効果がある。電源電力が十分印加され定常
状態に達したタイミング以後に、端子23に前記した制
御電流を印加して回路に入力を受は入れられる状態を作
る設計にするので、回路が電源投入初期にハングアップ
するのを避けることができるようになる。
Therefore, there is an effect of preventing the Josephson circuit from causing a hang-up. The design is such that the control current described above is applied to the terminal 23 after the supply power has been sufficiently applied and a steady state has been reached, creating a state in which the circuit can receive input, so that the circuit will not hang up at the beginning of power-up. You will be able to avoid doing so.

以上述べた如く1本発明によれば特に直流電源駆動方式
のジョセフソン回路において電源投入初期に起り得る回
路のハングアップ抑止することができる。
As described above, according to the present invention, it is possible to prevent circuit hang-up that may occur at the initial stage of power-on, especially in a Josephson circuit driven by a DC power supply.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す平面図、第2図、第3
図はそれぞれ第1図符号3の部分の例を示す回路図、第
4図、第5図はそれぞれ他の央鬼例を示す回路図である
。 3・・・π型フィルター回路、4・・・能動回路部、6
゜61.62.64・・・インダクタンス、8・・・抵
抗、9.27,28.29・・・ジョセフノン接合、2
2・・・α源入力端子、23,24.25・・・回路入
力端子、30・・・入力端制御線、71,72.79・
・・キャパシタンス。 代理人 弁理士 薄田利幸 ’!+7 藁り図
Figure 1 is a plan view showing one embodiment of the present invention, Figures 2 and 3 are
Each figure is a circuit diagram showing an example of the part 3 in FIG. 1, and FIGS. 4 and 5 are circuit diagrams showing other examples. 3... π-type filter circuit, 4... Active circuit section, 6
゜61.62.64...Inductance, 8...Resistance, 9.27,28.29...Joseph non-junction, 2
2...α source input terminal, 23, 24.25... Circuit input terminal, 30... Input end control line, 71, 72.79...
··capacitance. Agent Patent Attorney Toshiyuki Usuda'! +7 Straw map

Claims (1)

【特許請求の範囲】 1、ジョセフソン・デバイスを用いて構成された能動回
路部を含む回路チップにおいて、直流電源を外部より接
続するための電源入力端子と。 該集積回路チップの外周近傍に配置され、該電源入力端
子と該能動回路部を接続して該能動回路部に給電するπ
型フィルター回路を備えたこ”とを特徴とするジョセフ
ソン回路チップ。 2、特許請求の範囲第1項に記載したに型フィルター回
路の導体部は超伝導性薄膜材料よりなることを特徴とす
るジョセフソン回路チップ。 3、特許請求の範囲第1項に記載したπ型フィルター回
路の一部は有限抵抗をもつ薄膜抵抗材料よりなることを
特徴とするジョセフソン回路チップ。 4、特許請求の範囲第1項に記載した電源端子と接地間
に11固または複数個直列のジョセフソン接合を有する
ことを特徴とするジョセフソン回路チップ。 5、ジョセフソン・デバイスを用いて構成された能動回
路を含む回路チップにおいて、該能動回路に卑流成源を
接続する電源入力端子と、該能動回路に入力信号を接続
する回路入力端子と、該電源入力端子に接続された遅延
回路と、該入力端子と接地間を接続するジョセフソン接
合を。 該ジョセフソン接合の近傍に配置され該遅延回路の出力
によシ該ジョセ7ンン接合を電圧状態に切替える入力端
制御線とを含むジョセフソン回路チップ。
[Scope of Claims] 1. A power input terminal for externally connecting a DC power source in a circuit chip including an active circuit section configured using a Josephson device. π disposed near the outer periphery of the integrated circuit chip and connecting the power input terminal and the active circuit section to supply power to the active circuit section.
2. A Josephson circuit chip characterized in that the conductor portion of the diamond-type filter circuit described in claim 1 is made of a superconducting thin film material. 3. A Josephson circuit chip, characterized in that a part of the π-type filter circuit described in claim 1 is made of a thin film resistive material having finite resistance. 4. Claim 1 A Josephson circuit chip characterized by having 11 or more Josephson junctions in series between the power supply terminal and ground as described in Item 1. 5. A circuit including an active circuit configured using a Josephson device. In the chip, a power input terminal connects a base current source to the active circuit, a circuit input terminal connects an input signal to the active circuit, a delay circuit connected to the power input terminal, and a ground between the input terminal and the ground. a Josephson junction connecting between the Josephson junction; and an input end control line disposed near the Josephson junction for switching the Josephson junction to a voltage state according to the output of the delay circuit.
JP56160204A 1981-10-09 1981-10-09 Josephson circuit chip Pending JPS5861664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56160204A JPS5861664A (en) 1981-10-09 1981-10-09 Josephson circuit chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56160204A JPS5861664A (en) 1981-10-09 1981-10-09 Josephson circuit chip

Publications (1)

Publication Number Publication Date
JPS5861664A true JPS5861664A (en) 1983-04-12

Family

ID=15710028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56160204A Pending JPS5861664A (en) 1981-10-09 1981-10-09 Josephson circuit chip

Country Status (1)

Country Link
JP (1) JPS5861664A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108292U (en) * 1984-12-20 1986-07-09
US5442195A (en) * 1991-01-11 1995-08-15 Hitachi, Ltd. Superconducting device including plural superconducting electrodes formed on a normal conductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108292U (en) * 1984-12-20 1986-07-09
JPH0218066Y2 (en) * 1984-12-20 1990-05-21
US5442195A (en) * 1991-01-11 1995-08-15 Hitachi, Ltd. Superconducting device including plural superconducting electrodes formed on a normal conductor

Similar Documents

Publication Publication Date Title
US6583629B1 (en) Magnetic digital signal coupler monitor
US5546055A (en) Crystal oscillator bias stabilizer
JPS61283092A (en) Semiconductor integrated circuit having memory circuit with resetting or setting
CN108490246B (en) Power supply voltage zero-crossing detector
US7332956B2 (en) Method to avoid device stressing
JP2862591B2 (en) Inrush current prevention circuit
JPH045289B2 (en)
JPS5861664A (en) Josephson circuit chip
JPH0346268A (en) Cmos type input buffer circuit of semiconductor device
US5696469A (en) Clock oscillator
US6624995B2 (en) Semiconductor device and method of activating a protection circuit with a sampling pulse
KR100327439B1 (en) Esd protection circuit
JPS62259292A (en) Semiconductor integrated circuit device
JPH0127286Y2 (en)
JPH054846B2 (en)
EP0138126A3 (en) Logic circuit with low power structure
JPH01174116A (en) Bias control circuit
JPH0374051B2 (en)
JPS63318815A (en) Integrated circuit of c-mos structure containing preventing circuit for inflow of current from another power supply
JPS5866419A (en) Superconducting circuit
JPH0373891B2 (en)
Current locking Oscillator Uses Low Triggering Voltage
JPH0223703A (en) Oscillation control circuit
JPH04136726U (en) power supply control device
JPH05326853A (en) Transistor circuit