JPS5856468A - Manufacture of semiconductor - Google Patents

Manufacture of semiconductor

Info

Publication number
JPS5856468A
JPS5856468A JP56155284A JP15528481A JPS5856468A JP S5856468 A JPS5856468 A JP S5856468A JP 56155284 A JP56155284 A JP 56155284A JP 15528481 A JP15528481 A JP 15528481A JP S5856468 A JPS5856468 A JP S5856468A
Authority
JP
Japan
Prior art keywords
film
impurity
gate
rom
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56155284A
Other languages
Japanese (ja)
Inventor
Takehide Shirato
猛英 白土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56155284A priority Critical patent/JPS5856468A/en
Publication of JPS5856468A publication Critical patent/JPS5856468A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To enable to shorten the steps of manufacturing a semiconductor and to enable to highly integrate the semiconductor by selectively implanting, after forming a gate electrode, an impurity to an FET depleted by implanting the impurity after forming a gate oxidized film, thereby enhancing it. CONSTITUTION:A depleted MOSFET is etched at the window 15 of the part of a gate oxidized film 3 only at the necessary position after a resist 11 is removed, a polysilicon film 16 is then grown on the overall surface, and an impurity of phosphorus is then diffused, thereby lowering the resistance value of a polysilicon. Then, the gate electrode is patterned, a thin oxidized film 17 is grown, and arsenic (As<+>) ions are implanted through the film. The film 17 is then removed, a block oxidation 18 is then performed, boron ions are selectively implanted in a part of the adjacent layer 13 of an ROM to form a source and drain region 19, and a depletion type transistor is then enhanced, thereby forming a user ROM. Further, an insulating layer 20 such as PSG or the like and an electrode window 21 are formed.

Description

【発明の詳細な説明】 本発明は、半導体装置の製造方法に係り%特にワンチッ
プマイクロコンピュータ等に内蔵される半導体マスクR
OM (Read OnlyMsmory )の形成に
用いて好適な半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and particularly to a semiconductor mask R built in a one-chip microcomputer or the like.
The present invention relates to a method of manufacturing a semiconductor device suitable for use in forming an OM (Read Only Msmory).

従来、ワンチップマイク−コンピュータのffi憶装置
、特にユーザの要求によって書°き込みデータが定めら
れ6 ROMでは、一般にマスクROMが利用される。
Conventionally, a mask ROM is generally used in a one-chip microphone-computer FFI storage device, especially in a ROM in which write data is determined according to a user's request.

かかるワンチップマイク−コンピュータは同一チップ上
に中央処理55 (CPU ) p RAM (1la
ndanムee@ms Memory )、ROM、 
ilo  ボート等を塔載してなるが、ユーザにより書
き込みデータの指定されるROMは通常ROM以外の部
分の製作工程の後に製作が行なわれ、%にユーザの要求
に応じるためにはマスクROMの製作工程に於て、半導
体装置の製品出荷に近い工程でマスクパターンを定めて
手番な短(する必要がある。
Such a one-chip microphone-computer has a central processing unit 55 (CPU) p RAM (1 la
ndanmuee@msMemory), ROM,
The ROM, in which writing data is specified by the user, is usually manufactured after the manufacturing process of parts other than the ROM, and in order to meet the user's requests, it is necessary to manufacture a mask ROM. In the manufacturing process, it is necessary to determine the mask pattern and shorten the steps close to the shipping of the semiconductor device.

しかしながら、ナントゲート回路からなり、該当ビット
のトランジスタがデプリーシBンM08トランジスタ(
Tr )か、エンハンスメントMO8Trかによってデ
ータの書き込みを行うようにしたマスクROMでは製品
出荷の手番が長(なる欠点があった。
However, it consists of a Nant gate circuit, and the transistor of the relevant bit is a depletive B M08 transistor (
A mask ROM in which data is written depending on whether the MO8Tr or the enhancement MO8Tr has a disadvantage in that it takes a long time to ship the product.

このよ5に手番が長くなる理由について、第1図を参照
して説明する。
The reason why the number of turns becomes longer than 5 will be explained with reference to FIG.

尚、以後説明するMO8FET(金属嫉化物半導体電界
効果形トランジスタ)!工、PWi及びN型を含み、エ
ンハンスメン)jlTrtニゲ−F端子に零ホル)のバ
イアス電圧をかけたとき通常非導通であるが、特定の大
きさの電圧をゲート端子間に加えれば導通状態となる。
Furthermore, the MO8FET (metal-jetide semiconductor field effect transistor) which will be explained later! When a bias voltage of zero (zero hole) is applied to the F terminal (incl. G, PWi, and N type), it is normally non-conductive, but if a voltage of a certain magnitude is applied between the gate terminals, it becomes conductive. becomes.

他方、デプリーション屋丁r は、ゲート端子に加えら
れるバイアス電圧がな(ても導通しているが、適当なバ
イアス電圧がゲージ端子に加われば非導通状態となるも
のである。
On the other hand, a depletion gate is conductive even when no bias voltage is applied to the gate terminal, but becomes non-conductive when an appropriate bias voltage is applied to the gauge terminal.

第1図を工、エンハンスメントMO8FE丁 とデプリ
ーションMO8FK丁 を同一基板に同時形成する場合
の工程を示すもので基板lは、例えばpmシリコンで厚
い酸化膜(フィールド酸化膜)2とゲート酸化膜3が形
成されボロン(B)が、イオン注入され左右のMOSF
ET  作製領域の基板表面下には正確に制御されたボ
ロンが注入された層4が形成されるa、(篤を図ム)、
、この状態でデプリーションMO8F)CT  とした
い部分(第1図外)で右側)のみに、リン(p)のイオ
ン注入を行ってボロンが注入された層4にリンの不純物
を注入することでデプリーションモードのチャンネルを
作る。(第1図$1)次に多結晶シリコン6をパターニ
ングしてゲート領域を形成し、ゲート酸化膜3の一部を
除去し。
Figure 1 shows the process for simultaneously forming enhancement MO8FE and depletion MO8FK on the same substrate. Boron (B) is formed and ions are implanted into the left and right MOSFs.
A layer 4 in which precisely controlled boron is implanted is formed below the surface of the substrate in the ET fabrication region.
In this state, phosphorus (p) ions are implanted only in the part where depletion MO8F)CT is desired (on the right side outside of Figure 1), and phosphorus impurity is implanted into the layer 4 into which boron has been implanted. Create a plea mode channel. (FIG. 1 $1) Next, polycrystalline silicon 6 is patterned to form a gate region, and a portion of gate oxide film 3 is removed.

n型不純物を拡散又はイオン注入してソース7とドレイ
ン8を形成する。(第1図t−))このような工程によ
ると第1図1の左側のMOSFETは、エンへンスメン
ト屋に、右側f)MOSFET 4工、デプリーション
屋に1つのマスクで作9ことができるが、手番は厚い酸
化膜2とゲート酸化膜3を作る工程で定められマスクR
OM等を作るときKは冒頭に述べた手番が長い欠点とな
る@これはP 又はヒ素(ムm )等のN型不純物をイ
オン注入する時の射影飛程(Rp )  が小さいため
ゲート酸化膜3の様な薄い酸化膜しか通1)′″゛抜け
ないためであ金。
A source 7 and a drain 8 are formed by diffusing or ion-implanting n-type impurities. (Fig. 1 t-)) According to this process, the MOSFET on the left side of Fig. 1 can be made by an enhancement shop, the MOSFET on the right side (f) can be made by 4 pieces, and the depletion shop needs 1 mask. , the turn is determined by the process of making thick oxide film 2 and gate oxide film 3, and mask R
When making OM etc., K has the drawback that it takes a long time as mentioned at the beginning @This is because the projected range (Rp) is small when ion implanting N-type impurities such as P or arsenic (Mm), so gate oxidation is required. This is because only a thin oxide film like film 3 can pass through.

本発明は、上述の欠点を除去したデプリーションMOB
FET とエンハンスメントMO8FIC〒 を用いて
書き込みを行う様にしたROMを用いて高集積化し得る
と共に手番が短い半導体装置の製造方法を提供するもの
で、その特徴とするところはグーF酸化膜形成後に不純
物注入によってデプリーション化したFIT &グー(
電極形成後選択的に不純物注入することでエンハンスメ
ント化した半導体装置の製造方法である。
The present invention provides a depletion MOB that eliminates the above-mentioned drawbacks.
It provides a method for manufacturing semiconductor devices that can achieve high integration and shorten the steps by using a ROM in which writing is performed using FETs and enhancement MO8FICs. FIT & Goo depleted by impurity injection (
This is a method of manufacturing an enhanced semiconductor device by selectively implanting impurities after electrode formation.

以下1本発明の実施例を第2図につい【詳記する・ 第2図(4)は、クエハとして例えば2M1シリコン基
板1上に@化膜2a  を形成し、窒化シリコン膜9を
酸化膜2a  上FCCVD (Ch@m1eal V
apour Depositlon勢で積層したのち、
第2図(B) K示すように窒化シリコン膜9をバター
ニングし【ボロン(B+)のイオン注入を行ないg2図
(C)の如き酸化工程によって厚い酸化膜(フィールド
酸化膜)2を形s、jる。
Embodiment 1 of the present invention will be described in detail below with reference to FIG. Upper FCCVD (Ch@m1eal V
After laminating with apour depositlon,
The silicon nitride film 9 is buttered as shown in FIG. 2 (B), boron (B+) ions are implanted, and a thick oxide film (field oxide film) 2 is formed by an oxidation process as shown in FIG. 2 (C). ,jru.

次に、第2図Φ)K示す如き工程によって窒化シリコン
膜9および二酸化シリコン2a  をエツチングにより
除去し、その後ゲート酸化膜3を成長させる。
Next, silicon nitride film 9 and silicon dioxide 2a are removed by etching in a step as shown in FIG. 2 Φ)K, and then gate oxide film 3 is grown.

この段階で、l!2図(2))の如(マイクロプンビエ
ータのROM以外の部分1例えばCPU部の半導体素子
にボロン(B+)のイオン注入を行って、エンハンスメ
ント化したFETを得るためにシリコンウェハ表面下部
に閾値−節したポpン層12を形成する。尚、11はレ
ジスト層である。
At this stage, l! As shown in Figure 2 (2), boron (B+) ions are implanted into the semiconductor element of the micropunbiator other than the ROM 1, such as the CPU part, and a threshold value is implanted at the bottom of the silicon wafer surface to obtain an enhanced FET. - Form a knotted pop-on layer 12. Note that 11 is a resist layer.

次に、ポρン層の形成された部分に選択的に燐(P”)
をイオン注入する。この際、第2図便)に示す如< R
OM部分のMOSFET  部分も同時形成し、P+を
イオン注入してデプリーション型FΣ丁不純物ド不純物
濃度の相違によりデプリーションモードを与えることに
なる。
Next, phosphorus (P”) is selectively applied to the portion where the PON layer is formed.
ion implantation. At this time, as shown in Figure 2)
The MOSFET portion of the OM portion is also formed at the same time, and P+ ions are implanted to provide a depletion mode due to the difference in impurity concentration.

以下、説明jる工程ではROM構造のみを説明する O 第2図側)で、デプリーション化されたMOSFETは
、レジスト11を除去した後に必要個所のみゲート酸化
膜3の部分の窓15が第2図り)の如くエツチングで成
される。尚、14はゲート酸化膜エツチング用レジスト
である。
In the following steps, only the ROM structure will be explained (see Figure 2). In the depleted MOSFET, after removing the resist 11, the window 15 of the gate oxide film 3 is removed only at the necessary locations as shown in Figure 2. ) is done by etching. Note that 14 is a resist for etching the gate oxide film.

次の工程では、第2間知の如く全面にポリシリフン膜1
6が成長され、その後燐の不純物拡散を行うことでポリ
シリコンの抵抗値を下げる操作が行なわれる。
In the next step, a polysilicon film is applied to the entire surface as shown in the second step.
6 is grown, and then an operation is performed to lower the resistance value of the polysilicon by diffusing phosphorus impurities.

次の工程で6エ、第2図(Ilの如くゲート電極のパタ
ーニングが行なわれる0次に、16い酸化膜17を成長
させ、その−を通し、ヒ累(ム一)のイオン注入をおこ
なう。ヒ素のイオン注入後、薄い酸化膜17を除去し、
更に、プルツク酸化1睦行なつり ・ 更に、第2図(6)に示すようにP2O等の絶縁層2θ
が形成されて、第2図〜)の如く電極g21の形成が成
される。これらは、メルト工程を鮭て配線用のアルミニ
ウム(ムl)等が絶縁層上にバターニングされる。
In the next step, a 16-thick oxide film 17 is grown, and through it, ion implantation is performed. After arsenic ion implantation, the thin oxide film 17 is removed,
Furthermore, as shown in Figure 2 (6), an insulating layer 2θ of P2O etc.
is formed, and the electrode g21 is formed as shown in FIGS. In these cases, aluminum (silver) for wiring is patterned onto the insulating layer using a melt process.

本発明を工上述の如(構成させたのでゲート績成長後K
 ROM部分を一度すべてデプリーシ日ソ化した後に射
影飛程の犬ぎいボロン(II)をゲート電極が出来上っ
た後6C選択的にイオン注入し、エンハンスメン) T
r  を形成し、 ROMを完成するために手智が短く
、高集積化出来る特徴な有すΦ。
Since the present invention was constructed as described above, K after gate performance growth
After the ROM part was completely depleted, 6C selective ions were implanted with projective range boron (II) after the gate electrode was completed, and enhancement was performed.
Φ has the characteristics of short length and high integration in order to form r and complete ROM.

本発明は、ボロンと燐の不純物が混合されΦためモビリ
ティでは問題はあるがROM等に用いる場合には、これ
ら問題は大きな問題とはならない。
In the present invention, since impurities of boron and phosphorus are mixed Φ, there is a problem with mobility, but when used in ROM etc., these problems do not become a big problem.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)〜IC)は、従来の輩08FETの裏作工
程を説明するための仙断面図、第2図(転)〜(転)は
本発明のMO8FIT I′)製作工程を1!明するた
めの側断面図である。 !・−・基板、2・・・酸化膜、3−ゲート酸化ll[
,9−・・窒化シリコン展、11−レジスト層。 12轡ポeン層、16−・・ポリシリコン層。 2O−PEG等の絶縁層、13−6層、15・・・履め
込み多結晶シリコンコンタクト窓。 17 、18°″″酸化膜、 19・−・ソースおよびドレイン領域。 21・・・電接コンタクト窓 特許出願人 富士通株式会社 ’%−++−% OLLJLL
Figures 1 (A) to IC) are sacral cross-sectional views for explaining the back production process of the conventional MO8FET, and Figures 2 (Rotation) to (Rotation) show the production process of the MO8FIT I') of the present invention. FIG. ! ...Substrate, 2...Oxide film, 3-Gate oxide ll[
, 9-...Silicon nitride layer, 11-Resist layer. 12 - polysilicon layer, 16 - polysilicon layer. Insulating layer such as 2O-PEG, 13-6 layer, 15... Inserted polycrystalline silicon contact window. 17, 18°″″ oxide film, 19--source and drain region. 21...Electric contact window patent applicant Fujitsu Ltd.'%-++-% OLLJLL

Claims (1)

【特許請求の範囲】[Claims] ゲート酸化膜形成後に、射影飛程の小さい不純物を半導
体基板に注入することにより、デプリーション化する工
程と、ゲート電極形成後に射影飛程の大きい不純物を選
択的に注入することにより、該デプリーション化したト
ランジスタを選択的にエンハンスメント化する工程を含
むこと′4を特徴とする半導体装置の製造方法。
After the formation of the gate oxide film, the depletion process is performed by implanting an impurity with a small projection range into the semiconductor substrate, and after the formation of the gate electrode, the depletion process is performed by selectively implanting an impurity with a large projection range. 4. A method of manufacturing a semiconductor device, comprising the step of selectively enhancing transistors.
JP56155284A 1981-09-30 1981-09-30 Manufacture of semiconductor Pending JPS5856468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56155284A JPS5856468A (en) 1981-09-30 1981-09-30 Manufacture of semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56155284A JPS5856468A (en) 1981-09-30 1981-09-30 Manufacture of semiconductor

Publications (1)

Publication Number Publication Date
JPS5856468A true JPS5856468A (en) 1983-04-04

Family

ID=15602531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56155284A Pending JPS5856468A (en) 1981-09-30 1981-09-30 Manufacture of semiconductor

Country Status (1)

Country Link
JP (1) JPS5856468A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480069A (en) * 1987-09-21 1989-03-24 Hitachi Ltd Semiconductor storage device and manufacture thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333076A (en) * 1976-09-09 1978-03-28 Toshiba Corp Production of mos type integrated circuit
JPS5534443A (en) * 1978-08-31 1980-03-11 Fujitsu Ltd Preparation of semiconductor memory storage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333076A (en) * 1976-09-09 1978-03-28 Toshiba Corp Production of mos type integrated circuit
JPS5534443A (en) * 1978-08-31 1980-03-11 Fujitsu Ltd Preparation of semiconductor memory storage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480069A (en) * 1987-09-21 1989-03-24 Hitachi Ltd Semiconductor storage device and manufacture thereof

Similar Documents

Publication Publication Date Title
JP3521246B2 (en) Field effect transistor and method of manufacturing the same
US5670398A (en) Method of manufacturing thin film transistor having a double channel
JPH0846215A (en) Manufacture of thin film transistor
US4997777A (en) Manufacturing process for an integrated circuit comprising double gate components
JPS5856468A (en) Manufacture of semiconductor
JPS61182267A (en) Manufacture of semiconductor device
JP2557206B2 (en) Method for manufacturing semiconductor device
EP0042040A2 (en) Method of manufacturing an insulated gate field-effect transistor in a silicon wafer
JPS5968964A (en) Manufacture of semiconductor device
JPH0864688A (en) Manufacture of semiconductor device
JPS5897874A (en) Manufacture of field-effect transistor
JPS63185064A (en) Manufacture of semiconductor device
JPS6211516B2 (en)
JPH02209767A (en) Manufacture of semiconductor device
JPS63291471A (en) Semiconductor device and manufacture thereof
JPH0714013B2 (en) Semiconductor device
JPS6129551B2 (en)
JPH0484428A (en) Manufacture of semiconductor device
JPH0582066B2 (en)
JPS6072274A (en) Manufacture of semiconductor device
TW436908B (en) Method to form a smooth gate polysilicon sidewall in the fabrication of integrated circuits
JPS5914676A (en) Manufacture of vertical type field effect transistor
JPS6284549A (en) Manufacture of read-only semiconductor memory device
JPH01278773A (en) Manufacture of semiconductor integrated circuit
JPH0214788B2 (en)