JPH0484428A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0484428A
JPH0484428A JP2199632A JP19963290A JPH0484428A JP H0484428 A JPH0484428 A JP H0484428A JP 2199632 A JP2199632 A JP 2199632A JP 19963290 A JP19963290 A JP 19963290A JP H0484428 A JPH0484428 A JP H0484428A
Authority
JP
Japan
Prior art keywords
layer
polycrystalline silicon
semiconductor layer
polycrystalline
polycrystalline semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2199632A
Other languages
Japanese (ja)
Inventor
Seiichi Takahashi
誠一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2199632A priority Critical patent/JPH0484428A/en
Publication of JPH0484428A publication Critical patent/JPH0484428A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Drying Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a high relative accuracy and an absolute accuracy in case a polycrystalline semiconductor layer is used for the formation of a resistance element by a method wherein parts, which are situated on the side surfaces of step parts on a semiconductor substrate, of the polycrystalline semiconductor layer are previously removed. CONSTITUTION:An anisotropic dry etching is performed to remove an oxide film on the surface of a polycrystalline silicon layer. At this time, the oxide film 109 on the side surfaces of parts, which cover gate electrodes, of the polycrystalline silicon layer is left. Subsequently, a thin film layer 110 consisting of transition metal element, such as tungsten, molybdenum or the like, or the like or a substance having a selection ratio with respect to etching with silicon oxide and polycrystalline silicon, such as tungsten, is selectively grown on the polycrystalline silicon layer. Then, after the film 109 is removed with a hydrofluoric acid, parts, which are situated on the side surfaces of the gate electrodes, of the polycrystalline silicon layer are removed using the mixed aqueous solution of a hydrofluoric acid, a nitric acid and an iodine-containing glacial acetic acid. Subsequently, after the tungsten thin film layer 109 is removed using the mixed solution of ammonia water and hydrogen peroxide water, a photoresist 111 is formed into a desired form by a photolithography technique and an anisotropic dry etching is performed using this photoresist 111 as a masking material to form a resistance element 112.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、段差を有する半
導体基板上に多結晶半導体層を所望の形状に形成する半
導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device in which a polycrystalline semiconductor layer is formed in a desired shape on a semiconductor substrate having steps.

〔従来の技術〕[Conventional technology]

近年、半導体集積回路は微細化、高速化の一途をたどっ
ているが、その基盤となる技術の一つに多結晶半導体技
術がある。バイポーラトランジスタではエミッタに多結
晶半導体を用いることで浅い接合を形成し、高速化を図
っており、また多結晶半導体層を用いたセルファライン
(自己整合)技術によって微細化を可能たらしめている
。またMOS)ランジスタにもゲート電極などに利用さ
れている。多結晶半導体層は抵抗素子としても利用され
、寄生容量の小さい抵抗素子として利用される。このよ
うな種々の利用法から、最近の集積回路に用いられる多
結晶半導体層は膜厚や層抵抗の異なる2層が主流となっ
ている。例えば、1層目は低抵抗ゲート電極として用い
られ、2層目は比較的高抵抗の抵抗素子として用いられ
るというようにである。
In recent years, semiconductor integrated circuits have become smaller and faster, and one of the underlying technologies is polycrystalline semiconductor technology. Bipolar transistors use polycrystalline semiconductors for their emitters to form shallow junctions to increase speed, and self-alignment technology using polycrystalline semiconductor layers allows for miniaturization. It is also used for gate electrodes in MOS transistors. The polycrystalline semiconductor layer is also used as a resistance element, and is used as a resistance element with small parasitic capacitance. Due to these various uses, the polycrystalline semiconductor layers used in recent integrated circuits are mainly composed of two layers having different film thicknesses and layer resistances. For example, the first layer is used as a low-resistance gate electrode, and the second layer is used as a relatively high-resistance resistance element.

第3図(a)乃至(d)に従来の2層多結晶半導体層を
用いたCMO8型O8回路の製造方法の工程断面図を示
す。先ず第2図(a)に示すように、P−型シリコン基
板201を用意し、P型ウェル領域202、N型ウェル
領域203を形成した後、素子間分離酸化膜204を形
成し、さらに第1の多結晶シリコン層205を4000
〜6000人程度成長し、不純物拡散を行って低抵抗化
する。次に第3図(b)に示すようにフォトリングラフ
ィ工程と異方性ドライエッチ工程とを用いて多結晶シリ
コン層205を所望の形状に加工し、ゲート電極205
′を形成する。ゲート電極205′表面を酸化した後、
注入エネルギー70KeVドーズ量5 X 10 ”a
m−2のひ素のイオン注入によりN+型ソースドレイン
領域306を、注入エネルギー30 K e Vドーズ
量5 X I O”am−2のほう素のイオン注入によ
りP+型ソースドレイン領域307を形成する。次に第
3図(c)に示すように、第2の多結晶シリコン層30
8を1000〜3000人程度成長した後、フォトリン
グラフィ工程により、所望の形状のフォトレジス)30
9を形成する。さらに、第3図(cl)に示すように、
フォトレジスト309をマスクとして等方性ドライエッ
チを行い、抵抗層308′を形成する。層間絶縁膜31
0を形成し、コンタクトホールを開孔後、金属配線31
1を箆して素子を完成する。
FIGS. 3(a) to 3(d) show process cross-sectional views of a conventional method for manufacturing a CMO8 type O8 circuit using two-layer polycrystalline semiconductor layers. First, as shown in FIG. 2(a), a P-type silicon substrate 201 is prepared, a P-type well region 202 and an N-type well region 203 are formed, and an isolation oxide film 204 is formed. 1 polycrystalline silicon layer 205
It grows by about 6,000 people, and impurities are diffused to lower the resistance. Next, as shown in FIG. 3(b), the polycrystalline silicon layer 205 is processed into a desired shape using a photolithography process and an anisotropic dry etching process, and the gate electrode 205 is
′ is formed. After oxidizing the gate electrode 205' surface,
Implantation energy 70KeV Dose amount 5×10”a
An N+ type source/drain region 306 is formed by ion implantation of arsenic of m-2, and a P+ type source/drain region 307 is formed by ion implantation of boron at an implantation energy of 30 KeV and a dose of 5 X I O''am-2. Next, as shown in FIG. 3(c), a second polycrystalline silicon layer 30 is formed.
After growing 8 to 1,000 to 3,000 people, a photoresist with a desired shape is formed using a photolithography process.
form 9. Furthermore, as shown in Figure 3 (cl),
Isotropic dry etching is performed using the photoresist 309 as a mask to form a resistive layer 308'. Interlayer insulation film 31
0 and after opening the contact hole, the metal wiring 31
1 to complete the element.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この従来の2層多結晶半導体層を用いた半導体装置の製
造方法では、第2の多結晶シリコン層をエツチングする
のに等方性ドライエッチを用いるため、サイドエッチが
入り、形状がフォトレジストの寸法通りにならず、例え
ば抵抗素子として用いた場合に相対精度あるいは絶対精
度が低下してしまうという欠点があった。また、これに
対し、第2多結晶シリコン層のエツチングに異方性ドラ
イエッチを用いた場合には、第3図に示すように第1多
結晶シリコン層側面に第2多結晶シリコン層の側壁が残
存するという欠点がある。この残存した多結晶シリコン
の側壁は電気的にフローティング状態にあるため、ホッ
トキャリア等の電荷を捕獲した場合、トランジスタ特性
等に悪影響を及ぼす。また、第4図は、薄い酸化膜を介
して第1多結晶シリコン層と、第2多結晶シリコン層で
容量素子を構成した場合で、第4図(a)に断面図、(
b)に上観図を示す。この場合、側壁に残存した第2多
結晶シリコン層の側壁404′は第2多結晶シリコン層
の引き出し電極に接続しており、この容量素子は側面部
にも容量成分をもつことになるので、容量値は、単純に
第2多結晶シリコン層の面積では決定せず、容量素子の
設計が困難になるという不具合が生ずる。
In this conventional method for manufacturing a semiconductor device using a two-layer polycrystalline semiconductor layer, isotropic dry etching is used to etch the second polycrystalline silicon layer, so side etching occurs and the shape is different from that of the photoresist. There is a drawback that the dimensions are not exactly correct, and the relative accuracy or absolute accuracy decreases when used as a resistor element, for example. On the other hand, when anisotropic dry etching is used to etch the second polycrystalline silicon layer, as shown in FIG. It has the disadvantage that it remains. Since the remaining sidewalls of polycrystalline silicon are in an electrically floating state, if they capture charges such as hot carriers, they will adversely affect transistor characteristics. Moreover, FIG. 4 shows a case where a capacitive element is constructed by a first polycrystalline silicon layer and a second polycrystalline silicon layer via a thin oxide film, and FIG. 4(a) shows a cross-sectional view.
b) shows a top view. In this case, the sidewall 404' of the second polycrystalline silicon layer remaining on the sidewall is connected to the extraction electrode of the second polycrystalline silicon layer, and this capacitive element also has a capacitive component on the side surface. The capacitance value is not determined simply by the area of the second polycrystalline silicon layer, resulting in a problem that it becomes difficult to design the capacitive element.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造方法は、はぼ垂直な段差を有
する半導体基板上に多結晶半導体層を所望の形状に形成
する半導体装置の製造方法において、多結晶半導体層を
成長した後、表面を酸化する工程と、異方性エツチング
を用いて段差を覆った部分の多結晶半導体層の側面の酸
化膜を残存して、それ以外の酸化膜を除去する工程と、
遷移金属元素等の薄膜層を多結晶半導体層上に選択成長
する工程と、前記の残存した多結晶半導体層側面の酸化
膜を除去した後、等方性エツチングを用いて、段差部側
面の多結晶半導体層を除去する工程と前記遷移金属元素
等の選択成長層を除去した後、多結晶半導体層を所望の
形状にエツチングする工程とを有する。
The method for manufacturing a semiconductor device of the present invention is a method for manufacturing a semiconductor device in which a polycrystalline semiconductor layer is formed in a desired shape on a semiconductor substrate having almost vertical steps, after growing the polycrystalline semiconductor layer, the surface is a step of oxidizing, and a step of using anisotropic etching to leave the oxide film on the side surface of the polycrystalline semiconductor layer covering the step and removing the other oxide film;
After selectively growing a thin film layer of a transition metal element or the like on the polycrystalline semiconductor layer and removing the remaining oxide film on the side surface of the polycrystalline semiconductor layer, isotropic etching is used to remove the polycrystalline semiconductor layer on the side surface of the stepped portion. The method includes a step of removing the crystalline semiconductor layer, and a step of etching the polycrystalline semiconductor layer into a desired shape after removing the selectively grown layer of the transition metal element or the like.

〔実施例〕〔Example〕

以下、本発明について図面を参照して説明する。 Hereinafter, the present invention will be explained with reference to the drawings.

第1図(a)乃至(e)は本発明の一実施例の工程断面
図である。
FIGS. 1(a) to 1(e) are process cross-sectional views of an embodiment of the present invention.

まず、第1図(a)に示すように、従来技術と同様の方
法で、P−型シ7リコン基板上にP型ウェル102、N
型ウェル103、素子間分離酸化膜104、ゲート電極
105、N+型ソースト°レイン領゛域106、P+型
ソースドレイン領域107を形成した後、多結晶シリコ
ン層108を1000〜3000人程度成長し、表面を
数百穴程度酸化する。次に、第1図(b)に示すように
、異方性ドライエッチを行って表面の酸化膜を除去する
。このとき多結晶シリコン層がゲート電極を覆った部分
の側面の酸化膜109が残る。続いてタングステン、モ
リブデン等の遷移金属元素等、酸化シリコンおよび多結
晶シリコンとエツチングの選択比のとれる物質、本実施
例ではタングステンの薄膜層110を多結晶シリコン層
上に選択的に1000人程度成長する。タングステン薄
膜と選択成長には5iHz還元法を用いる。次に、第1
図(c)に示すように酸化膜109をぶつ酸で除去した
後、ぶつ酸、硝酸、ヨウ素入り氷酢酸の混合水溶液を用
いて、ゲート電極側面の多結晶シリコン層を除去する。
First, as shown in FIG. 1(a), a P-type well 102 and an N-type well 102 are formed on a P-type silicon substrate using a method similar to the conventional technique.
After forming a type well 103, an element isolation oxide film 104, a gate electrode 105, an N+ type source/drain region 106, and a P+ type source/drain region 107, a polycrystalline silicon layer 108 is grown by about 1000 to 3000 layers. The surface is oxidized to several hundred holes. Next, as shown in FIG. 1(b), anisotropic dry etching is performed to remove the oxide film on the surface. At this time, an oxide film 109 remains on the side surface of the portion where the polycrystalline silicon layer covers the gate electrode. Next, a thin film layer 110 of tungsten, such as a transition metal element such as tungsten or molybdenum, which has a good etching selectivity with silicon oxide and polycrystalline silicon, in this embodiment, is selectively grown on the polycrystalline silicon layer by about 1000 layers. do. A 5 iHz reduction method is used for selective growth of the tungsten thin film. Next, the first
After removing the oxide film 109 with hydrochloric acid, as shown in FIG. 3C, the polycrystalline silicon layer on the side surface of the gate electrode is removed using a mixed aqueous solution of hydrochloric acid, nitric acid, and iodine-containing glacial acetic acid.

続いて、第1図(d)に示すようにアンモニア水と過酸
化水素水の混合液を用いてタングステン薄膜層109を
除去した後、フォトリソグラフィにより、所望の形状に
フォトレジスト111を形成し、これをマスク材として
異方性ドライエッチを行い、抵抗素子112を形成する
。最後に、第1図(e)に示すように層間絶縁膜113
を成長し、コンタクトホールを開孔後金属配線114を
旅して素子を完成する。
Subsequently, as shown in FIG. 1(d), after removing the tungsten thin film layer 109 using a mixture of aqueous ammonia and hydrogen peroxide, a photoresist 111 is formed in a desired shape by photolithography. Using this as a mask material, anisotropic dry etching is performed to form the resistive element 112. Finally, as shown in FIG. 1(e), the interlayer insulating film 113
After forming a contact hole, the metal wiring 114 is formed to complete the device.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、遷移金属元素等の薄膜を
マスク材とし、半導体基板上の段差部側面の多結晶半導
体層を予め除去しておくことにより、多結晶半導体層の
選択エツチングを段差部側面の多結晶半導体層残りなし
に異方性トライエッチにより行うことが可能となる。異
方性エッチを用いることにより、多結晶半導体層の形状
はほぼフォトレジストの形状通りに作り込むことができ
、例えば、多結晶半導体層を抵抗素子に用いた場合、高
い相対精度および絶対精度を保障することができるよう
になるという効果を有する。
As explained above, the present invention uses a thin film of a transition metal element or the like as a mask material and removes the polycrystalline semiconductor layer on the side surface of the step portion on the semiconductor substrate in advance, thereby allowing selective etching of the polycrystalline semiconductor layer to remove the step portion. It becomes possible to perform anisotropic tri-etching without leaving a polycrystalline semiconductor layer on the side surface of the part. By using anisotropic etching, the shape of the polycrystalline semiconductor layer can be made to almost match the shape of the photoresist. For example, when a polycrystalline semiconductor layer is used for a resistor element, high relative and absolute accuracy can be achieved. This has the effect of making it possible to provide guarantees.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の半導体集積回路の工程断面
図、第2図は従来技術の工程断面図、第3図ならびに第
4図(a)乃至(b)は従来技術の不具合点を指摘した
半導体集積回路の一部分の縦断面図および上観図である
。 101.201..301,401・・・・・・(P−
型)シリコン基板、102,202・・・・・P型ウェ
ル領域、103,203・・・・・・N型ウェル領域、
104゜204.402・・・・・・素子間分離酸化膜
、205゜302.403・・・・・・第1多結晶シリ
コン層、105゜205′・・・・・・ゲート電極、4
03′・・・・・・容量酸化L  106,206・・
・・・・N+型ソースドレイン電極、107,207・
・・・・・P1型ソースドレイン電極、108・・・・
・・多結晶シリコン層、208,404・・・・・・第
2多結晶シリコン層、303,404’・・・・・・第
2多結晶シリコン壁側、109・・・・・・側面酸化膜
、110・・・・・・タングステン薄膜、11,209
・・・・・・フォトレジスト、112,208’・・・
・・・抵抗素子、113.210,402・・・・・・
層間絶縁膜、406・・・・・・コンタクトホール、1
14,211,407・・・・・・配線金属。 代理人 弁理士  内 原   晋 (C) 粘l 図 (d) 第2図 護2 第3に nt−−−フォトレジスト (b) 第4 図
FIG. 1 is a cross-sectional view of the process of a semiconductor integrated circuit according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of the process of the prior art, and FIGS. 3 and 4 (a) to (b) show defects in the prior art. FIG. 3 is a vertical cross-sectional view and a top view of a portion of the semiconductor integrated circuit. 101.201. .. 301,401...(P-
type) silicon substrate, 102, 202...P type well region, 103, 203...N type well region,
104゜204.402...Element isolation oxide film, 205゜302.403...First polycrystalline silicon layer, 105゜205'...Gate electrode, 4
03'... Capacity oxidation L 106,206...
...N+ type source drain electrode, 107,207・
...P1 type source drain electrode, 108...
...Polycrystalline silicon layer, 208,404...Second polycrystalline silicon layer, 303,404'...Second polycrystalline silicon wall side, 109...Side oxidation Film, 110...Tungsten thin film, 11,209
...Photoresist, 112,208'...
...Resistance element, 113.210,402...
Interlayer insulating film, 406...Contact hole, 1
14,211,407... Wiring metal. Agent Patent Attorney Susumu Uchihara (C) Figure (d) Figure 2 Mamoru 2 Third, Photoresist (b) Figure 4

Claims (1)

【特許請求の範囲】[Claims]  垂直な段差を有する半導体基板上に多結晶半導体層を
所望の形状に形成する半導体装置の製造方法において、
多結晶半導体層を成長した後、表面を酸化する工程と、
異方性エッチングを用いて段差を覆った部分の多結晶半
導体層の側面の酸化膜を残存して、それ以外の酸化膜を
除去する工程と、遷移金属元素等の薄膜層を多結晶半導
体層上に選択成長する工程と、前記の残存した多結晶半
導体層側面の酸化膜を除去した後、等方性エッチングを
用いて段差部側面の多結晶半導体層を除去する工程と、
前記遷移金属元素等の選択成長層を除去した後、多結晶
半導体層を異方性エッチングで所望の形状にエッチング
する工程とから成る半導体装置の製造方法。
In a method for manufacturing a semiconductor device in which a polycrystalline semiconductor layer is formed in a desired shape on a semiconductor substrate having vertical steps,
After growing the polycrystalline semiconductor layer, a step of oxidizing the surface;
A process of using anisotropic etching to leave the oxide film on the side surface of the polycrystalline semiconductor layer in the part that covered the step and removing the other oxide film, and adding a thin film layer of transition metal elements etc. to the polycrystalline semiconductor layer. a step of selectively growing the polycrystalline semiconductor layer on the side surface of the step portion; and a step of removing the polycrystalline semiconductor layer on the side surface of the stepped portion using isotropic etching after removing the oxide film on the side surface of the remaining polycrystalline semiconductor layer;
A method for manufacturing a semiconductor device comprising the steps of removing the selectively grown layer of the transition metal element, etc., and then etching the polycrystalline semiconductor layer into a desired shape by anisotropic etching.
JP2199632A 1990-07-27 1990-07-27 Manufacture of semiconductor device Pending JPH0484428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2199632A JPH0484428A (en) 1990-07-27 1990-07-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2199632A JPH0484428A (en) 1990-07-27 1990-07-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0484428A true JPH0484428A (en) 1992-03-17

Family

ID=16411081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2199632A Pending JPH0484428A (en) 1990-07-27 1990-07-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0484428A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100326246B1 (en) * 1994-06-03 2002-06-20 박종섭 Method for forming gate electrode in semiconductor device
JP2003007841A (en) * 2001-06-19 2003-01-10 Seiko Instruments Inc Method of manufacturing semiconductor device
JP2003007847A (en) * 2001-06-21 2003-01-10 Seiko Instruments Inc Method for manufacturing semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100326246B1 (en) * 1994-06-03 2002-06-20 박종섭 Method for forming gate electrode in semiconductor device
JP2003007841A (en) * 2001-06-19 2003-01-10 Seiko Instruments Inc Method of manufacturing semiconductor device
JP2003007847A (en) * 2001-06-21 2003-01-10 Seiko Instruments Inc Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US6261915B1 (en) Process of making polysilicon resistor
JPH05347383A (en) Manufacture of integrated circuit
JPH07105457B2 (en) Method for forming semiconductor device
US6967363B1 (en) Lateral diode with multiple spacers
JPS5929153B2 (en) Method of forming low resistance interconnects in MOS n-channel silicon gate integrated circuits
KR880006781A (en) Semiconductor integrated circuit and manufacturing method
JPH05175227A (en) Method of forming lateral bipolar-transistor and lateral p-n-p transistor and bipolar-transistor and lateral p-n-p transistor
JPS5873156A (en) Semiconductor device
JPH0557741B2 (en)
US4883772A (en) Process for making a self-aligned silicide shunt
JP3450262B2 (en) Circuit manufacturing method and circuit device
JPH0484428A (en) Manufacture of semiconductor device
KR930005508B1 (en) Semiconductor device and manufacturing method of the same
JPH06232351A (en) Bicmos semiconductor device and manufacture thereof
JPS61183967A (en) Manufacture of semiconductor device
JPH07176639A (en) Semiconductor integrated circuit device and fabrication thereof
JPS6052591B2 (en) Method for manufacturing semiconductor integrated circuit device
EP0264309B1 (en) Self-aligned base shunt for transistor
JPS59182566A (en) Semiconductor device
JPH0475346A (en) Manufacture of semiconductor device
JPS5980968A (en) Manufacture of semiconductor integrated circuit device
JPH0666328B2 (en) MOS semiconductor device
JPH03175676A (en) Semiconductor device
JPH06188259A (en) Manufacture of semiconductor device
JPS6372148A (en) Semiconductor integrated circuit device