JPH0666328B2 - MOS semiconductor device - Google Patents

MOS semiconductor device

Info

Publication number
JPH0666328B2
JPH0666328B2 JP13251787A JP13251787A JPH0666328B2 JP H0666328 B2 JPH0666328 B2 JP H0666328B2 JP 13251787 A JP13251787 A JP 13251787A JP 13251787 A JP13251787 A JP 13251787A JP H0666328 B2 JPH0666328 B2 JP H0666328B2
Authority
JP
Japan
Prior art keywords
gate
drain
oxide film
conductivity type
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13251787A
Other languages
Japanese (ja)
Other versions
JPS63296374A (en
Inventor
豪弥 江崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13251787A priority Critical patent/JPH0666328B2/en
Publication of JPS63296374A publication Critical patent/JPS63296374A/en
Publication of JPH0666328B2 publication Critical patent/JPH0666328B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体集積回路の構成素子に関するものであ
り、本発明を利用する集積回路はより高度な情報処理の
分野に適するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a constituent element of a semiconductor integrated circuit, and the integrated circuit using the present invention is suitable for the field of more advanced information processing.

従来の技術 MOS型半導体装置(以下単にMOSICと略)の高集積化
のために微細化が重要な要因であるが、微細化すればソ
ース・ドレイン間距離すなわちチャネル長が短かくなり
ドレイン耐圧が低下する。これを改善すべくソース・ド
レインに連接した低濃度ソース・ドレイン領域を設けた
LDD構造(Lightly-Doped Drain)が特開昭54−4
4482号に提案されている。
2. Description of the Related Art Miniaturization is an important factor for higher integration of MOS type semiconductor devices (hereinafter simply referred to as MOSIC). However, if miniaturization is performed, the source-drain distance, that is, the channel length becomes shorter and the drain breakdown voltage becomes higher. descend. To improve this, an LDD structure (Lightly-Doped Drain) provided with low-concentration source / drain regions connected to the source / drain is disclosed in JP-A-54-4.
Proposed in No. 4482.

発明が解決しようとする問題点 LDD構造によりドレイン耐圧は向上し、ホットキャリ
ア耐性もサブミクロンチャネル長に於ても改善された
が、低濃度領域の存在により直列抵抗が付加されるとい
う問題点があった。これにより、チャネル長が短縮され
る割にはドレイン電流が増大せず、従って回路の動作速
度が速くならないという問題点が生じていた。
Problems to be Solved by the Invention Although the LDD structure improves the drain breakdown voltage and the hot carrier resistance even in the submicron channel length, there is a problem that a series resistance is added due to the existence of the low concentration region. there were. As a result, although the channel length is shortened, the drain current does not increase, and thus the operating speed of the circuit does not increase.

問題点を解決するための手段 本発明はゲート電極の端面にトンネル酸化膜を介して側
壁ゲートを設け、低濃度ソース・ドレイン上を側壁ゲー
トで覆う構造とする。
Means for Solving the Problems The present invention has a structure in which a side wall gate is provided on an end face of a gate electrode through a tunnel oxide film and the low concentration source / drain is covered with the side wall gate.

作用 側壁ゲートはトンネル効果によりゲート電極と電気的に
接続されている。これによりゲート電極の電位の変化は
そのまま側壁ゲートの電位変化を起こすので、低濃度ソ
ース・ドレインはゲート電極により制御される。例え
ば、nチャネルの場合ゲート電極により正電位を与えれ
ば、チャネルにより多くの電子が誘起されるのみならず
低濃度ソース・ドレインにもより多くの電子が誘起され
る。
Action The sidewall gate is electrically connected to the gate electrode by the tunnel effect. As a result, the potential change of the gate electrode causes the potential change of the side wall gate as it is, so that the low-concentration source / drain is controlled by the gate electrode. For example, in the case of n-channel, if a positive potential is applied by the gate electrode, not only many electrons are induced in the channel but also more electrons are induced in the low concentration source / drain.

実施例 本発明の実施例を製造工程と共に第1図〜第3図に示
す。
EXAMPLE An example of the present invention is shown in FIGS. 1 to 3 together with a manufacturing process.

第1図に示すように、P型シリコン基板1の1主面に選
択酸化法により反転防止層としてのP型領域21および
厚い酸化膜2を形成し、それらに囲まれた部分に厚さ1
5nmの酸化膜からなるゲート絶縁膜3を成長させその上
に燐を含む多結晶シリコンを堆積させる。フォトレジス
ト5をマスクとして多結晶シリコンをエッチしてゲート
電極4を形成する。この時、ゲート酸化膜3のうちゲー
ト4に覆われていない部分31の厚さはΔだけ薄くな
る。これは多結晶シリコンのエッチングに於て、多結晶
シリコン対酸化膜のエッチレート比が無限大でないこと
により生ずるものである。多結晶シリコンの膜厚および
そのエッチング速度はウエハー面内で均一ではなく、パ
ターン形成のためには平均エッチング時間に対してオー
バエッチングを施さねばならない。膜厚およびエッチン
グのむらを10%、多結晶シリコン対酸化膜のエッチレ
ート比を1/10とし、多結晶シリコンの厚さを200nmと
すると、Δの最大値は、 Δmax200(nm)×0.1×0.1=2nmとなる。
As shown in FIG. 1, a P-type region 21 serving as an inversion prevention layer and a thick oxide film 2 are formed on one main surface of a P-type silicon substrate 1 by a selective oxidation method, and a thickness of 1
A gate insulating film 3 made of a 5 nm oxide film is grown, and polycrystalline silicon containing phosphorus is deposited thereon. The polycrystalline silicon is etched using the photoresist 5 as a mask to form the gate electrode 4. At this time, the thickness of the portion 31 of the gate oxide film 3 not covered by the gate 4 is reduced by Δ. This is caused by the fact that the etching rate ratio of polycrystalline silicon to oxide film is not infinite in etching polycrystalline silicon. The film thickness of polycrystalline silicon and its etching rate are not uniform in the plane of the wafer, and for pattern formation, overetching must be performed with respect to the average etching time. Assuming that the thickness and etching unevenness are 10%, the etching rate ratio of polycrystalline silicon to oxide film is 1/10, and the thickness of polycrystalline silicon is 200 nm, the maximum value of Δ is Δmax200 (nm) × 0.1. × 0.1 = 2 nm.

厚い酸化膜2およびゲート4をマスクとして、燐を1×
1013cm-2ドース注入し低濃度n型領域すなわち低濃度
ソース・ドレイン71,72を形成する。
Using the thick oxide film 2 and the gate 4 as a mask, phosphorus is 1 ×.
A 10 13 cm -2 dose is implanted to form low concentration n-type regions, that is, low concentration source / drain 71 and 72.

次に第2図に示すように、レジスト5を除去し洗浄した
あと、酸化膜31がはじめの厚さを回復するよう熱酸化
を施す。このときゲート4の端面および上面にも薄い熱
酸化膜8が成長するがその厚みは大体Δ2nmである。
Next, as shown in FIG. 2, after the resist 5 is removed and washed, thermal oxidation is performed so that the oxide film 31 recovers its initial thickness. At this time, a thin thermal oxide film 8 grows on the end face and the upper face of the gate 4, but the thickness thereof is about Δ2 nm.

全面に燐を含む第2の多結晶シリコンを堆積し、基板表
面に垂直にエッチングが進行する異方性ドライエッチを
施すと、ゲート4の端面に、薄い熱酸化膜8を介して側
壁ゲート9が形成される。これをマスクとして、砒素を
5×1015cm-2ドース注入し高濃度n型領域すなわち高
濃度ソース・ドレイン101,102を形成する。この
あと金属配線を形成して第3図のごとく工程は完了す
る。
When a second polycrystalline silicon containing phosphorus is deposited on the entire surface and anisotropic dry etching is performed so that the etching progresses perpendicularly to the substrate surface, the end face of the gate 4 is provided with a sidewall gate 9 via a thin thermal oxide film 8. Is formed. Using this as a mask, arsenic is implanted at a dose of 5 × 10 15 cm -2 to form high-concentration n-type regions, that is, high-concentration source / drain 101, 102. After that, metal wiring is formed and the process is completed as shown in FIG.

側壁ゲート9とゲート4の間には薄い酸化膜8が介在し
ているが、その厚みは2nm程度であるので、トンネル効
果により容易に電流が流れる。すなわち酸化膜8はいわ
ゆるトンネル酸化膜である。これによって、側壁ゲート
9はゲート4とほぼ同電位に常時保たれるから、側壁ゲ
ート9もゲート4と同様に半導体基板1表面の電気的状
態の制御能力を有している。
Although a thin oxide film 8 is interposed between the side wall gate 9 and the gate 4, since the thickness thereof is about 2 nm, a current easily flows due to the tunnel effect. That is, the oxide film 8 is a so-called tunnel oxide film. As a result, the sidewall gate 9 is always kept at substantially the same potential as the gate 4, so that the sidewall gate 9 also has the ability to control the electrical state of the surface of the semiconductor substrate 1 like the gate 4.

低濃度ソース・ドレイン71,72の表面は酸化膜31
を介した側壁ゲート9に位置的に整合しているので、ゲ
ート電位でそのキャリア(電子)濃度が制御される。す
なわちゲート電位が正電位になれば、その表面にはキャ
リアが誘起されその部分の抵抗が減少する。それによっ
て従来より大きなドレイン電流が流れる。
The surface of the low concentration source / drain 71, 72 is an oxide film 31.
Since it is positionally aligned with the side wall gate 9 via, the carrier potential (electron) concentration is controlled by the gate potential. That is, when the gate potential becomes a positive potential, carriers are induced on the surface and the resistance of that portion decreases. As a result, a larger drain current than before flows.

第3図の左(101)をソース、右(102)をドレイ
ンとしたとき、ゲート電位が低くドレイン電位がそれよ
り高くなると、低濃度ドレイン72は表面からキャリア
濃度が減少し空乏化していく。そのためドレイン耐圧に
対する低濃度ドレイン72の実効的不純物濃度は減少す
ることになるので、側壁ゲートのない従来型と同程度の
ドレイン耐圧を得るための低濃度ソース・ドレイン7
1,72はより高濃度でなければならない。このためさ
らに付加的直列抵抗は減少することになる。
When the left (101) of FIG. 3 is the source and the right (102) is the drain, when the gate potential is low and the drain potential is higher than that, the carrier concentration of the low concentration drain 72 decreases from the surface and depletes. Therefore, the effective impurity concentration of the low-concentration drain 72 with respect to the drain breakdown voltage is reduced.
1,72 should have a higher concentration. This will further reduce the additional series resistance.

発明の効果 本発明に於ては、LDD構造の低濃度ソース・ドレイン
が側壁ゲートに覆われていてゲートによりその電気的状
態が制御されることにより、付加的直列抵抗が低くより
多くのドレイン電流が流れるという効果がもたらされ
る。本発明のMOS型半導体装置からなる回路はそれに
よって従来型に比し大巾に高速動作をするという特徴を
有する。
EFFECTS OF THE INVENTION In the present invention, the low concentration source / drain of the LDD structure is covered by the sidewall gate, and the electrical state thereof is controlled by the gate, so that the additional series resistance is low and more drain current is increased. The effect of flowing is brought about. The circuit comprising the MOS type semiconductor device of the present invention is thereby characterized in that it operates significantly faster than the conventional type.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第3図は本発明の一実施例のMOSトランジス
タの製造工程断面図である。 1……P型シリコン基板、2……酸化膜、3……ゲート
酸化膜、4……ゲート、8……酸化膜、9……側壁ゲー
ト、72……低濃度ドレイン、102……ドレイン。
1 to 3 are cross-sectional views of manufacturing steps of a MOS transistor according to an embodiment of the present invention. 1 ... P-type silicon substrate, 2 ... Oxide film, 3 ... Gate oxide film, 4 ... Gate, 8 ... Oxide film, 9 ... Side wall gate, 72 ... Low concentration drain, 102 ... Drain.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】1導電型半導体基板の1主面上にゲート絶
縁膜を介して設けられたゲート電極、上記ゲート電極を
覆うトンネル酸化膜、上記ゲート電極の端面に上記トン
ネル酸化膜を介して設けられた側壁ゲート、上記側壁ゲ
ート直下の1導電型半導体基板にソース・ドレインに連
接した2導電型低濃度領域および上記側壁ゲートとその
端部に於て重なり部分を有する2導電型高濃度領域のソ
ース・ドレイン拡散層とを含むことを特徴とするMOS
型半導体装置。
1. A gate electrode provided on one main surface of one conductivity type semiconductor substrate via a gate insulating film, a tunnel oxide film covering the gate electrode, and an end face of the gate electrode via the tunnel oxide film. Provided sidewall gate, two conductivity type low concentration region connected to the source / drain on one conductivity type semiconductor substrate immediately below the sidewall gate, and two conductivity type high concentration region having the sidewall gate and the overlapping portion at the end thereof. And a source / drain diffusion layer of
Type semiconductor device.
JP13251787A 1987-05-28 1987-05-28 MOS semiconductor device Expired - Lifetime JPH0666328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13251787A JPH0666328B2 (en) 1987-05-28 1987-05-28 MOS semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13251787A JPH0666328B2 (en) 1987-05-28 1987-05-28 MOS semiconductor device

Publications (2)

Publication Number Publication Date
JPS63296374A JPS63296374A (en) 1988-12-02
JPH0666328B2 true JPH0666328B2 (en) 1994-08-24

Family

ID=15083176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13251787A Expired - Lifetime JPH0666328B2 (en) 1987-05-28 1987-05-28 MOS semiconductor device

Country Status (1)

Country Link
JP (1) JPH0666328B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0834313B2 (en) * 1989-10-09 1996-03-29 株式会社東芝 Semiconductor device and manufacturing method thereof
US5274261A (en) * 1990-07-31 1993-12-28 Texas Instruments Incorporated Integrated circuit degradation resistant structure

Also Published As

Publication number Publication date
JPS63296374A (en) 1988-12-02

Similar Documents

Publication Publication Date Title
JP3462301B2 (en) Semiconductor device and manufacturing method thereof
JP2707977B2 (en) MOS type semiconductor device and method of manufacturing the same
JPH02250331A (en) Semiconductor device and its manufacture
KR950025920A (en) Semiconductor device manufacturing method
JP3057436B2 (en) Semiconductor device and manufacturing method thereof
JPH0571174B2 (en)
JP3378512B2 (en) Semiconductor device
KR950011020B1 (en) Semiconductor device and its making method
JPH0644572B2 (en) Method for manufacturing semiconductor device
JPS60247974A (en) Semiconductor device
JPH0666328B2 (en) MOS semiconductor device
JPS6025028B2 (en) Manufacturing method of semiconductor device
JPH0666327B2 (en) MOS semiconductor device and method of manufacturing the same
JP2557206B2 (en) Method for manufacturing semiconductor device
JPH0552069B2 (en)
JP3200978B2 (en) Method for manufacturing semiconductor device
JP2002170890A (en) Semiconductor device
JPS63241965A (en) Insulated-gate field-effect transistor and manufacture thereof
JP3017838B2 (en) Semiconductor device and manufacturing method thereof
JP3380069B2 (en) Method for manufacturing MOS semiconductor device
JP2992312B2 (en) Semiconductor device
JPH0431193B2 (en)
JPH09213708A (en) Lateral bipolar transistor and manufacture of the same
JPH0321102B2 (en)
JPH0484428A (en) Manufacture of semiconductor device