JPS5855087B2 - Method for manufacturing base material for optical fiber - Google Patents

Method for manufacturing base material for optical fiber

Info

Publication number
JPS5855087B2
JPS5855087B2 JP10649376A JP10649376A JPS5855087B2 JP S5855087 B2 JPS5855087 B2 JP S5855087B2 JP 10649376 A JP10649376 A JP 10649376A JP 10649376 A JP10649376 A JP 10649376A JP S5855087 B2 JPS5855087 B2 JP S5855087B2
Authority
JP
Japan
Prior art keywords
glass
base material
carbon
gas
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10649376A
Other languages
Japanese (ja)
Other versions
JPS5332043A (en
Inventor
達夫 伊沢
壮一 小林
文明 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10649376A priority Critical patent/JPS5855087B2/en
Publication of JPS5332043A publication Critical patent/JPS5332043A/en
Publication of JPS5855087B2 publication Critical patent/JPS5855087B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • C03B37/01426Plasma deposition burners or torches
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium

Description

【発明の詳細な説明】 本発明は含有水分の少ないガラスファイバ用母材を製造
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a glass fiber preform containing little moisture.

従来この種の技術としては、シアノゲンまたは一酸化炭
素、または二酸化炭素など水素を含まない可燃性ガスを
酸素中で燃焼させ、その火炎中に四塩化シリコン等を吹
き込んで作る方法が知られている。
Conventionally, this type of technology is known to be made by burning a combustible gas that does not contain hydrogen, such as cyanogen, carbon monoxide, or carbon dioxide, in oxygen, and then blowing silicon tetrachloride, etc. into the flame. .

また他の方法としては石英管中に酸素とアルゴンを流し
、4〜10 MHzの高周波発振器に接続したコイルを
前期石英管に巻き付け、このコイルに10〜30kWの
高周波電力を供給して、高周波放電プラズマを作り、こ
のプラズマの熱を利用し、石英管中央部に同心状に置か
れた管の中を流れる原料ガスとアルゴンガスの混合体を
加熱、酸化反応を起こさせる方法が知られている。
Another method is to flow oxygen and argon into a quartz tube, wrap a coil connected to a 4-10 MHz high-frequency oscillator around the quartz tube, and supply 10-30 kW of high-frequency power to this coil to generate a high-frequency discharge. A known method is to create plasma and use the heat of this plasma to heat a mixture of raw material gas and argon gas flowing through a tube placed concentrically in the center of a quartz tube, causing an oxidation reaction. .

(%開閉48−26208参照) これらの方法は反応系中に水素またはその化合物が混入
していないので、無水ガラス体を作る方法としては有効
であるが、実際上はいくつかの欠点がある。
(See % Open/Close 48-26208) Since these methods do not contain hydrogen or its compounds in the reaction system, they are effective as methods for producing anhydrous glass bodies, but they have several drawbacks in practice.

すなわち前者の方法においては、有毒であり、また比較
的高価なガスを使用するので、生産コストが高くなる。
That is, the former method uses poisonous and relatively expensive gas, resulting in high production costs.

後者の方法では、反応系が石英管などで外部と分離され
ており、加熱源からの汚染が少ないという特徴があるが
、高周波プラズマが安定でなく、所望の温度状態に保持
することが容易ではない。
In the latter method, the reaction system is separated from the outside by a quartz tube, etc., and there is less contamination from the heating source, but the high-frequency plasma is unstable and it is not easy to maintain the desired temperature state. do not have.

本発明はこれらの欠点を解決するため、安定な直流放電
プラズマで加熱し、かつ放電電極などからガラスに不純
物が入らない方法で、ガラスを合成することを特徴とす
る。
In order to solve these drawbacks, the present invention is characterized by synthesizing glass by heating with stable DC discharge plasma and by a method that does not introduce impurities into the glass from discharge electrodes or the like.

以下図面により本発明の詳細な説明する。The present invention will be explained in detail below with reference to the drawings.

高温ガスを作る方法としては、前述の方法のほか、カー
ボン等の抵抗体に大電流を流して発熱させ、これに不活
性ガスを流し、高温ガスを発生させる方法が試みられて
いるが(特願昭51−30844特開昭52−1143
35−参照)、実際上、熱交換率が悪く、入力電力の1
0%以下のエネルギしか利用できず、この効率を向上さ
せることは容易でない。
In addition to the method described above, attempts have been made to generate high-temperature gas by passing a large current through a resistor such as carbon to generate heat, and then passing an inert gas through this to generate high-temperature gas (especially Application No. 51-30844 Japanese Patent Publication No. 52-1143
35-), in practice, the heat exchange rate is poor, and 1 of the input power
Only less than 0% of the energy is available, and it is not easy to improve this efficiency.

本発明はこの熱交換率を向上させ、能率よくガラス体を
作ろうとするものである。
The present invention aims to improve this heat exchange rate and efficiently produce a glass body.

直流放電によってプラズマを作る場合、最も問題な点は
電極材料の蒸発またはスパッタリングにより、これらが
プラズマ中に混入することであり、ガラス合成用熱源と
してこのようなプラズマを使用した場合には、ガラス中
に金属イオンが分散し、吸収損失の大きなものとなって
しまう。
When creating plasma by direct current discharge, the biggest problem is that electrode materials get mixed into the plasma due to evaporation or sputtering, and when such plasma is used as a heat source for glass synthesis, Metal ions are dispersed in the liquid, resulting in large absorption losses.

従って、本発明の最大のポイントは、不純物を含まない
高温ガスを簡易な方法で発生させることにある。
Therefore, the main point of the present invention is to generate high-temperature gas that does not contain impurities by a simple method.

第1図は本発明の概念を示す図で、2本のカーボン棒1
を石英管2に気密シールして固定し、石英管2中にアル
ゴンガスを流す。
Figure 1 is a diagram showing the concept of the present invention, in which two carbon rods 1
is hermetically sealed and fixed in the quartz tube 2, and argon gas is flowed into the quartz tube 2.

カーボン棒1の両端に60Vの電圧を印加し、同時に1
00OVのパルス状電圧を印加し放電を開始させたとこ
ろ、約10OAの電流が流れ、ガス流の吹出口3の付近
で1400℃のガスが得られ、その熱交換効率は65%
程度であった。
A voltage of 60V is applied to both ends of carbon rod 1, and 1
When a pulsed voltage of 00 OV was applied to start discharge, a current of about 10 OA flowed, and gas at a temperature of 1400°C was obtained near the gas outlet 3, with a heat exchange efficiency of 65%.
It was about.

第2図は本発明の一実施例の断面図で、実際にガラスす
すを発生させるために用いられる放電ノズルの断面の一
例を示す。
FIG. 2 is a cross-sectional view of one embodiment of the present invention, showing an example of the cross-section of a discharge nozzle that is actually used to generate glass soot.

第2図において、21゜22は図に示すような断面を持
つ筒状のカーボン電極であり、石英などの耐火物容器2
3内に固定しである。
In Fig. 2, 21° and 22 are cylindrical carbon electrodes with a cross section as shown in the figure, and are placed in a refractory container 2 such as quartz.
It is fixed within 3.

石英容器23にはアルゴン流入口24からアルゴンガス
を毎分10〜157流し込む。
Argon gas is flowed into the quartz container 23 from the argon inlet 24 at a rate of 10 to 157 per minute.

カーボン電極22の内側に2重構造の耐火物パイプを押
入し、酸素流入口25から酸素ガスを101/分、また
流入口26からアルゴンガスミツ分、および四塩化シリ
コン2091分、四塩化ゲルマニューム2g1分をいず
れもガス状にして流入し、電極21と22の間に60V
、80Aの直流電流を流して、電極21と22の最短間
隙部27にプラズマを発生させる。
A double-walled refractory pipe is pushed inside the carbon electrode 22, and oxygen gas is supplied from the oxygen inlet 25 at 101/min, and from the inlet 26, argon gas, 2091/min of silicon tetrachloride, and 2 g/min of germanium tetrachloride are supplied. Both components flow in gaseous form, and 60 V is applied between electrodes 21 and 22.
, 80 A of direct current is passed to generate plasma in the shortest gap 27 between the electrodes 21 and 22.

このプラズマによって加熱されたアルゴンガスと、電極
22の中央部から吹き出ケ酸素、四塩化シリコンおよび
四塩化ゲルマニュームのガスは、反応部吹出口28で混
合して、酸化反応をおこし、酸化ゲルマニュームのドー
プされた酸化シリコンの微粉末が合成された。
The argon gas heated by the plasma and the oxygen, silicon tetrachloride, and germanium tetrachloride gases blown out from the center of the electrode 22 are mixed at the reaction outlet 28 to cause an oxidation reaction, resulting in the doping of germanium oxide. A fine powder of silicon oxide was synthesized.

これらのガラスすすは放電ノズル上部に設置されている
回転(毎秒1回)しながら上方に毎分3關の速度で移動
する石英製出発材29に積され、直径20mmのガラス
すす焼結体30が形成された。
These glass soots are stacked on a quartz starting material 29 that is installed above the discharge nozzle and rotates (once per second) while moving upward at a speed of 3 times per minute. was formed.

このガラスすす焼結体30が表面に同様な放電ノズルに
より、流入口26から酸素と四塩化シリコンのみを送り
込み、他の条件は同一にして、ガラスすすを10mmの
厚さに吹き付け、すす状のファイバ母材を作った。
This glass soot sintered body 30 is sprayed with glass soot to a thickness of 10 mm using a similar discharge nozzle to send only oxygen and silicon tetrachloride from the inlet 26 and keeping the other conditions the same. A fiber base material was made.

続いてこれを1700℃、加熱長30間の電気炉内に、
毎分4關の速度で送り込み、ゾーンメルトした結果、周
辺部の屈折率が1.458、中心部の屈折率1.468
の透明な外径20mmの光フアイバ母材が得られた。
Next, this was placed in an electric furnace at 1700℃ for a heating length of 30 minutes.
As a result of zone melting by feeding at a speed of 4 times per minute, the refractive index of the peripheral part was 1.458 and the refractive index of the central part was 1.468.
A transparent optical fiber base material having an outer diameter of 20 mm was obtained.

この母材の一端を加熱し、糸状に線引して得られたファ
イバの分光特性を測定した結果、水分は11]pm以下
であった。
One end of this base material was heated and drawn into a thread, and the spectral characteristics of the obtained fiber were measured, and as a result, the water content was 11] pm or less.

本発明の方法で最も問題となるのは、放電電極材料のガ
ラス中への混入の可能性である。
The most problematic aspect of the method of the present invention is the possibility of the discharge electrode material being mixed into the glass.

本発明の方法では電極としてカーボンを使用するので、
カーボン中に含まれる不純物金属、または放電によりス
パッタしたカーボン微粒子がガラス中に混入する可能性
がある。
Since the method of the present invention uses carbon as an electrode,
Impurity metals contained in carbon or carbon fine particles sputtered by discharge may be mixed into the glass.

使用したカーボン電極は使用前に真空中で3000’C
で10分間加熱し、不純物を除去した。
The carbon electrode used was heated to 3000'C in vacuum before use.
The mixture was heated for 10 minutes to remove impurities.

この処理により不純物を除去による吸収は全く観測され
なかった。
No absorption was observed at all due to the removal of impurities by this treatment.

また放電によりスパッタされたカーボン微粒子は、酸素
流入口25から吹き込まれた酸素により、吹出口28の
領域で酸化され、CO2ガスとなり、ガラス中に粒子状
炭素として混入することはな力った。
Further, the carbon fine particles sputtered by the discharge were oxidized in the area of the air outlet 28 by the oxygen blown in from the oxygen inlet 25, and turned into CO2 gas, which prevented them from being mixed into the glass as particulate carbon.

以上説明したように、直流放電プラズマによって加熱さ
れた不活性ガスにより、反応合成されたガラスは、従来
用いられている高周波プラズマ法と同程度の品質のもの
であり、熱効率が改善されている。
As explained above, the glass synthesized by reaction using an inert gas heated by DC discharge plasma has the same quality as the conventionally used high-frequency plasma method, and has improved thermal efficiency.

さらに高周波プラズマに比べて、プラズマが安定してお
り、均質なガラスが得られる利点がある。
Furthermore, compared to high-frequency plasma, it has the advantage that the plasma is stable and homogeneous glass can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の概念図、第2図は本発明の一実施例の
断面図である。 1・・・・・・カーボン電極、2・・・・・・石英管、
3・・・・・・ガス吹出口、21,22・・・・・・カ
ーボン電極、23・・・・・・石英容器、24・・・・
・・アルゴン流入口、25・・・・・・酸素流入口、2
6・・・・・・アルゴンとガラス原料の流入口、27・
・・・・・電極21と22の最短間隙部、28・・・・
・・反応部吹出口、29・・・・・・石英製出発材、3
0・・・・・・ガラスすす焼結体、
FIG. 1 is a conceptual diagram of the present invention, and FIG. 2 is a sectional view of an embodiment of the present invention. 1... Carbon electrode, 2... Quartz tube,
3... Gas outlet, 21, 22... Carbon electrode, 23... Quartz container, 24...
...Argon inlet, 25...Oxygen inlet, 2
6...Argon and glass raw material inlet, 27.
...Shortest gap between electrodes 21 and 22, 28...
...Reaction part outlet, 29...Quartz starting material, 3
0...Glass soot sintered body,

Claims (1)

【特許請求の範囲】[Claims] 1 四塩化シリコンと、少なくとも1種のドーピング用
添加物蒸気と、酸素ガスとを高温に加熱して酸化させる
ことにより、すす状ガラス焼結体を作った後、このガラ
ス焼結体を加熱透明ガラス化するガラスファイバ用母材
の製造方法において、不活性ガス流中でカーボンを電極
とする直流放電により、高温不活性ガスを作り、前記四
塩化シリコンと、少なくとも1種のドーピング用添加物
蒸気と酸素ガスとを混合して酸化反応を行わせることを
特徴とするガラスファイバ用母材の製造方法。
1. After making a soot-like glass sintered body by heating silicon tetrachloride, at least one doping additive vapor, and oxygen gas to high temperature and oxidizing it, this glass sintered body is heated to make it transparent. In a method for producing a glass fiber base material to be vitrified, a high-temperature inert gas is produced by direct current discharge using carbon as an electrode in an inert gas flow, and the silicon tetrachloride and at least one doping additive vapor are produced. 1. A method for producing a base material for glass fiber, which comprises mixing and oxygen gas to cause an oxidation reaction.
JP10649376A 1976-09-06 1976-09-06 Method for manufacturing base material for optical fiber Expired JPS5855087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10649376A JPS5855087B2 (en) 1976-09-06 1976-09-06 Method for manufacturing base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10649376A JPS5855087B2 (en) 1976-09-06 1976-09-06 Method for manufacturing base material for optical fiber

Publications (2)

Publication Number Publication Date
JPS5332043A JPS5332043A (en) 1978-03-25
JPS5855087B2 true JPS5855087B2 (en) 1983-12-08

Family

ID=14434965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10649376A Expired JPS5855087B2 (en) 1976-09-06 1976-09-06 Method for manufacturing base material for optical fiber

Country Status (1)

Country Link
JP (1) JPS5855087B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2714371B1 (en) * 1993-12-24 1996-02-16 Cabloptic Sa Method for recharging an optical fiber preform, device for implementing this method and optical fiber by this method.

Also Published As

Publication number Publication date
JPS5332043A (en) 1978-03-25

Similar Documents

Publication Publication Date Title
US3275408A (en) Methods for the production of vitreous silica
US5397372A (en) MCVD method of making a low OH fiber preform with a hydrogen-free heat source
JPS5567533A (en) Production of glass base material for light transmission
JPH0155201B2 (en)
JP2000159597A (en) Method for passivation of combustible metallurgical powder and oxidation unit
JPS5855087B2 (en) Method for manufacturing base material for optical fiber
JP4176468B2 (en) Optical fiber preform manufacturing apparatus and method
JPS59152215A (en) Production of high-purity silica beads
JPS6090836A (en) Manufacture of synthetic quartz
JPS6311541A (en) Plasma torch and production of glass base material for optical fiber by using said plasma torch
JPS5825045B2 (en) Method for producing SiC ultrafine particles
JPS6225617B2 (en)
JP3417962B2 (en) Manufacturing method of synthetic quartz glass member
JPH01131100A (en) Production of silicon carbide whisker
JPH0526537B2 (en)
JPH01286919A (en) Production of fine particle of zinc oxide
JPS61197416A (en) Production of silicon dioxide having ultra-high purity
JPH0583497B2 (en)
JP2000169162A (en) Production of quartz glass
JPS599495B2 (en) Silica glass manufacturing method
JPS6034504B2 (en) Optical fiber manufacturing method
JPS5843335B2 (en) Seizouhou
JP2003165736A (en) Method for manufacturing optical fiber preform and device and manufacturing optical fiber preform using it
JPH02217330A (en) Method and apparatus for feeding silicon tetrachloride raw material gas
JPS6045133B2 (en) Method for manufacturing base material for optical glass fiber