JPS5854497B2 - A method to increase the gettering effect due to internal defects in semiconductor substrates - Google Patents

A method to increase the gettering effect due to internal defects in semiconductor substrates

Info

Publication number
JPS5854497B2
JPS5854497B2 JP9604180A JP9604180A JPS5854497B2 JP S5854497 B2 JPS5854497 B2 JP S5854497B2 JP 9604180 A JP9604180 A JP 9604180A JP 9604180 A JP9604180 A JP 9604180A JP S5854497 B2 JPS5854497 B2 JP S5854497B2
Authority
JP
Japan
Prior art keywords
heat treatment
defects
temperature
internal defects
gettering effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9604180A
Other languages
Japanese (ja)
Other versions
JPS5721825A (en
Inventor
賢 小川
英樹 津屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP9604180A priority Critical patent/JPS5854497B2/en
Publication of JPS5721825A publication Critical patent/JPS5721825A/en
Publication of JPS5854497B2 publication Critical patent/JPS5854497B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明は半導体基板の内部欠陥によるゲッタリング効果
を増大させる方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for increasing the gettering effect due to internal defects in a semiconductor substrate.

シリコンウェーバの表面やエピタキシアル膜に発生する
微小欠陥は、デバイスの電気的特性を悪化させることが
よく知られてかり、この微小欠陥を最小限に抑制するこ
とが素子の歩留り向上につながっている。
It is well known that micro defects that occur on the surface of silicon wafers and epitaxial films deteriorate the electrical characteristics of devices, and minimizing these micro defects leads to improved device yields. .

この微小欠陥を発生させる原因としては、拡散速度の大
きい重金属の汚染が考えられており、種々の抑制方法が
施され、また提案されている。
Contamination with heavy metals, which have a high diffusion rate, is thought to be the cause of the occurrence of these microdefects, and various methods of suppressing this have been implemented or proposed.

その抑制方法としては、現在市販のウェーバではサンド
ブラスト等による裏面歪層けが主であるが、この他にウ
ェーバの内部欠陥を利用したイントリンシックゲッタリ
ング効果(以下IG効果と称す)、イオン注入による歪
層の形成、Si3N4膜による界面応力の導入、レーザ
による裏面歪層の形成などが実行又は提案されている。
The main methods of suppressing this problem are the back side strain layer damage caused by sandblasting etc. in currently commercially available wafers, but other methods include the intrinsic gettering effect (hereinafter referred to as the IG effect) using internal defects of the wafer, and the distortion caused by ion implantation. Formation of a layer, introduction of interfacial stress using a Si3N4 film, formation of a back strain layer using a laser, etc. have been implemented or proposed.

本発明者らはIG効果の有効性に着目し、ウェーバに熱
処理を施すことにより、エピタキシアル膜中の微小欠陥
を大幅に低減することができた(特願昭54−1441
83号参照)。
The present inventors focused on the effectiveness of the IG effect, and by applying heat treatment to the wafer, they were able to significantly reduce micro defects in the epitaxial film (Japanese Patent Application No. 54-1441
(See No. 83).

IG効果はウェーバを熱処理することにより、過飽和な
酸素が点欠陥のところに析出し、その結果基板内部に5
i02 析出物やそれから発生する転位、積層欠陥な
どが形成され、その歪応力が微小欠陥を吸収するもので
ある。
The IG effect is caused by heat treatment of the wafer, which causes supersaturated oxygen to precipitate at point defects, resulting in the formation of 5% oxygen inside the substrate.
i02 Precipitates, dislocations generated therefrom, stacking faults, etc. are formed, and their strain stress absorbs minute defects.

しかしながら、この内部欠陥はその後の工程において高
温熱処理を施すと縮少又は消減し、多くの完全転位は原
子の上昇運動によって消減すること、また微小な積層欠
陥は完全転位ループに構造変換し、■G効来が低下する
ことが分ってきた。
However, these internal defects are reduced or eliminated by high-temperature heat treatment in subsequent steps, and many complete dislocations are eliminated by the upward movement of atoms, and minute stacking faults are structurally transformed into complete dislocation loops. It has been found that G efficacy decreases.

ナしてて旦高温熱処理により内部欠陥が縮少又は消滅す
ると、次いで単一熱処理を施しても、酸素の析出したが
って内部欠陥の発生はほとんどみられないことも分って
きた。
It has also been found that once internal defects are reduced or eliminated by high-temperature heat treatment, even if a single heat treatment is subsequently performed, oxygen precipitation and, therefore, the generation of internal defects is hardly observed.

シリコンのICデバイスでは1200℃前後の高温熱処
理プロセスを用いることが多く、バイポーラの埋込工程
やC−MOSのPウェル押込工程では不可欠なプロセス
である。
Silicon IC devices often use a high-temperature heat treatment process of around 1200° C., which is an essential process in the bipolar embedding process and the C-MOS P-well embedding process.

またIG効果を利用する場合には、あらかじめウェーバ
を高温熱処理することにより表面に無欠陥層を形成する
ことがよく行われている。
Furthermore, when the IG effect is utilized, it is common to form a defect-free layer on the surface by subjecting the wafer to high-temperature heat treatment in advance.

また、本発明者らの研究によると、ドナーキラー処理を
施したウェーバに、高温熱処理を施さずに直接後述する
ような二段階熱処理を施すと、ウェーバの表面に1で高
密度の積層欠陥や微小析出物が発生することが分ったの
で、あらかじめウェーバに高温熱処理を施すことはIG
効果を適用する場合には極めて重要である。
In addition, according to research by the present inventors, when a two-step heat treatment as described below is directly applied to a wafer that has been subjected to donor killer treatment without high-temperature heat treatment, a high density of stacking faults occurs on the surface of the wafer. It has been found that micro precipitates are generated, so it is recommended that the webber be subjected to high temperature heat treatment in advance.
This is extremely important when applying effects.

本発明者らは高温熱処理後に二段階熱処理を施すことに
より内部欠陥を生成し、■G効果をもたらすことができ
た(特願昭55−71753参照)。
The present inventors were able to generate internal defects by performing a two-step heat treatment after high-temperature heat treatment, thereby producing the ``G'' effect (see Japanese Patent Application No. 71753/1983).

しかしながら、第1表に示すように二段階熱処理後の格
子間酸素濃度の減少量、つ捷り内部欠陥の発生の程度 は高温熱処理を施さずに、直接二段階熱処理を施した場
合よりは小さい。
However, as shown in Table 1, the amount of decrease in interstitial oxygen concentration and the degree of occurrence of internal defects after two-step heat treatment are smaller than when direct two-step heat treatment is performed without high-temperature heat treatment. .

したがってIG効果は完全であるとはいい難い。Therefore, it is difficult to say that the IG effect is perfect.

これは高温熱処理を施すことにより、臨界サイズ以上の
微小欠陥のみが成長し、臨界サイズ以下の大部分の微小
欠陥(発生核)は縮少、消減し、次の二段階熱処理では
一部の臨界サイズ以上のもののみが酸素の析出に寄与す
るためである。
This is because by performing high-temperature heat treatment, only micro defects larger than the critical size grow, and most micro defects (generated nuclei) smaller than the critical size shrink and disappear, and in the next two-step heat treatment, some of the micro defects grow This is because only particles larger than the size contribute to the precipitation of oxygen.

そのために高温熱処理を施したウェーバにIG効果を有
効にもたらすための熱処理プロセスの改良が必要である
Therefore, it is necessary to improve the heat treatment process to effectively bring about the IG effect on the wafer subjected to high temperature heat treatment.

本発明はこのような問題を解決し、より強力なIG効果
をもたらすことを目的としてなされたものであり、あら
かじめ1200℃以上の高温熱処理されたシリコン基板
を乾燥酸素雰囲気中で、500℃から出発して、50〜
100℃毎に処理温度を順次上昇させ、最終段階の温度
を850℃として多段階処理を行うことにより、ゲッタ
リング効果を増大させる方法を提供するものである。
The present invention was made with the aim of solving these problems and bringing about a stronger IG effect.The present invention was made with the aim of solving these problems and bringing about a stronger IG effect. Then, 50~
The present invention provides a method for increasing the gettering effect by performing a multi-step process in which the processing temperature is sequentially increased by 100°C and the final stage temperature is 850°C.

以下実施例を用いて本発明の詳細な説明する。The present invention will be described in detail below using Examples.

実施例 I P形(111)ウェーバを酸素を25%含む窒素雰囲気
中で、1230℃、3h熱処理したのち、乾燥酸素雰囲
気中で、520℃、620℃及び720℃の各温度で夫
々16hずつ順次熱処理を施し、格子間酸素濃度の測定
及び誘起される内部欠陥のエツチング観察を行った。
Example I A P-type (111) weber was heat-treated at 1230°C for 3 hours in a nitrogen atmosphere containing 25% oxygen, and then sequentially heated at 520°C, 620°C, and 720°C for 16 hours each in a dry oxygen atmosphere. After heat treatment, the interstitial oxygen concentration was measured and the etching of the induced internal defects was observed.

720℃の熱処理後では格子間酸素濃度の著しい減少が
みられ、第2表に示すように、高温熱処理を施さずに直
接二段階熱処理を施した値に匹適している。
After heat treatment at 720° C., a significant decrease in interstitial oxygen concentration was observed, which, as shown in Table 2, is comparable to the value obtained by direct two-step heat treatment without high-temperature heat treatment.

lたエツチング観察から内部欠陥がスワール状に発生し
、その密度は5 X 106/crd もあった。
The etching observation revealed that internal defects were generated in a swirl shape, and the density was as high as 5 x 106/crd.

第1表に示した高温熱処理後に二段階熱処理を施したウ
ェーバの内部欠陥は2 X 10’/crA であり
、それに比較すると2桁も増大した。
The internal defects of the wafers shown in Table 1 which were subjected to two-step heat treatment after high-temperature heat treatment were 2 x 10'/crA, which increased by two orders of magnitude.

また湿式酸素雰囲気中で、1140℃、2h熱処理して
表面欠陥を観察したところ、全くみられずIG効果が十
分起っていることが分った。
Further, when the sample was heat-treated at 1140° C. for 2 hours in a wet oxygen atmosphere and surface defects were observed, it was found that no surface defects were observed, indicating that the IG effect was sufficiently occurring.

本発明による内部欠陥の生成メカニズムを考えると次の
ようになるであろう。
Considering the internal defect generation mechanism according to the present invention, it will be as follows.

前述したように通常熱処理により生成される欠陥のサイ
ズには臨界サイズがあり、熱処理温度との関係は第1図
のようになっているといわれている。
As mentioned above, it is said that there is a critical size for defects generated by normal heat treatment, and the relationship with heat treatment temperature is as shown in FIG.

ところが、熱処理に供せられる出発ウェーバには種々の
サイズの微小欠陥(発生核)が存在している。
However, micro defects (nuclei) of various sizes are present in the starting waver to be subjected to heat treatment.

そこで各サイズの密度分布を決定するために、出発ウェ
ーバに各温度で熱処理を施醜生成された欠陥密度分布を
測定すると、模式的にはy第2図のようになっているこ
とが分った。
Therefore, in order to determine the density distribution of each size, we heat-treated the starting webber at each temperature and measured the defect density distribution, which was found to be schematically as shown in Figure 2. Ta.

このようなウェーバに1230℃の高温熱処理を施すと
、サイズの小さいものほど密度が急激に減少し、密度分
布は第3図のようになる。
When such a webber is subjected to high-temperature heat treatment at 1230° C., the smaller the size, the more rapidly the density decreases, and the density distribution becomes as shown in FIG.

次いで720℃の熱処理を施すと、Aで示した斜線部分
より上の大きさの欠陥が成長することになる。
When heat treatment is then performed at 720° C., defects larger than the shaded area indicated by A will grow.

本発明はウェーバに存在する微小欠陥(発生核)をでき
るだけ多く利用しようとする考えに基くものであり、捷
ず520℃で熱処理を施すと、第4図のBの斜線部分よ
り上の欠陥が成長し、その結果、サイズと密度の関係は
第5図のようになる。
The present invention is based on the idea of utilizing as many minute defects (nuclei) as possible existing in the webber, and if heat treatment is performed at 520°C without being separated, the defects above the shaded area B in Figure 4 will be removed. As a result, the relationship between size and density becomes as shown in Figure 5.

次に620℃で熱処理を施すと第5図のCの斜線部分よ
り上の欠陥が成長に寄与し、密度分布は第6図のように
なる。
Next, when heat treatment is performed at 620° C., defects above the shaded area C in FIG. 5 contribute to growth, and the density distribution becomes as shown in FIG. 6.

更に720℃の熱処理を施すと、Dの斜線部分のものが
成長するから、第3図の斜線部分Aと比較すると、はる
かに多い微小欠陥が最終的に戒長し、析出することにな
る。
When heat treatment is further performed at 720° C., the shaded area D grows, and compared to the shaded area A in FIG. 3, a much larger number of micro defects will eventually lengthen and precipitate.

本実施例は、100℃間隔の熱処理の場合について述べ
たが、50℃間隔で熱処理を行ってもよい。
Although this embodiment describes the case where heat treatment is performed at intervals of 100°C, heat treatment may be performed at intervals of 50°C.

しかしながら、必要以上に間隔をせばめると多くのプロ
セスと時間を必要とし、工業的に興味がなくなる。
However, making the interval smaller than necessary requires a lot of process and time, and is not industrially interesting.

捷た本実施例では16hの例について述べたが、各プロ
セスとも16hで十分であることが分った。
In this embodiment, an example of 16 hours was described, but it was found that 16 hours was sufficient for each process.

実施例 2 格子間酸素濃度の異なる出発ウェーバについて本方法を
適用し比較した。
Example 2 This method was applied and compared to starting webs having different interstitial oxygen concentrations.

格子間酸素濃度としては、18X1017個/Crfl
、 15Xl 017個/c4及び12X1017個
/cr/lの三種を選んだ。
The interstitial oxygen concentration is 18X1017/Crfl
, 15Xl 017 pieces/c4 and 12X1017 pieces/cr/l were selected.

多段階熱処理後いずれのウェーバも格子間酸素濃度の顕
著な減少がみられ、特に12X1017個/c4の低酸
素ウェーバでも、高酸素ウェーバと同程度の減少であり
、■G効来が十分起っていることが分った。
After multi-stage heat treatment, a remarkable decrease in interstitial oxygen concentration was observed in all the webbers, and in particular, even in the low-oxygen webber (12×1017 particles/c4), the decrease was about the same as that in the high-oxygen webber, indicating that the ■G effect was sufficiently occurring. I found out that

実施例 3 N形(100)ウェーバに本方法を適用した。Example 3 This method was applied to an N-type (100) Weber.

酸素を25%含む窒素雰囲気中で、1230℃、3h熱
処理したのち、乾燥酸素雰囲気中で720’C64h熱
処理を行い次いで湿式酸素雰囲気中で1140℃、2h
熱処理したところ、内部欠陥密度は2 X 103/C
r/lであり、またウェーバの表面には、I X 10
3/cviの密度で約10μmの長さの積層欠陥がみら
れた。
After heat treatment at 1230°C for 3 hours in a nitrogen atmosphere containing 25% oxygen, heat treatment at 720°C for 64 hours in a dry oxygen atmosphere, and then at 1140°C for 2 hours in a wet oxygen atmosphere.
After heat treatment, the internal defect density was 2 x 103/C
r/l, and on the surface of the weber, I
Stacking faults with a length of about 10 μm were observed at a density of 3/cvi.

一方、実施例1と同様な方法を本ウェーバに適用したと
ころ、多段階熱処理後には4 X 10’ /criの
内部欠陥がスワール状に発生し、會た、湿式酸素雰囲気
中で1140℃、2hの熱処理を施し、ウェーバの表面
を観察したところ前述の積層欠陥は全くみられなかった
On the other hand, when the same method as in Example 1 was applied to this webber, internal defects of 4 x 10'/cri were generated in a swirl shape after multi-step heat treatment, and after 2 hours of heating at 1140°C in a wet oxygen atmosphere. When the surface of the wafer was observed after the heat treatment, no stacking faults were observed.

以上詳細に述べたように、高温熱処理を施した基板に、
低温からの多段階熱処理を順次施すことにより、高密度
の内部欠陥を発生させ、ゲッタリング効果を増大させる
ことができた。
As described in detail above, on a substrate that has been subjected to high temperature heat treatment,
By sequentially performing multi-step heat treatment starting at low temperatures, we were able to generate a high density of internal defects and increase the gettering effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は臨界サイズの温度依存性を示す模式図、第2図
はサイズと密度の関係を示す模式図、第3図は実線が1
230℃で高温熱処理を行ったときのサイズと密度の関
係を示し、720℃で熱処理を行うと斜線部分Aのサイ
ズのものが成長することを示す図、第4図は高温熱処理
後、520℃で熱処理するとき、斜線部分Bのサイズの
ものが成長することを示す図、第5図は次いで620℃
で熱処理するときに、斜線部分Cが成長することを示す
図、第6図は更に720℃で熱処理するときに、斜線部
分りが成長することを示す図である。
Figure 1 is a schematic diagram showing the temperature dependence of critical size, Figure 2 is a diagram showing the relationship between size and density, and Figure 3 is a diagram showing the relationship between size and density.
Figure 4 shows the relationship between size and density when heat treated at 230°C and shows that the size of the shaded area A grows when heat treated at 720°C. Figure 5 shows that the size of the shaded area B grows when heat treated at 620°C.
FIG. 6 is a diagram showing that the shaded area C grows when the heat treatment is performed at 720° C., and FIG. 6 is a diagram showing that the shaded area C grows when the heat treatment is further performed at 720° C.

Claims (1)

【特許請求の範囲】 1 シリコン単結晶基板を1200℃以上で熱処理した
のち、乾燥酸素雰囲気中で低温から順次高温へ多段階熱
処理を施し、上記基板の内部にゲッタリングの沈澱の中
心を高密度に形成することにより、ゲッタリング効果を
増大させる方法。 2 多段階熱処理方法としては、500℃から出発し、
50〜100℃の段階で順次上昇させ、最終温度を85
0℃壕でとすることを特徴とする特許請求の範囲第1項
記載の半導体基板の内部欠陥によるゲッタリング効果を
増大させる方法。
[Claims] 1. After heat treating a silicon single crystal substrate at 1200° C. or higher, multi-step heat treatment is performed in a dry oxygen atmosphere from a low temperature to a high temperature in order to form a center of gettering precipitation inside the substrate at a high density. A method of increasing the gettering effect by forming 2 As a multi-step heat treatment method, starting from 500°C,
Increase the temperature in stages from 50 to 100℃ until the final temperature reaches 85℃.
A method for increasing the gettering effect due to internal defects in a semiconductor substrate according to claim 1, wherein the method is carried out at a temperature of 0°C.
JP9604180A 1980-07-14 1980-07-14 A method to increase the gettering effect due to internal defects in semiconductor substrates Expired JPS5854497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9604180A JPS5854497B2 (en) 1980-07-14 1980-07-14 A method to increase the gettering effect due to internal defects in semiconductor substrates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9604180A JPS5854497B2 (en) 1980-07-14 1980-07-14 A method to increase the gettering effect due to internal defects in semiconductor substrates

Publications (2)

Publication Number Publication Date
JPS5721825A JPS5721825A (en) 1982-02-04
JPS5854497B2 true JPS5854497B2 (en) 1983-12-05

Family

ID=14154400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9604180A Expired JPS5854497B2 (en) 1980-07-14 1980-07-14 A method to increase the gettering effect due to internal defects in semiconductor substrates

Country Status (1)

Country Link
JP (1) JPS5854497B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154098U (en) * 1984-09-10 1986-04-11
JPS639391U (en) * 1986-07-01 1988-01-21

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198334A (en) * 1987-02-13 1988-08-17 Komatsu Denshi Kinzoku Kk Manufacture of semiconductor silicon wafer
GB2258356B (en) * 1991-07-31 1995-02-22 Metron Designs Ltd Method and apparatus for conditioning an electronic component having a characteristic subject to variation with temperature
JPH07193072A (en) * 1993-12-27 1995-07-28 Nec Corp Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154098U (en) * 1984-09-10 1986-04-11
JPS639391U (en) * 1986-07-01 1988-01-21

Also Published As

Publication number Publication date
JPS5721825A (en) 1982-02-04

Similar Documents

Publication Publication Date Title
US4314595A (en) Method of forming nondefective zone in silicon single crystal wafer by two stage-heat treatment
EP0090320B1 (en) A method for tailoring oxygen precipitate particle density and distribution in silicon
JPH06504878A (en) Method of controlling precipitation conditions in silicon wafers
JPS6255697B2 (en)
JPH11150119A (en) Method and device for heat-treating silicon semiconductor substance
JP3381816B2 (en) Semiconductor substrate manufacturing method
US4193783A (en) Method of treating a silicon single crystal ingot
KR20060040733A (en) Process for producing wafer
JPS5854497B2 (en) A method to increase the gettering effect due to internal defects in semiconductor substrates
JPH0561240B2 (en)
JPS6326541B2 (en)
JPS6258138B2 (en)
JPS63198334A (en) Manufacture of semiconductor silicon wafer
JPH06295913A (en) Manufacture of silicon wafer and silicon wafer
JPS58138034A (en) Manufacture of semiconductor device
JP3238957B2 (en) Silicon wafer
KR0162137B1 (en) Formation method of wafer
JPH02177321A (en) Manufacture of semiconductor substrate
JPH02164040A (en) Treatment of silicon semiconductor substrate
JP3220961B2 (en) Manufacturing method of epitaxial semiconductor wafer
JPS59119842A (en) Manufacture of semiconductor device
JPS60176241A (en) Manufacture of semiconductor substrate
JPS58111323A (en) Preparation of semiconductor device
JPS6331126A (en) Processing of semiconductor substrate
JPH1121200A (en) Silicon epitaxial wafer and its production