JPS5853511B2 - Method for manufacturing diodes incorporated into integrated circuits - Google Patents

Method for manufacturing diodes incorporated into integrated circuits

Info

Publication number
JPS5853511B2
JPS5853511B2 JP5497177A JP5497177A JPS5853511B2 JP S5853511 B2 JPS5853511 B2 JP S5853511B2 JP 5497177 A JP5497177 A JP 5497177A JP 5497177 A JP5497177 A JP 5497177A JP S5853511 B2 JPS5853511 B2 JP S5853511B2
Authority
JP
Japan
Prior art keywords
region
base
diffusion
emitter
base diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5497177A
Other languages
Japanese (ja)
Other versions
JPS53139478A (en
Inventor
信雄 伊藤
和男 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP5497177A priority Critical patent/JPS5853511B2/en
Publication of JPS53139478A publication Critical patent/JPS53139478A/en
Publication of JPS5853511B2 publication Critical patent/JPS5853511B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は集積回路に組込まれるダイオードの製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing diodes that are incorporated into integrated circuits.

第1図は従来方法を説明する断面図である。FIG. 1 is a sectional view illustrating a conventional method.

第1図に於いて、1はP型の半導体基板、2はN型のエ
ピタキシャル層、3は上下分離方法によるP+型の分離
領域、4はN+型の埋め込み層であり、すべて半導体集
積回路技術では周知のものである。
In Figure 1, 1 is a P-type semiconductor substrate, 2 is an N-type epitaxial layer, 3 is a P+-type isolation region created by the upper and lower separation method, and 4 is an N+-type buried layer, all of which are based on semiconductor integrated circuit technology. This is well known.

従来ツェナーダイオードを形成する場合、1つの島5に
ベース領域6よりも高濃度のP領域7を拡散し、然る後
他の島8にトランジスタを形成するためのベース拡散お
よびエミッタ拡散が行なわれ、エミッタ拡散の時にP領
域7内にN領域9を拡散して所望のツェナー特性を有す
るダイオードを得ていた。
Conventionally, when forming a Zener diode, a P region 7 with a higher concentration than the base region 6 is diffused into one island 5, and then base diffusion and emitter diffusion are performed on the other island 8 to form a transistor. During emitter diffusion, an N region 9 is diffused into a P region 7 to obtain a diode having desired Zener characteristics.

しかしながら耕土した方法では第1にエミッタ拡散の領
域を決めるエミッタホトレジスト工程ではベース領域を
基準にマスク合わせを行うためP領域7とN領域9には
必ずマスクずれが発生し、更にP領域7に設ける電極孔
10のホトレジスト工程はベースおよびエミッタ領域を
基準に行なわれるのでマスクずれが発生し、この2回の
マスクずれによりP領域7への電極孔10はP領域7か
らはみ出す危惧を有している。
However, in the tilled soil method, in the emitter photoresist process that first determines the emitter diffusion region, mask alignment is performed based on the base region, so mask misalignment always occurs in P region 7 and N region 9, and furthermore, mask misalignment occurs in P region 7 and N region 9. Since the photoresist process for forming the electrode hole 10 is performed with reference to the base and emitter regions, mask displacement occurs, and due to these two mask displacements, there is a risk that the electrode hole 10 to the P region 7 may protrude from the P region 7. .

第2にP領域7上の酸化膜11は前述したトランジスタ
のベースおよびエミッタ拡散でその厚みが増し、その結
果電極孔を形成されるトランジスタのベース6、エミッ
タ12およびエミッタ拡散で形成されるコレクタコンタ
クト領域13上の酸化膜より厚くなり、サイドエッチに
より電極孔10がP領域7からはみ出し易い。
Second, the thickness of the oxide film 11 on the P region 7 increases due to the base and emitter diffusion of the transistor described above, and as a result, the base 6 of the transistor, which forms the electrode hole, the emitter 12, and the collector contact formed by the emitter diffusion. It is thicker than the oxide film on region 13, and electrode hole 10 tends to protrude from P region 7 due to side etching.

本発明は耕土した欠点Eこ鑑みてなされ、従来の欠点を
完全に除去した集積回路に組込まれるダイオードの製造
方法を提供するものであり、以下第2図乃至第5図を参
照して本発明の実施例を詳述する。
The present invention has been made in view of the drawbacks E, and provides a method for manufacturing diodes incorporated in integrated circuits that completely eliminates the conventional drawbacks. Examples will be described in detail.

本発明は第2図に示す如く、P型半導体基板21上にN
型のエピタキシャル層22を設け、上下分離方式による
分離領域23によりエピタキシャル層22を分離して複
数個の島24を形成し、少くともトランジスタを形成す
る島24にはN+型の埋め込み層25がある周知の半導
体集積回路技術tこ適用される。
In the present invention, as shown in FIG.
A type epitaxial layer 22 is provided, and a plurality of islands 24 are formed by separating the epitaxial layer 22 by an upper and lower separation region 23, and at least an N+ type buried layer 25 is provided in the island 24 where a transistor is formed. Well-known semiconductor integrated circuit technology is applied.

先ず所望の島24にダイオードのP領域26が拡散され
る。
First, the desired islands 24 are diffused with diode P regions 26 .

P領域26は不純物炭塵が5×1O19CIrL″″3
程度とベース領域より高濃度であり、ベース拡散前に形
成される。
The impurity coal dust in the P region 26 is 5×1O19CIrL″″3
The degree and base region are more concentrated and are formed before the base diffusion.

続いて第3図に示す如く、他の島24にはトランジスタ
のベース領域27を形成するためのベース拡散が行なわ
れる。
Subsequently, as shown in FIG. 3, another island 24 is subjected to base diffusion to form a base region 27 of a transistor.

本発明の特徴はこのベース拡散時にP領域26にも重畳
してベース拡散を行うことにある。
A feature of the present invention is that the base is diffused in such a manner that it overlaps with the P region 26 during the base diffusion.

この重畳するベース拡散をP領域26とほぼ同一の大き
さとしベースホトレジスト工程で完全に重ね合せると、
後工程であるN領域28およびP領域26への電極孔2
9の形成はすべてベース拡散を基準にしているので必然
的にP領域26内に位置することになる。
If this overlapping base diffusion is made to be approximately the same size as the P region 26 and completely overlapped in the base photoresist process,
Electrode holes 2 to the N region 28 and P region 26 in the subsequent process
Since all of the formations of 9 are based on the base diffusion, they are necessarily located within the P region 26.

またベース拡散の不純物濃度は5×1018CrIL−
3程度と低いためP領域26の濃度変化は少なくツェナ
ー電圧にあまり影響を与えない。
In addition, the impurity concentration of the base diffusion is 5×1018CrIL-
Since the concentration is as low as about 3, the concentration change in the P region 26 is small and does not affect the Zener voltage much.

第4図はトランジスタのエミッタ拡散工程であり、前述
したベース領域27内にエミッタ領域30が形成される
FIG. 4 shows a transistor emitter diffusion step, in which an emitter region 30 is formed within the base region 27 described above.

このエミッタ拡散でP領域26内にN領域28が形成さ
れツェナー特性を有するダイオードが完成する。
This emitter diffusion forms an N region 28 within the P region 26, completing a diode having Zener characteristics.

またトランジスタではコレクタ領域31にコレクタコン
タクト領域32が形成される。
Further, in the transistor, a collector contact region 32 is formed in the collector region 31 .

本工程で行なわれるエミッタホトレジストのマスク合わ
せはベース領域27を基準に行なわれるため、前述した
如くN領域28は確実にベース拡散と重畳したP領域2
6内に納まる。
Since the mask alignment of the emitter photoresist performed in this process is performed with the base region 27 as a reference, the N region 28 is reliably covered with the P region 2 overlapping the base diffusion as described above.
It falls within 6.

然る後第4図に示す如く各領域への電極孔が酸化膜33
に形成される。
After that, as shown in FIG.
is formed.

電極孔はホトレジスト技術で形成され、ホトレジストの
マスク合わせはベース拡散およびエミッタ拡散の両者を
基準にするので、P領域26への電極孔29は確実にP
領域26内に位置する。
The electrode holes are formed using photoresist technology, and since the photoresist mask alignment is based on both the base diffusion and emitter diffusion, the electrode holes 29 to the P region 26 are reliably connected to the P region.
Located within area 26.

N領域28、エミッタ領域30、ベース領域27および
コレクタコンタクト領域32への電極孔も一緒にエツチ
ングにより形成される。
Electrode holes to the N region 28, emitter region 30, base region 27 and collector contact region 32 are also formed by etching.

耕土した本発明の方法に依れば、P領域26にほぼ重畳
させてベース拡散を行うことにより、後工程のマスク合
わせをすべてベース拡散基準に行なえるようにしマスク
ずれを完全に解消している。
According to the method of the present invention, by performing base diffusion almost overlapping the P region 26, all mask alignment in the subsequent process can be performed based on the base diffusion standard, completely eliminating mask misalignment. .

しかしながら斯る方法ではベース拡散による酸化熱処理
でP領域26の表面濃度が若干低下しツェナー耐圧のば
らつきが発生する原因となる。
However, in such a method, the surface concentration of the P region 26 decreases slightly due to the oxidation heat treatment due to base diffusion, which causes variations in the Zener breakdown voltage.

また高ツェナー耐圧を要求されるときP領域26の表面
濃度を低く、例えば2×1019cfrL−3程度に設
計するためベース拡散による濃度変化が無視できないた
め耕土の方法が適用できなくなる欠点がある。
Further, when a high Zener withstand voltage is required, the surface concentration of the P region 26 is designed to be low, for example, about 2×10 19 cfrL −3 , so that the concentration change due to base diffusion cannot be ignored, making it impossible to apply the tilling method.

この点を改良した実施例を第5図に示す。FIG. 5 shows an embodiment that improves this point.

本例は第5図から明白な様にP領域26と重畳するベー
ス拡散部分34をP領域26への電極孔29を形成する
部分のみに限定している。
In this example, as is clear from FIG. 5, the base diffusion portion 34 overlapping with the P region 26 is limited to only the portion where the electrode hole 29 to the P region 26 is formed.

従ってベース拡散時のマスク合わせでP領域26への重
畳部分34を第6図の如くP領域26への電極孔29を
形成する側の一部分に重ね合わせると良い。
Therefore, in mask alignment during base diffusion, it is preferable to overlap the overlapping portion 34 to the P region 26 with the part of the side where the electrode hole 29 to the P region 26 is to be formed, as shown in FIG.

第6図で点線はN領域を示している。In FIG. 6, the dotted line indicates the N region.

斯る方法でもP領域26をベース拡散と同一基準とする
ことになり後工程のマスクずれは解消される。
This method also allows the P region 26 to be used as the same reference as the base diffusion, thereby eliminating mask misalignment in subsequent steps.

更に前述した2つの実施例で、P領域26への電極孔2
9はベース拡散が重畳されるためトランジスタのベース
領域27の酸化膜33の厚みと等しくなり、サイドエッ
チによるP領域26からのはみ出しも防止される。
Further, in the two embodiments described above, the electrode hole 2 to the P region 26
9 has a thickness equal to that of the oxide film 33 in the base region 27 of the transistor because the base diffusion is superimposed, and protrusion from the P region 26 due to side etching is also prevented.

以上に詳述した如く、本発明に依ればP領域にベース拡
散を重畳させることによってベース拡散基準のマスク合
わせを実施できマスクずえを完全に解消できる有益なも
のである。
As described in detail above, the present invention is advantageous in that by superimposing the base diffusion on the P region, mask alignment based on the base diffusion can be performed and mask shift can be completely eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を説明する断面図、第2図乃至第5図は
本発明を説明する断面図、第6図は第5図の部分的上面
図である。 主な図面の説明、21は半導体基板、22はエピタキシ
ャル層、23は分離領域、24は島、25は埋め込み層
、26はP領域、27はベース領域、28はN領域、2
9は電極孔、30はエミッタ領域である。
FIG. 1 is a sectional view illustrating a conventional example, FIGS. 2 to 5 are sectional views illustrating the present invention, and FIG. 6 is a partial top view of FIG. 5. Description of main drawings, 21 is a semiconductor substrate, 22 is an epitaxial layer, 23 is an isolation region, 24 is an island, 25 is a buried layer, 26 is a P region, 27 is a base region, 28 is an N region, 2
9 is an electrode hole, and 30 is an emitter region.

Claims (1)

【特許請求の範囲】 1 ベース拡散前に高濃度のP領域を拡散形成した後、
該P領域に少なくとも1部を重畳してベース拡散を行い
、前記P領域にエミッタ拡散でN領域を拡散形威し、前
記P領域のベース拡散を行った部分とN領域上の酸化膜
に夫々電極孔を形成することを特徴とした集積回路に組
込まれるダイオードの製造方法。 2、特許請求の範囲第1項に於いて、ベース拡散を前記
P領域にほぼ重畳させることを特徴とした集積回路に組
込まれるダイオードの製造方法。
[Claims] 1. After diffusing and forming a high concentration P region before base diffusion,
Base diffusion is performed by overlapping at least a portion of the P region, the N region is diffused into the P region by emitter diffusion, and the oxide film on the base-diffused portion of the P region and the N region are respectively A method of manufacturing a diode incorporated into an integrated circuit, comprising forming electrode holes. 2. A method of manufacturing a diode incorporated in an integrated circuit according to claim 1, characterized in that the base diffusion is substantially overlapped with the P region.
JP5497177A 1977-05-11 1977-05-11 Method for manufacturing diodes incorporated into integrated circuits Expired JPS5853511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5497177A JPS5853511B2 (en) 1977-05-11 1977-05-11 Method for manufacturing diodes incorporated into integrated circuits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5497177A JPS5853511B2 (en) 1977-05-11 1977-05-11 Method for manufacturing diodes incorporated into integrated circuits

Publications (2)

Publication Number Publication Date
JPS53139478A JPS53139478A (en) 1978-12-05
JPS5853511B2 true JPS5853511B2 (en) 1983-11-29

Family

ID=12985531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5497177A Expired JPS5853511B2 (en) 1977-05-11 1977-05-11 Method for manufacturing diodes incorporated into integrated circuits

Country Status (1)

Country Link
JP (1) JPS5853511B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102066A (en) * 1980-12-17 1982-06-24 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit device

Also Published As

Publication number Publication date
JPS53139478A (en) 1978-12-05

Similar Documents

Publication Publication Date Title
US6093620A (en) Method of fabricating integrated circuits with oxidized isolation
KR19980032370A (en) Complementary Bipolar Transistors and Manufacturing Method Thereof
US4988639A (en) Method of manufacturing semiconductor devices using trench isolation method that forms highly flat buried insulation film
EP0317132A1 (en) A manufacturing method of a semiconductor device
JPH0828424B2 (en) Semiconductor device and manufacturing method thereof
EP0789403B1 (en) Zener zap diode and method of manufacturing the same
JPS5853511B2 (en) Method for manufacturing diodes incorporated into integrated circuits
US4144106A (en) Manufacture of an I2 device utilizing staged selective diffusion thru a polycrystalline mask
JPS6323335A (en) Isolation and substrate connection for bipolar integrated circuit
JPH09283646A (en) Semiconductor integrated circuit
JP3877459B2 (en) Manufacturing method of semiconductor device
JPS61172346A (en) Semiconductor integrated circuit device
JPS60180138A (en) Semiconductor device
JPH02154428A (en) Junction separation semiconductor region structure for integrated circuit device
KR900008818B1 (en) Manufacture method of a particle in bipolar integrated circuit
JP2567867B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH0834244B2 (en) Semiconductor integrated circuit device
JPH0474478A (en) Diode
JPH06334200A (en) Zener diode and manufacture thereof
JPS6124825B2 (en)
JPH042171A (en) Semiconductor integrated circuit
JPS5984543A (en) Bipolar integrated circuit device and its manufacture
JPS6022358A (en) Semiconductor integrated circuit device
JPS60103640A (en) Semiconductor device
JPH0568864B2 (en)