JPS5851624A - Logical circuit - Google Patents

Logical circuit

Info

Publication number
JPS5851624A
JPS5851624A JP56150979A JP15097981A JPS5851624A JP S5851624 A JPS5851624 A JP S5851624A JP 56150979 A JP56150979 A JP 56150979A JP 15097981 A JP15097981 A JP 15097981A JP S5851624 A JPS5851624 A JP S5851624A
Authority
JP
Japan
Prior art keywords
circuit
logic
type
complementary
reference potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56150979A
Other languages
Japanese (ja)
Other versions
JPH0217971B2 (en
Inventor
Sadahiro Yasuda
安田 貞宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56150979A priority Critical patent/JPS5851624A/en
Publication of JPS5851624A publication Critical patent/JPS5851624A/en
Publication of JPH0217971B2 publication Critical patent/JPH0217971B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/0944Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET
    • H03K19/0948Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET using CMOS or complementary insulated gate field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Logic Circuits (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)

Abstract

PURPOSE:To decrease the number of transistors(TRs) of a circuit satisfying a plurality of logics, by providing a complementary P type logical circuit with a circuit viewing a reference potential from a specific node of an N type circuit of a complementary logical circuit consisting of P and N type TRs. CONSTITUTION:In series connecting a logical circuit 11 consisting of P type MOS Trs QPA-QPE and a logical circuit 12 consisting of N type MOSTRs QNA-QNE complementary with the circuit 11, when signals A-E of logics 1, 0 are applied to the gate of each TR, the 1st logic X=inversion (A.B+C.D.E) is outputted from a connecting point 14. In connecting a logical circuit 20 consisting of P type MOSTRs QPA''-QPE'' being the complementary relation with the circuit viewing the reference potential 16 from a connecting point 21 of the circuit 12 is connected between the connecting point 21 and a power supply 15, the 2nd logic Y=inversion (A.B.C.D+E) is outputted from the connecting point 21 to an output point 22. A complemetnary circuit consisting of a circuit viewing a reference potential, the circuits 11, 12 and 20, and a connecting point 21 are independently operated, and logics X, Y are outputted respectively to terminals 14 and 22 with less number of TRs.

Description

【発明の詳細な説明】 本発明は論理回路に関し%特KN形およびP形のトラン
ジスタによりて相補形に構成され九論理回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a logic circuit, and relates to a nine logic circuit configured in a complementary manner using KN type and P type transistors.

論理回路には多種類の回路が使用されて−るが、近年は
IC化された論理回路が主流を占めるようになりてきて
−る。IC1−mmて論理回路を構成する場合に社集積
度を上げることが比較的容易でありまた出力がオン、オ
フいずれの状態であっても比較的低−出力イ/ビーダ/
スが得られるために次段の設計が容易であるなどの理由
によ2て相補形に構成された論理回路が使用されること
が多い。
Many types of logic circuits are used, but in recent years, logic circuits implemented as ICs have become mainstream. It is relatively easy to increase the degree of integration when configuring a logic circuit with a 1-mm IC, and the output power is relatively low regardless of whether the output is on or off.
Logic circuits configured in a complementary manner are often used for two reasons, such as the fact that the design of the next stage is easy due to the fact that the logic circuits can be easily designed.

第1図は従来のC−MO8で構成した論理回路の一飼の
回路図である。
FIG. 1 is a circuit diagram of a logic circuit constructed using a conventional C-MO8.

この例の論理回路はX−A−B+C−D・Eなる成る一
つの論@(以下第1の論理と称する)を満足するように
組んだ二/ハ/スメ/ト形MO8トランジスタQ、A−
Q□によるP形トラ/ジスタ回路11と、このトランジ
スタ回路11と相補な関係を持つように組んだ二/ノ1
ンスメント形MOβトランジスタQNA ”−QNIに
よるN形トラ/ジスタ回路12とから成り、P形トラ/
ジスタ回路11とN形トラ/ジスタ回路12とは電源端
子15と基準電位端子16との間に直列に接続されその
節点轄論理出力端子14に接続されており、論理人力A
−EはそれぞれP形およびN形トランジスタ回路11.
12内のトランジスタQPA〜QFI # QNA −
QNIBのゲートに接続されて第1の論11X=A −
B+C−D −Et−満足スル相1形論理回路を構成し
ている。
The logic circuit in this example consists of two/C/S/G type MO8 transistors Q and A that are assembled to satisfy a logic consisting of X-A-B+C-D.E (hereinafter referred to as the first logic). −
A P-type transistor/transistor circuit 11 based on Q
It consists of an N-type transistor/transistor circuit 12 made up of a performance-type MOβ transistor QNA"-QNI, and a
The register circuit 11 and the N-type transistor/register circuit 12 are connected in series between the power supply terminal 15 and the reference potential terminal 16, and are connected to the logic output terminal 14 for the node.
-E are P-type and N-type transistor circuits 11., respectively.
Transistors QPA to QFI in 12 # QNA −
The first logic 11X=A − is connected to the gate of QNIB.
A B+C-D-Et-satisfied through-phase type 1 logic circuit is constructed.

今、論理人力A、Eの状態を示す“1”、“θ″の振幅
が電源電圧Eに対して十分な値であるとすれば、従来周
知の動作原理により論理入力の組合せによってP形トラ
ンジスタ回路11又はN形トラ/ジスタ回路12のいず
れか一方のみがオンとなり、出力端子14 K@ 1 
理論11X−A @B+C。
Now, if the amplitudes of "1" and "θ" indicating the states of logic inputs A and E are sufficient values for the power supply voltage E, a P-type transistor is Only either the circuit 11 or the N-type transistor/transistor circuit 12 is turned on, and the output terminal 14 K@1
Theory 11X-A @B+C.

D−gなる関係を満足する“1”又は“0”出力を生ず
る。
It produces a "1" or "0" output that satisfies the relationship D-g.

@2図は従来のC−MO8で構成したl1iiiI理回
路の他の例の回路図である。
Figure @2 is a circuit diagram of another example of the l1iii logic circuit configured with the conventional C-MO8.

この飼の論理回路は第1図の論理回路と同様な基本構成
を有し第1C11#I81と異なる他の論理(以下@2
の論理と称する)YxA、B・C,D+Eを満足する相
補形論理回路を構成しておシ@1図の相補形論理回路と
共通の論理入力A−Eの組合せKよりてP形ト2/ジス
タ回路17又はN形トランジスタ回路18のいずれか一
方のみがオンとなりて論理出力端子19に第2の理論Y
=、=A、B・C・D−)−gなる関係を満足する出力
を生ずる。
This logic circuit has the same basic configuration as the logic circuit shown in FIG. 1, and has other logic (hereinafter @2
A complementary logic circuit that satisfies YxA, B, C, and D+E (referred to as the logic of / Only one of the transistor circuit 17 or the N-type transistor circuit 18 is turned on, and the second logic Y is output to the logic output terminal 19.
It produces an output that satisfies the relationship: =, =A, B・C・D−)−g.

@3図は@1図及び@2図に示す論理回路にようで得ら
れる論理入力と論理出力との関係を表わす図である。
Figure @3 is a diagram showing the relationship between logic inputs and logic outputs obtained in the logic circuits shown in Figures @1 and @2.

以上に説明したように従来周知の相補形瞼哩回WIIt
k用−て複数の論理を満足する回路を構成するためKは
論理人力の種類が同一であっても必要な論理の数だけの
相補形論理回路を必要とするために相補形論理回路を構
Flt−するために必要なトランジスタの数4論理の数
に比例して増加するという欠点がある。
As explained above, the conventionally well-known complementary eyelid rotation WIIt
In order to construct a circuit that satisfies multiple logics for K, even if the type of logic is the same, K requires as many complementary logic circuits as the number of logics required, so K constructs a complementary logic circuit. The disadvantage is that the number of transistors required for Flt-4 increases proportionally to the number of logics.

本発明の目的は上記の欠点を除き、複数の論理を満足す
る論理回路を構成するトランジスタの数を減少せしめた
論理回路を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a logic circuit that eliminates the above-mentioned drawbacks and reduces the number of transistors forming the logic circuit that satisfies a plurality of logics.

本発明の論理回路は複数のN形トラ/゛ジスタを含んで
成る一つの論理全満足するように組んだP形トランジス
タ回路と、前記P形トラ/ジスタ回路と相補な関係をも
つように組んだN形トランジスタ回路とを設けて電源と
基準電位点との間に直列に接続し、その節点から成る一
つの論理出力を得るように構成した複数の論理入力を有
する相補形論理回路において、#J記論理入力のうち少
なくとも一つを論理人力とし、前記一つの論理とは異な
る他の論81を満足するようにP形石しくはN形のトラ
ンジスタを含んで組んだP形石しくはN形論理回路1−
、前記節点からみて基準電位(又は電源側に組まれた前
記N形若しくはP形トランジスタ回路に含まれるトラン
ジスタ相互間の一つの接続点であシ且つその接続点から
基準電位(又は電源)@をみたときの回路が前記N形若
しくはP形論理回路と相補な関係であるような特定の接
続点と電源(又は基準電位点)との間に接続し、前記特
定の接続点から前記他の論理を満足する論理出力を得る
手段を少くとも一つ含むことを特徴とする。
The logic circuit of the present invention includes a P-type transistor circuit including a plurality of N-type transistors and transistors, which are assembled to satisfy all logic requirements, and a P-type transistor circuit which is constructed to have a complementary relationship with the P-type transistor and transistor circuits. In a complementary logic circuit having a plurality of logic inputs, an N-type transistor circuit is provided and connected in series between a power supply and a reference potential point, and one logic output is obtained from the node. At least one of the logic inputs in J is a logic input, and a P-type or N-type transistor is assembled including a P-type or N-type transistor so as to satisfy another logic 81 different from the above-mentioned one logic. Shape logic circuit 1-
, is a reference potential (or a connection point between transistors included in the N-type or P-type transistor circuit assembled on the power supply side) when viewed from the node, and the reference potential (or power supply) @ is connected from the connection point. The circuit is connected between a power supply (or reference potential point) and a specific connection point whose circuit is complementary to the N-type or P-type logic circuit, and the other logic is connected from the specific connection point to the power supply (or reference potential point). The method is characterized in that it includes at least one means for obtaining a logical output that satisfies the following.

つぎに本発明の実施例にクーて図面を用いて詳細に説明
する。
Next, embodiments of the present invention will be described in detail with reference to the drawings.

@4図は本発明の一実施例の回路図である。@4 Figure is a circuit diagram of an embodiment of the present invention.

この実施例の論理回路はX=A−B+C−D@Bなる第
1の論理を満足するように組んだ工/ハ/スメ/ト形M
O8)ランジスタQPA〜Q□によるP形トランジスタ
回路11と、前記トランジスタ回路11と相補な関係を
持つように組んだN形トランジスタ回路12と、Y−A
−B−C−D+Bなる第2の論理を満足するように組ん
だエンノー/スメ/ト形MO8)う/ジスタQPA−〜
QPFi慣 によるP形論理回路20とから成る。P形
トランジスタ回路11は電源端子15と基準電位端子1
6との間に直列に接続され、P形論理回路20はN形ト
ラ/ジスタ回路12に含まれるトランジスタQNA ”
”” QNI  相互間の一つの接続点であシ且つその
接続点から基準電位側をみ九ときの回路がP形論理回路
20と相補な関係であるような特定の接続点21と電源
端子15との間に接続され、論理出力端子14はP形ト
ランジスタ回路11とN形トランジスタ回路12との節
点に接続され論理出力端子22轢特定の接続点21に接
続されており、論理人力A−gはそれぞれQPA−Q□
# QNA〜QNB# Q、Aw〜Q□偶のゲートに接
続されており論理出力XおよびYlに出力する相補形論
理回路を構成している。
The logic circuit of this embodiment is constructed to satisfy the first logic of X=A-B+C-D@B.
O8) A P-type transistor circuit 11 made up of transistors QPA to Q□, an N-type transistor circuit 12 assembled to have a complementary relationship with the transistor circuit 11, and Y-A
-B-C-D+B Enno/Smet/To type MO8) U/Jister QPA-~
It consists of a P-type logic circuit 20 based on the QPFi convention. The P-type transistor circuit 11 has a power supply terminal 15 and a reference potential terminal 1.
6, the P-type logic circuit 20 is connected in series with the transistor QNA" included in the N-type transistor/transistor circuit 12.
"" QNI A specific connection point 21 and power supply terminal 15 that is one connection point between each other and whose circuit when looking at the reference potential side from the connection point is complementary to the P-type logic circuit 20. The logic output terminal 14 is connected to the node between the P-type transistor circuit 11 and the N-type transistor circuit 12, and the logic output terminal 22 is connected to a specific connection point 21. are respectively QPA-Q□
#QNA~QNB# Connected to the even gates of Q and Aw~Q□, forming a complementary logic circuit that outputs logic outputs X and Yl.

つぎKこの実施例の相補形論理回路の動作4C)いて説
明する。
Next, operation 4C) of the complementary logic circuit of this embodiment will be explained.

今、論理回路を構成する各トランジスタのゲートに与え
られる論理人力A−Hの状態を示す“1″。
"1" indicates the state of logic power A-H applied to the gates of each transistor that constitutes the logic circuit.

0′″の振幅が電源電圧Eに対して十分な値であるトス
れば、各トランジスタのドレイン拳ソース間の電圧vD
s、は他のトランジスタの動作に関係なく常にE≧■D
0≧Oなる関係に保たれているため、論理人力A−Eに
よって制御される各トランジスタQPA= Ql”1!
 I QNA””’ QNI I QPA”〜Q□−の
 オン、オフの動作は、他のトランジスタの動作とは無
関係KPP形ランジスタにおいては入力が“1”なると
き常にオフ、入力が“0″なるとき常にオンとなシ一方
N形トランジスタにおいては入力が“1′なるとき常に
オ/、入力が“0”なるとき常にオフとなる。従って、
P形トラ/ジスタ回路11.N形トランジスタ回路12
゜P形論理回路20および特定の接続点21から基準電
位側1−+た回路の4つの回路はそれぞれ他の回路の動
作とは無関係に論理人力A−hiの組合せに対応してオ
ン、オフの動作を行なうので結果としてはP形トランジ
スタ回路11とN形トランジスタ回路12とから成る相
補な回路と、P形論理回路20と特定の接続点21から
基準電位側をみた回路とから成る相補な回路とはそれぞ
れ相補形論理回路として独立に動作し、論理入力A−E
の組合せに従うてそれぞれ論理出力端子14,22KX
−A @B+C@D、E 、y−r口bI5下〒Eなる
論理出力を生じ、その論理人力に対する論理出力の関係
は第3図に示した従来周知の相補形論理回路を2組使用
した場合の関係と等しくなる。
If the amplitude of 0''' is a sufficient value for the power supply voltage E, the voltage between the drain and source of each transistor vD
s, is always E≧■D regardless of the operation of other transistors.
Since the relationship 0≧O is maintained, each transistor QPA controlled by the logic A-E = Ql”1!
The on/off operation of I QNA""' QNI I QPA"~Q□- is independent of the operation of other transistors. In a KPP type transistor, when the input becomes "1", it is always off, and the input becomes "0". On the other hand, in an N-type transistor, when the input is "1", it is always on, and when the input is "0", it is always off. Therefore,
P-type transistor/distor circuit 11. N-type transistor circuit 12
゜The four circuits of the P-type logic circuit 20 and the circuit connected to the reference potential side 1-+ from the specific connection point 21 are turned on and off in response to the combination of logic inputs A-hi, regardless of the operation of other circuits. Therefore, the result is a complementary circuit consisting of the P-type transistor circuit 11 and the N-type transistor circuit 12, and a complementary circuit consisting of the P-type logic circuit 20 and the reference potential side viewed from the specific connection point 21. Each circuit operates independently as a complementary logic circuit, and has logic inputs A-E.
Logic output terminals 14 and 22KX, respectively, according to the combination of
-A @B+C@D, E, y-r口bI5下〒E produces a logic output, and the relationship between the logic output and the logic power is determined by using two sets of conventionally known complementary logic circuits as shown in Figure 3. It is equal to the relationship in case.

第1図及び第2図と第4図とを比較すれば明らかなよう
に@1図及び第2図の従来周知の論理回路によれば第1
及び第2の論理を満足する出力を得るために20個のト
ランジスタを必要としたが、第4図の実施例の論理回路
によれば15個のトランジスタで全く等価な論理回路が
構成されて−る。
As is clear from a comparison between FIGS. 1 and 2 and FIG. 4, according to the conventionally known logic circuits shown in FIGS.
In order to obtain an output that satisfies the second logic, 20 transistors were required, but according to the logic circuit of the embodiment shown in FIG. 4, a completely equivalent logic circuit is constructed with 15 transistors. Ru.

上記実施例においては工ンハ/スメy ) 形MO8ト
ラ/ジスタを使用し電源側KP形のトランジスタ、基準
電位側KN形のトランジスタを用いて第1の論理を満足
する論理回路を構成し、電源側にPi)ランジスタを用
いて第2の論理を満足する回路を構成しその回路と相補
な回路を第1の論理を満足するN形のシラ/ラスタ回路
に求めて@20論Blt″満足する論理回路を構成した
が工/ハンスメ/ト形のMO8)う/ジスタでなくても
類似の特性を有するトランジスタであれば同様な回路構
成によって同様な効果が得られることは明らかであり、
又基準電位側にN形のトランジスタを用いて第20論B
11に満足するN形論理回路を構成しその回路と相補な
回路を第1の論理を満足するP形のトランジスタ回路に
求めた場合にも等価な論理回路が構成でき、更に電源側
の回路をN形ト2ンジスタで組み、基準電位側の回路を
P形トランジスタで組んだ場合にも電圧の極性が逆にな
るだけで同一の思想の論理回路を構成できる。又第3゜
第4の論理を必要とする論理回路を構成する場合にも同
様な思想での拡張が可能である。
In the above embodiment, a logic circuit that satisfies the first logic is constructed by using a MO8 transistor/transistor, a KP type transistor on the power supply side, and a KN type transistor on the reference potential side. Construct a circuit that satisfies the second logic using Pi) transistors on the side, and find a complementary circuit to that circuit in an N-type sira/raster circuit that satisfies the first logic to satisfy @20 theory Blt'' Although the logic circuit was constructed, it is clear that the same effect can be obtained with a similar circuit configuration, even if it is not a transistor with similar characteristics.
Also, using an N-type transistor on the reference potential side, the 20th theory B
An equivalent logic circuit can also be constructed by constructing an N-type logic circuit that satisfies 11 and finding a complementary circuit to that circuit in a P-type transistor circuit that satisfies the first logic. Even if the circuit is constructed with N-type transistors and the circuit on the reference potential side is constructed with P-type transistors, a logic circuit with the same concept can be constructed by simply reversing the voltage polarity. Further, when configuring a logic circuit that requires third and fourth logics, the same idea can be extended.

以上に詳細に説明したように本発明の論理回路は第2の
論81を満足する回路を構成するために必要なトランジ
スタの一部を第1の論81を満足するために必要な論理
回路に含まれるトランジスタと共用するので、共用され
たトランジスタの数だけ@1および第2の論理を満足す
るために必慢なトランジスタの合計数を減少させ得ると
いう効果を有する。
As explained in detail above, the logic circuit of the present invention replaces some of the transistors necessary to configure the circuit satisfying the second theory 81 with the logic circuit necessary to satisfy the first theory 81. Since it is shared with the included transistors, it has the effect that the total number of transistors required to satisfy @1 and the second logic can be reduced by the number of shared transistors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の論理回路の一例の回路図、@2図拡従来
の論理回路の他の例の回路図、@3図は第1図及び第2
図の論理回路によりて得られる論理入力と論理出力との
関係を表わす図、第4図は本発明の一実施例の回路図で
ある。 11・・・・・・P形トランジスタ回路、12・・・・
・・N形トラ/ジスタ回路、14・・・・・・論理出力
端子、15・・・・・・電源端子、16・・・・・・基
準電位端子% 17・・・・・・P形トラ/ジスタ回路
% 18・・・・・・N形ト2/ジスタ回路、19・・
・・・・論理出力端子、20・・・・・・P形論理回路
%21・・・・・・特定の接続点、22・・・・・・論
理出力端子。 第1図 第2図
Figure 1 is a circuit diagram of an example of a conventional logic circuit, Figure 2 is an enlarged circuit diagram of another example of a conventional logic circuit, and Figure 3 is a circuit diagram of another example of a conventional logic circuit.
FIG. 4 is a diagram showing the relationship between logic input and logic output obtained by the logic circuit shown in the figure, and is a circuit diagram of an embodiment of the present invention. 11...P-type transistor circuit, 12...
...N-type transistor/distor circuit, 14...Logic output terminal, 15...Power supply terminal, 16...Reference potential terminal% 17...P-type Converter/Jister circuit% 18...N type 2/Jister circuit, 19...
...Logic output terminal, 20...P-type logic circuit %21...Specific connection point, 22...Logic output terminal. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 複数のN形トランジスタを含んで成る−りの論理を満足
するように組んだP形トラ/ジスタ回路と、前記P形ト
ランジスタ回路と相補な関係をもつように組んだN形ト
ツ/ジスタ回路とを設けて電源と基準電位点との間に直
列に接続し、その節点から成る一つの論理出力を得るよ
うに構成した複数の論理入力を有する相補形論理回路に
おいて。 前記論理入力のうち少なくとも−−)を論理入力とし、
前記一つの論理とは異なる他の論理を満足するようKP
形若しくはN形のトランジスタを含んで組んだP形若し
くはN形論理回路を、前記節点からみて基準電位(又は
電源)側に組まれた前記N形若しくはP形トランジスタ
回路に含まれるトランジスタ相互間の一つの接続点であ
り且つその接続点から基準電位(又は電源)側をみたと
きの回路が前記N形若しくけP形論理回路と相補な関係
であるような特定の接続点と電源(又は基準電位点)と
の間に接続し%前記特定の接続点から前記他の論ait
−満足する論理出力を得る手段を少くとも一つ含むこと
を特徴とする論理回路。
[Claims] A P-type transistor/transistor circuit comprising a plurality of N-type transistors and assembled to satisfy the following logic, and an N-type transistor circuit constructed to have a complementary relationship with the P-type transistor circuit. In a complementary logic circuit having a plurality of logic inputs, the circuit is connected in series between a power supply and a reference potential point, and is configured to obtain one logic output consisting of the nodes. At least −−) of the logic inputs are logic inputs,
KP so as to satisfy another logic different from the one logic above.
A P-type or N-type logic circuit assembled including P-type or N-type transistors is connected between transistors included in the N-type or P-type transistor circuit assembled on the reference potential (or power supply) side as viewed from the node. A specific connection point and a power supply (or from the specific connection point to the other potential point
- A logic circuit characterized in that it includes at least one means for obtaining a satisfactory logic output.
JP56150979A 1981-09-24 1981-09-24 Logical circuit Granted JPS5851624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56150979A JPS5851624A (en) 1981-09-24 1981-09-24 Logical circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56150979A JPS5851624A (en) 1981-09-24 1981-09-24 Logical circuit

Publications (2)

Publication Number Publication Date
JPS5851624A true JPS5851624A (en) 1983-03-26
JPH0217971B2 JPH0217971B2 (en) 1990-04-24

Family

ID=15508627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56150979A Granted JPS5851624A (en) 1981-09-24 1981-09-24 Logical circuit

Country Status (1)

Country Link
JP (1) JPS5851624A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07194053A (en) * 1993-01-25 1995-07-28 Sekiyu Kodan Permanent magnet rotating electric machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381061A (en) * 1976-12-27 1978-07-18 Fujitsu Ltd Logical circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381061A (en) * 1976-12-27 1978-07-18 Fujitsu Ltd Logical circuit

Also Published As

Publication number Publication date
JPH0217971B2 (en) 1990-04-24

Similar Documents

Publication Publication Date Title
JPS5851624A (en) Logical circuit
JP2001127615A (en) Division level logic circuit
JPH02168706A (en) Differential amplifying circuit
JPS60237724A (en) Complementary mos logical gate
JPH02162915A (en) Window comparator
JPS594890B2 (en) digital circuit
JP2546398B2 (en) Level conversion circuit
JPH0818433A (en) Level shifting circuit
JPS596607A (en) Differential amplifying circuit
JPS63276920A (en) Logic circuit
JPS6019599B2 (en) Complementary insulated gate semiconductor differential amplifier circuit
JPS6033734A (en) Level shift circuit
JP2527199Y2 (en) IC test mode setting circuit
JPS6326115A (en) Ternary control circuit
JPS5910090B2 (en) Output driver circuit
JPS60116222A (en) Selector circuit
JPH0248821A (en) Logic circuit
JPH04213919A (en) Semiconductor integrated circuit
JPS61242419A (en) Ternal input discriminating circuit
JPH0613872A (en) Cmos buffer circuit
JPS63314018A (en) Pwm signal output circuit
JPS63202127A (en) Semiconductor device
JPS5945296B2 (en) Complementary MOS logic circuit
JPS5873238A (en) Mos logical circuit
JPH01180107A (en) Bias generating circuit