JPS5851577A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5851577A
JPS5851577A JP15028581A JP15028581A JPS5851577A JP S5851577 A JPS5851577 A JP S5851577A JP 15028581 A JP15028581 A JP 15028581A JP 15028581 A JP15028581 A JP 15028581A JP S5851577 A JPS5851577 A JP S5851577A
Authority
JP
Japan
Prior art keywords
junction
semiconductor device
region
layer
schottky
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15028581A
Other languages
Japanese (ja)
Inventor
Masahiro Hagio
萩尾 正博
Shutaro Nanbu
修太郎 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15028581A priority Critical patent/JPS5851577A/en
Publication of JPS5851577A publication Critical patent/JPS5851577A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To enhance the impact resistance voltage characteristics of a semiconductor device by connecting a P-N junction parallel to a Schottky junction. CONSTITUTION:A GaAs MESFET11 having a drain electrode 16, a source electrode 17 and a gate electrode 18 is formed by an N type GaAs active layer 13 on a semi-insulating GaAs substrate 12 and forming the Schottky gate electrode 18 on the layer 13. An N type region 14 forming P-N junction 20 is formed by injecting an impurity to the layer 13, and the region 14 contains higher N type impurity than the layer 13 of the FET11. When a P type region 15 is formed on the region 14, the reverse breakdown voltage BVPN of the P-N junction becomes smaller than the reverse breakdown voltage BVSC of Schottky junction. In order to provide BVPN<BVSC, the thickness of the region 14 can be increased than that of the layer 13. In this manner, the P-N junction is broken down before the Schottky junction breaks down, thereby absorbing the impact voltage energy.

Description

【発明の詳細な説明】 本発明はショットキー接合を有する半導体装置に関する
ものであり、ショットキー接合の耐衝撃電圧性を高める
構造を提案するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device having a Schottky junction, and proposes a structure that improves the impact voltage resistance of the Schottky junction.

ショットキー接合を有する半導体装置に外部より衝撃電
圧が何らかの原因により加えられ、その結果ショットキ
ー接合の降服現象等により大きな電流がショットキー接
合を通じて流れると、ショットキー接合では金属と半導
体との界面に変性が生じやすいため、容易に永久的破壊
に至る。そのため、従来から、ショットキル接合を有す
る半導体装置の使用に際しては取扱いに細心の注意を必
要とし、また、同半導体装置を衝撃電圧よシ保護する別
体の回路を必要とするなどの不都合があった。
When a shock voltage is applied from the outside to a semiconductor device having a Schottky junction for some reason, and as a result, a large current flows through the Schottky junction due to breakdown of the Schottky junction, etc. It is susceptible to degeneration and can easily lead to permanent destruction. Therefore, when using a semiconductor device with a Schottkill junction, it has been necessary to be extremely careful in handling it, and there have been disadvantages such as the need for a separate circuit to protect the semiconductor device from shock voltage. Ta.

37、一 本発明はショットキー接合に並列に接続されたpn接合
もしくはpn接合を含む素子を同一基板上に形成したも
のであり、pn接合により一衝撃電圧が吸収されるし、
耐衝撃電圧性が著しく向上する一体化された半導体装置
を提供するものである。
37.1 The present invention is one in which a pn junction connected in parallel to a Schottky junction or an element including a pn junction is formed on the same substrate, and one shock voltage is absorbed by the pn junction.
The present invention provides an integrated semiconductor device with significantly improved impact voltage resistance.

以下に、GaAs ME S jE T (GaAsシ
ョyトキーゲートグー界効果トランジスタ)に本発明を
応用した実施例を用いて、本発明の詳細な説明する。
The present invention will be described in detail below using an example in which the present invention is applied to a GaAs ME S jET (GaAs Schottky gate field effect transistor).

GaAsM E S F E Tは、通常、半絶縁性G
 a A、 !1基板の上に形成されたn形層を活性層
として用いる。この構造において、ショットキー接合を
衝撃電圧から保護するpn接合を、ショットキー接合と
同じ活性層に反対導電影領域を形成したものとすると、
pn接合の逆方向降服電圧BVpnは、ショットキー接
合の逆方向降服電圧BVscよりも大きくなるか或いは
同程度の値となる。この場合でも、ショットキー接合の
耐衝撃電圧性は改善されるが、BVpnをBVscより
も小さくすればさらに耐衝撃電圧性を高めることができ
る。これは、ショットキー接合が降服するまえに、pn
接合が降めと考えられる。
GaAsMESFET is usually a semi-insulating G
aA,! An n-type layer formed on one substrate is used as an active layer. In this structure, if the pn junction that protects the Schottky junction from impact voltage is formed by forming an oppositely conductive shadow region in the same active layer as the Schottky junction, then
The reverse breakdown voltage BVpn of the pn junction is greater than or approximately the same value as the reverse breakdown voltage BVsc of the Schottky junction. Even in this case, the shock voltage resistance of the Schottky junction is improved, but the shock voltage resistance can be further improved by making BVpn smaller than BVsc. This means that before the Schottky junction yields, pn
It is thought that the joining is due to rain.

第1図(8)は、GaAsM E S F E T 1
1とそのショットキー接合を衝撃電圧から保護するダイ
オードすなわちpn接合2oとを同一基板上に形成し、
しかも、BVpn<BVgcとする構造を示すものであ
る。また第1図(B)は第1図(3)の接続の様子を示
す等価回路図である。ドレイン電極16.ソース電極1
7.ゲート電極18よりなるGaAsMESFETl 
1は、半絶縁性G a A s基板12の上にエピタキ
シャル成長により形成された厚さ0.1〜0.4μm、
不純物濃度”FETがo、6〜3X1017crn−3
のn形層 a A s活性層13を用い、この層13上
のシミツトキーゲート電極18にて形成されている。
FIG. 1 (8) shows GaAsM E S F E T 1
1 and a diode that protects the Schottky junction from impact voltage, that is, a pn junction 2o, are formed on the same substrate,
Moreover, it shows a structure in which BVpn<BVgc. Further, FIG. 1(B) is an equivalent circuit diagram showing the connection state of FIG. 1(3). Drain electrode 16. Source electrode 1
7. GaAs MESFETl consisting of gate electrode 18
1 has a thickness of 0.1 to 0.4 μm formed by epitaxial growth on a semi-insulating GaAs substrate 12;
Impurity concentration "FET is o, 6~3X1017crn-3
An n-type aAs active layer 13 is used, and a Schmittkey gate electrode 18 is formed on this layer 13.

一方、pn接合2oを形成する厚さ0.2〜1.0μm
のn影領域14は、層13にSi、SjLあるいはS等
の不純物をイオン注入により形成され、n影領域14は
GaAsM E S F E Tのn形活性層13より
もn形不純物濃度npnを3〜1oX1017ffl−
3と高くしている。この中にp影領域15を作成すれ5
、− ば、BVpn<BVscとナル。
On the other hand, the thickness of forming the pn junction 2o is 0.2 to 1.0 μm.
The n-shaded region 14 is formed by ion-implanting impurities such as Si, SjL, or S into the layer 13, and the n-shade region 14 has an n-type impurity concentration npn lower than that of the n-type active layer 13 of GaAsM E S F E T. 3~1oX1017ffl-
It is set as high as 3. Create a p shadow area 15 in this 5
, - if BVpn<BVsc and null.

なお、BVpn(BVscとするためには、上記の実施
例に示したように、GaAsMESFETのn形活性領
域13の不純物濃度よりもpn接合のn影領域14の不
純物濃度の方が大きくなるようにするか、或いはpn接
合のn影領域14の厚さdpnが、GaAs+M E 
S F E T t7) n形活性層13の厚さまた、
第1図のp影領域15の不純物濃度を、n影領域14の
不純物濃度よりもはるかに大きくしておけば、pn接合
の逆方向降服電圧をn影領域14の不純物濃度で再現性
よく制御することができる。このような高不純物濃度の
p影領域16は、たとえば閉管中でのZn拡散もしくは
Zn。
Note that in order to obtain BVpn (BVsc), as shown in the above embodiment, the impurity concentration in the n-shaded region 14 of the p-n junction should be greater than the impurity concentration in the n-type active region 13 of the GaAs MESFET. Or, the thickness dpn of the n shadow region 14 of the pn junction is GaAs+M E
S F E T t7) Thickness of n-type active layer 13
If the impurity concentration of the p-shaded region 15 in FIG. can do. Such a high impurity concentration p shadow region 16 is formed by, for example, Zn diffusion or Zn in a closed tube.

Be、Mgなどのp形不純物のイオン注入を用いれば、
容易に形成することができる。
If ion implantation of p-type impurities such as Be and Mg is used,
Can be easily formed.

100 MHz以上の高周波用GaAs F E Tに
対しては、本発明の適用により高周波特性が著しく低6
/−一 下1.ないようにするため、pn接合の容量は2pF以
下、降服時の直列抵抗はIQOΩ以下に設計するのが望
ましい。また、pn接合の逆方向降服電圧BVpnは小
さい程耐衝撃電圧性が改善されるが、一方、FETに必
要とされるゲート・ソース間耐圧からB V p nの
下限が定まり、通常、BVpnは3〜15vに設定され
るのが好都合である。
By applying the present invention, the high frequency characteristics of GaAs FETs for high frequencies of 100 MHz or higher can be significantly reduced.
/-Ikushita 1. In order to prevent this, it is desirable to design the capacitance of the pn junction to be 2 pF or less and the series resistance at the time of breakdown to be IQOΩ or less. In addition, the smaller the reverse breakdown voltage BVpn of the pn junction, the better the impact voltage resistance, but on the other hand, the lower limit of BVpn is determined by the gate-source breakdown voltage required for the FET, and BVpn is usually It is conveniently set to 3-15v.

以上のようにして、第1図のごとく高周波用GaAsM
 E S F E T 11とpn接合2oを一体形成
することにより、本来1 erg程度の耐衝撃電圧性を
、80erg以上にまで高めることができ何ら別体の回
路部品等を必要とすることなく高性能なショットキー接
合半導体装置を作成することができる。
In the above manner, as shown in Figure 1, GaAsM for high frequency
By integrally forming the E S F E T 11 and the pn junction 2o, the shock voltage resistance, which is originally about 1 erg, can be increased to over 80 erg, and high voltage resistance can be achieved without the need for any separate circuit components. A high-performance Schottky junction semiconductor device can be created.

第2図(8)〜(E)は本発明をデュアルゲートGaA
sMESFET11’に応用した例の接続図である。
FIGS. 2(8) to (E) show the present invention in dual-gate GaA
It is a connection diagram of an example applied to sMESFET11'.

18a、18bはそれぞれ第1.第2ゲート、20a 
18a and 18b are the first. 2nd gate, 20a
.

20bは保護用のpn接合であり、第2図(8)、ρ。20b is a pn junction for protection, FIG. 2 (8), ρ.

停)はpn接合を逆向きに直列接続して用いており、正
、負両方の衝撃電圧に対して保護効果を発揮さ77、− せだものである。
77) uses pn junctions connected in series in opposite directions, and exhibits a protective effect against both positive and negative impact voltages.

以上の実施例は、GaAsMESFETに本発明を応用
した場合であるが、本発明はStやInl’など他の半
導体材料を用いた場合でも有効であり、また、MESF
ETに限らずショットキー接合を有する半導体装置一般
に対して有効である。第3図四〜(勾はこのような一般
的な場合のショットキー接合11に対し保護pn接合2
oを接続した例を示すものであり、21が金属電極側を
示す。
The above embodiments are cases in which the present invention is applied to GaAs MESFETs, but the present invention is also effective when using other semiconductor materials such as St and Inl'.
This is effective not only for ET but also for semiconductor devices in general having Schottky junctions. FIG.
21 shows an example where o is connected, and 21 indicates the metal electrode side.

以上のように、本城明によれば何ら別体の回路部品等を
付加することなく耐衝撃電圧特性のすぐれたショットキ
ー接合半導体装置を提供することができ、高性能な半導
体装置の実現に大きく寄与するものである。
As described above, according to Akira Honjo, it is possible to provide a Schottky junction semiconductor device with excellent shock resistance characteristics without adding any separate circuit components, and this contributes to the realization of high-performance semiconductor devices. This will make a major contribution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(5)は同一基板上に形成された本発明の一実施
例のGaAs M E S F E Tとpn接合の概
略断面図、第1図(′B)は第1図(への接続の様子を
示す回路図、第2図(5)〜(E)は本発明をプーアル
ゲートMESFETに応用した実施例の回路図、第3図
(8)〜(E)は本発明を用いた7ヨノトキ一接合とp
n接合の接続例を示す図である。 11 、11’=−GaAgME S F E T、 
12−−=半絶縁性G a A s基板、13・・・−
エピタキシャル成長により形成されたn形活性層、14
・・−S iのイオン注入により形成されたn影領域、
15・・・p影領域、18 、18a 、 18b−’
−,)y’ −ト電%、20−− pn接合。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 (A) へ17 第2図 (Aン 第2図 (C) 第2図 (E)
FIG. 1 (5) is a schematic cross-sectional view of a GaAs MESFET and a pn junction of an embodiment of the present invention formed on the same substrate, and FIG. Circuit diagrams showing the state of connection, Fig. 2 (5) to (E) are circuit diagrams of an embodiment in which the present invention is applied to a Puar gate MESFET, and Fig. 3 (8) to (E) are circuit diagrams in which the present invention is applied. 7 Yonotoki one junction and p
It is a figure which shows the connection example of n junction. 11, 11'=-GaAgMESFET,
12--=semi-insulating GaAs substrate, 13...-
n-type active layer formed by epitaxial growth, 14
...-n shadow region formed by ion implantation of Si,
15...p shadow area, 18, 18a, 18b-'
-, )y' - %, 20-- pn junction. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure (A) 17 Figure 2 (A) Figure 2 (C) Figure 2 (E)

Claims (1)

【特許請求の範囲】[Claims] (1)ショットキー接合と並列に接続されたpn接合も
しくはpn接合を含む素子が同一基板上に形成されてい
ることを特徴とする半導体装置。 (2>pn接合の逆方向降服電圧がショットキー接合の
逆方向降服電圧よりも小さいことを特徴とする特許請求
の範囲第1項に記載の半導体装置。 @)ショットキー接合がG a A s電界効果トラン
ジスタのゲートを構成することを特徴とする特許請求の
範囲第1項に記載の半導体装置。 ←)ショートキー接合がG a A s電界効果トラン
ジスタのゲートを構成し、このトランジスタの一導電形
活性層の一部にpn接合の一導電形半導体領域が形成さ
れ、前記半導体領域の不純物濃度が活性層の不純物濃度
よりも大きいことを特徴とする特許請求の範囲第1項に
記載の半導体装置。 β)ショットキー接合がG a A s電界効果トラン
ジスタ一 スタのゲートを構成しこのトランジスタの活性層の一部
にpn接合の一導電形の半導体領域が形成され、前記半
導体領域の厚みが前記半導体層の厚みよりも厚いことを
特徴とする特許請求の範囲第1項に記載の半導体装置。
(1) A semiconductor device characterized in that a pn junction connected in parallel with a Schottky junction or an element including a pn junction are formed on the same substrate. (2> The semiconductor device according to claim 1, wherein the reverse breakdown voltage of the pn junction is smaller than the reverse breakdown voltage of the Schottky junction. @) The Schottky junction is Ga As 2. The semiconductor device according to claim 1, wherein the semiconductor device constitutes a gate of a field effect transistor. ←) A short key junction constitutes the gate of a GaAs field effect transistor, a pn junction semiconductor region of one conductivity type is formed in a part of the active layer of one conductivity type of this transistor, and the impurity concentration of the semiconductor region is 2. The semiconductor device according to claim 1, wherein the impurity concentration is higher than that of the active layer. β) A Schottky junction constitutes the gate of a GaAs field effect transistor, and a pn junction semiconductor region of one conductivity type is formed in a part of the active layer of this transistor, and the thickness of the semiconductor region is equal to that of the semiconductor. The semiconductor device according to claim 1, wherein the semiconductor device is thicker than the thickness of the layer.
JP15028581A 1981-09-22 1981-09-22 Semiconductor device Pending JPS5851577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15028581A JPS5851577A (en) 1981-09-22 1981-09-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15028581A JPS5851577A (en) 1981-09-22 1981-09-22 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS5851577A true JPS5851577A (en) 1983-03-26

Family

ID=15493630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15028581A Pending JPS5851577A (en) 1981-09-22 1981-09-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5851577A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128763A (en) * 1986-11-19 1988-06-01 Sanyo Electric Co Ltd Protective diode for field-effect transistor
US5031006A (en) * 1985-06-07 1991-07-09 U.S. Philips Corp. Semiconductor device having a Schottky decoupling diode
US5399893A (en) * 1993-08-24 1995-03-21 Motorola, Inc. Diode protected semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5348487A (en) * 1976-10-14 1978-05-01 Fujitsu Ltd Semiconductor device
JPS56114373A (en) * 1980-02-14 1981-09-08 Matsushita Electric Ind Co Ltd Protection circuit of fet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5348487A (en) * 1976-10-14 1978-05-01 Fujitsu Ltd Semiconductor device
JPS56114373A (en) * 1980-02-14 1981-09-08 Matsushita Electric Ind Co Ltd Protection circuit of fet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5031006A (en) * 1985-06-07 1991-07-09 U.S. Philips Corp. Semiconductor device having a Schottky decoupling diode
JPS63128763A (en) * 1986-11-19 1988-06-01 Sanyo Electric Co Ltd Protective diode for field-effect transistor
US5399893A (en) * 1993-08-24 1995-03-21 Motorola, Inc. Diode protected semiconductor device

Similar Documents

Publication Publication Date Title
US9685432B2 (en) Compact electrostatic discharge (ESD) protection structure
JPH0666472B2 (en) MOSFET with overcurrent protection function
JP2723936B2 (en) Semiconductor element
JPS5851577A (en) Semiconductor device
US5670804A (en) PN-junction gate FET
EP0071648A1 (en) Semiconductor device
JPS6231509B2 (en)
US11456597B2 (en) Input protection and level shifter circuit
JPS6047469A (en) Semiconductor device
JPS59100579A (en) Semiconductor device
JP3090451B2 (en) Semiconductor device
JPS61154080A (en) Source structure of field effect transistor
JP2569626B2 (en) Semiconductor integrated circuit device
JPS61171170A (en) Semiconductor device
JP2664174B2 (en) Field effect transistor
JPH08162480A (en) Field-effect transistor provided with built-in protective diode
JPS6314508B2 (en)
JPS6153778A (en) Field effect transistor
JP2000036591A (en) Semiconductor device
JPS6255313B2 (en)
JPS62244177A (en) Protective diode for semiconductor device
JPS62145878A (en) Compound semiconductor device
JPH01304785A (en) Semiconductor integrated circuit
JPH0883808A (en) Semiconductor device
JPS6386466A (en) Input protective circuit for semiconductor integrated circuit