JPS5849517B2 - Single crystal growth method - Google Patents

Single crystal growth method

Info

Publication number
JPS5849517B2
JPS5849517B2 JP1976678A JP1976678A JPS5849517B2 JP S5849517 B2 JPS5849517 B2 JP S5849517B2 JP 1976678 A JP1976678 A JP 1976678A JP 1976678 A JP1976678 A JP 1976678A JP S5849517 B2 JPS5849517 B2 JP S5849517B2
Authority
JP
Japan
Prior art keywords
crystal
single crystal
solid
liquid interface
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1976678A
Other languages
Japanese (ja)
Other versions
JPS54112789A (en
Inventor
一正 高木
徳海 深沢
「てつ」 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1976678A priority Critical patent/JPS5849517B2/en
Publication of JPS54112789A publication Critical patent/JPS54112789A/en
Publication of JPS5849517B2 publication Critical patent/JPS5849517B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はBi4Ge301、Bi4 Si3012など
のビスマス・ユーリタイト族単結晶のチョクラルスキー
法による育戒方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for growing bismuth-euritite group single crystals such as Bi4Ge301 and Bi4Si3012 using the Czochralski method.

たとえば、Bi4Ge301単結晶は光学結晶、γ線シ
ンチレータ用結晶として使用されている。
For example, Bi4Ge301 single crystals are used as optical crystals and crystals for γ-ray scintillators.

その場合、使用する結晶は光の透過率が高く、散乱体を
含まないことが必要である。
In that case, the crystal used must have high light transmittance and must not contain any scatterers.

チョクラルスキー法によってBi4Ge301単結晶を
育成した場合、その結晶成長過程において、?数のボイ
ド(void)が帯状に発生し、これらが結晶中に取り
込まれ易い。
When a Bi4Ge301 single crystal is grown by the Czochralski method, what happens during the crystal growth process? A number of voids are generated in a band shape, and these are likely to be incorporated into the crystal.

そして、これらの空隙は光の散乱体となり、結晶品質を
低下させると同時に結晶化歩留りを悪くしていた。
These voids act as light scatterers, degrading crystal quality and decreasing crystallization yield.

このようなボイドはサファイア(α一Al203)の単
結晶にも観察され、その発生の原因はつぎのように考え
られている。
Such voids are also observed in single crystals of sapphire (α-Al203), and the cause of their occurrence is thought to be as follows.

すなわち、成長中の結晶の固液界面において温度のゆら
ぎ、および不純物の蓄積による結晶成長速度のゆらぎが
おこる。
That is, fluctuations in temperature occur at the solid-liquid interface of a growing crystal and fluctuations in crystal growth rate due to accumulation of impurities.

それによって結晶中に取り込まれた液体が凝固する際、
固体と液体との密度差によりボイドが生じる。
When the liquid incorporated into the crystal solidifies,
Voids are created due to the difference in density between solid and liquid.

サファイアの場合には固液界面を大きく凸にすることに
よって、ボイドの発生を防いできた。
In the case of sapphire, the generation of voids has been prevented by making the solid-liquid interface highly convex.

しかし、B i4 G e 3 01の結晶育成におい
て、固液界面の形状とボイドの発生の関係を調べたとこ
ろ、固液界面が平担な時にボイドの発生量が少ないこと
がわかった。
However, when the relationship between the shape of the solid-liquid interface and the generation of voids in crystal growth of B i4 G e 3 01 was investigated, it was found that when the solid-liquid interface is flat, the amount of voids generated is small.

いま、育成中の単結晶の固液界面、すなわち、成長端面
が凸である場合の結晶形状を第1図に示す。
FIG. 1 shows the crystal shape when the solid-liquid interface of the single crystal being grown, that is, the growth end face is convex.

ここで、結晶径をD、固液界面の凸出高さをHとすれば
、凸出の程度はH/Dで表わされる。
Here, if the crystal diameter is D and the height of protrusion at the solid-liquid interface is H, then the degree of protrusion is expressed as H/D.

この値は、凸の場合には正の符号をもち、凹の場合には
負の符号になる。
This value has a positive sign if it is convex and a negative sign if it is concave.

Bi4Ge301単結晶のボイド発生を防止するために
は、このH/Dの値を0.2以下にすればよいことがわ
かった。
It was found that in order to prevent the generation of voids in the Bi4Ge301 single crystal, the value of H/D should be set to 0.2 or less.

しかし、固液界面が平担から、凹の程度が大きくなりす
ぎると、結晶成長は不安定になると同時に介在物が取り
込まれ易《なるので、H/Dの値が、一〇,2以下にす
ることはできない。
However, if the solid-liquid interface changes from flat to too concave, crystal growth becomes unstable and inclusions are easily incorporated, so the H/D value decreases to 10.2 or less. I can't.

以下に本発明を実施例により詳細に説明する。The present invention will be explained in detail below using examples.

実施例 1 直径50間の白金るつぼを用い、チョクラルスキー法に
より、直径25間のBi4Ge3012単結晶を育成し
た例について説明する。
Example 1 An example will be described in which a Bi4Ge3012 single crystal with a diameter of 25 mm was grown by the Czochralski method using a platinum crucible with a diameter of 50 mm.

育成条件の1つである結晶回転数を変えて結晶を育成し
た場合の結晶回転数とH/Dの値との関?を第2図に示
す。
What is the relationship between the crystal rotation speed and the H/D value when crystals are grown by changing the crystal rotation speed, which is one of the growth conditions? is shown in Figure 2.

同図から、結晶回転数が3Orpmの場合、固液界面は
凸になるが、回転数を40、50、6 6 rpmと大
きくすれば、界面の形状は平担から凹へと変化する。
From the figure, when the crystal rotation speed is 3 Orpm, the solid-liquid interface becomes convex, but when the rotation speed is increased to 40, 50, or 6 6 rpm, the shape of the interface changes from flat to concave.

しかし、回転数を7 0 rpmとさらに大きくすれば
、固液界面は大きく凹となり、結晶或長は不安定で、結
晶を育或することができなかった。
However, when the rotational speed was further increased to 70 rpm, the solid-liquid interface became greatly concave, the crystal length was unstable, and it was not possible to grow the crystal.

育或した結晶の平行部の長さは80mmであるが、この
とき発生する結晶中のボイドは第3図に示したように固
液界面であった位置に沿って帯状に分布する。
The length of the parallel portion of the grown crystal is 80 mm, and the voids generated in the crystal at this time are distributed in a band shape along the position of the solid-liquid interface, as shown in FIG.

このボイドの帯の数を調べ、固液界面の形状を示すH/
Dの値に対してプロットすると第4図のようになる。
The number of these void bands is investigated, and H/
When plotted against the value of D, it becomes as shown in Fig. 4.

同図から明らかなように、固液界面が平担な場合には、
ボイドの帝の数が減少し、H/Dの値がほぼ−0.2〜
0.2の範囲にあるようにすれば、ポイドの帯の数は5
個以下となることがわかる。
As is clear from the figure, when the solid-liquid interface is flat,
The number of Void Emperors has decreased, and the H/D value is approximately -0.2 ~
If it is within the range of 0.2, the number of poid bands is 5.
It can be seen that the number is less than 1.

育成した単結晶からシンチレータ用結晶を採取するため
には、ボイドの帯の数が5個以下であることが歩留りを
向上させる上からも不可欠である。
In order to collect a scintillator crystal from the grown single crystal, it is essential that the number of void bands be 5 or less in order to improve the yield.

したがって、結晶の固液界面の形状、すなわち、H/D
の値を上記の範囲になるように結晶回転数を選べば、良
質結晶を歩留り良く得ることができる。
Therefore, the shape of the solid-liquid interface of the crystal, that is, H/D
If the crystal rotation speed is selected so that the value of is within the above range, high quality crystals can be obtained with a high yield.

同様な結果はBi4Si301においても得られる。Similar results are obtained with Bi4Si301.

以上のようにして育或した直径ほぼ25關のBi4Ge
3012またはBi4Si3012単結晶を実用に供す
るために切断してウエハーとし、このウエハー表面をエ
ッチングする条件を調べた。
Bi4Ge with a diameter of approximately 25 mm was grown as described above.
3012 or Bi4Si3012 single crystal was cut into wafers for practical use, and conditions for etching the wafer surface were investigated.

切断ウエハーは、あらがじめ、アルミナ粉末および機械
化学研摩によって鏡面仕上げを施こした後、エッチング
を行なった。
The cut wafers were first given a mirror finish using alumina powder and mechanical/chemical polishing, and then etched.

エッチング液は、36重量%のHCl溶液に水を加え、
2.5〜36重量%の濃度にし、さらに、溶液を20〜
80℃の範囲で加熱した。
The etching solution was made by adding water to a 36% by weight HCl solution.
The concentration is 2.5-36% by weight, and the solution is further reduced to 20-36% by weight.
It was heated in the range of 80°C.

ウエハーをエッチング液中で1分間に60回転させ、エ
ッチングの最適な塩酸濃度と液温領域を求めた。
The wafer was rotated 60 times per minute in an etching solution, and the optimal hydrochloric acid concentration and solution temperature range for etching were determined.

その結果を第5図に示す。この図において、タトエハ、
9重量%HCI溶液においては、液温48゜Cでのエッ
チング速度は約10μ/mI!tで、明瞭なエッチピッ
トが観察されるが、鏡面は得られない。
The results are shown in FIG. In this figure, Tatoeha,
In a 9% by weight HCI solution, the etching rate at a solution temperature of 48°C is approximately 10μ/mI! At t, clear etch pits are observed, but a mirror surface is not obtained.

75℃まで液温を上げると、50μ/minのエッチン
グ速度が得られ、ウエハーは鏡面となる。
When the liquid temperature is raised to 75° C., an etching rate of 50 μ/min is obtained, and the wafer becomes mirror-finished.

一方、80℃まで加熱した場合には、エッチング速度は
早すぎ、ウエハーに白い付着物が多量に付き易く、エッ
チング面は荒れる。
On the other hand, when heated to 80° C., the etching rate is too fast, a large amount of white deposits tend to adhere to the wafer, and the etched surface becomes rough.

80℃以上に液温を上げると、塩化水素ガスが多量に発
生する。
When the liquid temperature is raised to 80°C or higher, a large amount of hydrogen chloride gas is generated.

このようにして、塩酸濃度2.5〜36重量%の水溶液
を用いて鏡面の得られるエッチング条件をまとめたのが
第5図である。
FIG. 5 summarizes the etching conditions for obtaining a mirror surface using an aqueous solution having a hydrochloric acid concentration of 2.5 to 36% by weight.

図において、曲線1はエッチピットが出現し、かつ鏡面
が得られる条件であり、曲線2は鏡面が得られる限界で
ある。
In the figure, curve 1 is the condition under which etch pits appear and a mirror surface can be obtained, and curve 2 is the limit at which a mirror surface can be obtained.

直線3は塩化水素ガスが多量に発生する条件である。Straight line 3 is a condition under which a large amount of hydrogen chloride gas is generated.

結局、第5図の斜線で示した領域の条件下でエッチング
をすることによって、結晶の格子欠陥を調べるためのエ
ッチピットを出現させると同時に鏡面が得られることが
わかった。
In the end, it was found that by performing etching under the conditions of the shaded region in FIG. 5, etch pits for examining crystal lattice defects could be created and at the same time a mirror surface could be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は育成中の単結晶の固液界面が凸である場合の結
晶形状を示す図、第2図は育或中における結晶回転数と
育成単結晶の成長端部の形状との関係を示す図、第3図
は育或単結晶中のボイドの帯分布を示す図、第4図は育
成単結晶の成長端部形状とボイドの帯の数との関係を示
す図、第5図は塩酸水溶液を用いて鏡面の得られるエッ
チング条件を示す図である。
Figure 1 shows the crystal shape when the solid-liquid interface of the growing single crystal is convex, and Figure 2 shows the relationship between the crystal rotation speed during growth and the shape of the growth end of the grown single crystal. Figure 3 is a diagram showing the band distribution of voids in the grown single crystal, Figure 4 is a diagram showing the relationship between the growth end shape of the grown single crystal and the number of void bands, and Figure 5 is a diagram showing the relationship between the shape of the growth end of the grown single crystal and the number of void bands. FIG. 3 is a diagram showing etching conditions for obtaining a mirror surface using an aqueous hydrochloric acid solution.

Claims (1)

【特許請求の範囲】[Claims] 1 チョクラルスキー法によりビスマス・ユーリタイト
族化合物の単結晶を育成する方法において、或長結晶の
直径をD、該結晶の固液界面の凸出高さをHとしたとき
に、H/Dの値が−0.2〜0.2の範囲内にあるよう
に該結晶の回転数を選ぶことを特徴とする単結晶育成方
法。
1 In the method of growing a single crystal of a bismuth-euritite group compound by the Czochralski method, when the diameter of a certain long crystal is D and the protrusion height of the solid-liquid interface of the crystal is H, H/D is A method for growing a single crystal, characterized in that the rotation speed of the crystal is selected so that the rotation speed is within the range of -0.2 to 0.2.
JP1976678A 1978-02-24 1978-02-24 Single crystal growth method Expired JPS5849517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1976678A JPS5849517B2 (en) 1978-02-24 1978-02-24 Single crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1976678A JPS5849517B2 (en) 1978-02-24 1978-02-24 Single crystal growth method

Publications (2)

Publication Number Publication Date
JPS54112789A JPS54112789A (en) 1979-09-03
JPS5849517B2 true JPS5849517B2 (en) 1983-11-04

Family

ID=12008452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1976678A Expired JPS5849517B2 (en) 1978-02-24 1978-02-24 Single crystal growth method

Country Status (1)

Country Link
JP (1) JPS5849517B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4702668A (en) * 1985-01-24 1987-10-27 Adept Technology, Inc. Direct drive robotic system
CN102010196A (en) * 2010-10-12 2011-04-13 陕西科技大学 Method for preparing Bi4Si3O12 powder by using molten salt method
CN111549373B (en) * 2020-05-14 2021-12-24 北方民族大学 Pulling method for growing bismuth silicate (Bi) with uniform components4Si3O12Method for producing BSO) crystals

Also Published As

Publication number Publication date
JPS54112789A (en) 1979-09-03

Similar Documents

Publication Publication Date Title
Malkin et al. In situ atomic force microscopy studies of surface morphology, growth kinetics, defect structure and dissolution in macromolecular crystallization
JP5768785B2 (en) Indium phosphide substrate and indium phosphide crystal
EP0962557A1 (en) Silicon single crystal wafer and method for producing silicon single crystal wafer
US3951729A (en) Method for producing single crystals
JP2009263149A (en) Method for manufacturing polycrystalline silicon rod
TWI445849B (en) Sapphire seed and manufacturing method thereof, and manufacturing method of sapphire single crystal
JP2003313089A (en) Method for manufacturing single crystal silicon and single crystal silicon wafer, seed crystal for manufacturing single crystal silicon, single crystal silicon ingot, and single crystal silicon wafer
JPS5849517B2 (en) Single crystal growth method
Sangwal et al. Growth features of PbS crystals grown in silica gels
Mehrotra Polytypism in vapour grown crystals of cadmium bromide
JPH0329037B2 (en)
JP2009280411A (en) Seed crystal for producing metal fluoride single crystal
JP3787888B2 (en) Crystal growth method and growth crucible
Hosoya et al. In-situ observation of recovery process from rounded to faceted morphology in NaClO3
JPS63301525A (en) Manufacture of bso wafer
JP2001031494A (en) Production of silicon single crystal wafer
JP2787996B2 (en) Method for producing lithium tetraborate single crystal
Maurits et al. X-Ray Investigations of Spinel Substrates
JPS598693A (en) Preparation of single crystal
JP3037829B2 (en) Single crystal growing method and single crystal
JPH0258239B2 (en)
JPS61242983A (en) Production of semiconductor single crystal rod
KR920007340B1 (en) Manufacturing method of 3-4 compound material semiconductor crystal
JP2703340B2 (en) Liquid phase epitaxial growth method
JP2643975B2 (en) Silicon single crystal