JPS5845624A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS5845624A
JPS5845624A JP56142824A JP14282481A JPS5845624A JP S5845624 A JPS5845624 A JP S5845624A JP 56142824 A JP56142824 A JP 56142824A JP 14282481 A JP14282481 A JP 14282481A JP S5845624 A JPS5845624 A JP S5845624A
Authority
JP
Japan
Prior art keywords
magnetic
layer
recording medium
magnetic recording
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56142824A
Other languages
Japanese (ja)
Inventor
Riichi Tanaka
田中 利一
Kenji Yazawa
健児 矢沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP56142824A priority Critical patent/JPS5845624A/en
Publication of JPS5845624A publication Critical patent/JPS5845624A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To enable a nonmagnetic support low in heat resistance to be used and to obtain a magnetic recording medium having magnetic isotropy and high coercive force, by using a thalium Tl undercoat. CONSTITUTION:A >=5nm thick thalium Tl layer is formed as an undercoat 2 by vapor deposition on the surface of a nonmagnetic support 1 made of a polymer film such as polyethylene terephthalate low in heat resistance, and further on this layer a 20-55nm thick metallic magnetic thin film 3 made of cobalt Co or the like is formed.

Description

【発明の詳細な説明】 本発明は磁気記録媒体、特に金属磁性薄膜摸より成る磁
性層を有する磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic recording medium, and more particularly to a magnetic recording medium having a magnetic layer made of a metal magnetic thin film.

このように金属薄膜磁性層による磁気記録媒体は磁性層
にバインダーが混入されないことから充填密度の向上を
はかることができ、高密度記録媒体として丁ぐれ脚光を
浴びるに至っている。
As described above, magnetic recording media using a metal thin film magnetic layer can improve the packing density because no binder is mixed into the magnetic layer, and are now attracting attention as high-density recording media.

そしてこの種の磁気記録媒体の磁性材料としてコバルト
COは結晶磁気異方性が大きく、高抗磁力が得られ、ま
たかなり化学的に安定である、等の特徴を持ち、すぐれ
た磁気記録媒体になり得る可能性を持っている。しかし
、このコバル) Coを非磁性支持体に単に蒸着しても
その抗磁力は1000e以下であり、磁気記録媒体とし
ては不適蟲である。
As a magnetic material for this type of magnetic recording medium, cobalt CO has characteristics such as large crystal magnetic anisotropy, high coercive force, and is quite chemically stable, making it an excellent magnetic recording medium. has the potential to become However, even if Cobalt (Co) is simply deposited on a non-magnetic support, its coercive force is less than 1000e, making it unsuitable for use as a magnetic recording medium.

これを解決する方法としてこのコバルトCo化非磁性支
持体に対して斜め蒸着すると高い抗磁力が得られること
が知られているが、この場合その蒸着方向を被蒸着面に
対し40°〜80°に傾むける必要があることから蒸着
効率が低く生産性に問題がある。また、コバルトcoの
蒸着においてクロムCrの下地層を用いる方法即ち、コ
バルトCo/クロムCrの2層構造とした薄膜磁気記録
媒体も知られているが、この金層磁性薄膜2層構造の場
合、金属磁性薄膜の蒸着において非磁性支持体の温度が
重要な因子となり例えば4 (1(loe以上の抗磁力
Heを得るには、コバルト60層の膜厚な400λとし
たとき、基板温度Tsを3001?以上としなければな
らず、このため抗磁力Hcを4000e以上得るには、
ポリエチレンテレフタレー)(PET)の如き耐熱性に
乏しい高分子フィルムを非磁性支持体の材料として用い
ることは困難であった。
As a way to solve this problem, it is known that a high coercive force can be obtained by diagonally depositing cobalt on the nonmagnetic support, but in this case, the direction of the deposition is 40° to 80° with respect to the surface to be deposited. Since it is necessary to concentrate on the process, the deposition efficiency is low and productivity is problematic. Furthermore, a method using a chromium Cr underlayer in the deposition of cobalt co, that is, a thin film magnetic recording medium having a cobalt Co/chromium Cr two-layer structure, is known, but in the case of this gold layer magnetic thin film two-layer structure, The temperature of the non-magnetic support is an important factor in the deposition of metal magnetic thin films, and for example, to obtain a coercive force He of 4 (1 (loe) or more, the substrate temperature Ts should be set to 3001 λ when the film thickness is 400 λ, which is the thickness of 60 cobalt layers. Therefore, in order to obtain a coercive force Hc of 4000e or more,
It has been difficult to use a polymer film with poor heat resistance, such as polyethylene terephthalate (PET), as a material for a nonmagnetic support.

本発明は、上述の点に鑑み磁気的に等方性で且つ高抗磁
力を有し、しかも耐熱性に乏しい非磁性支持体の使用を
可能にした磁気記録媒体を提供するものである。
In view of the above points, the present invention provides a magnetic recording medium that is magnetically isotropic, has high coercive force, and allows the use of a nonmagnetic support that has poor heat resistance.

本発明による磁気記録媒体は、タリウムTQの下地層及
びその上の金属磁性薄膜例えばコバルトCO層から成る
2層構造膜を基本とした磁性薄膜を有して成ることを特
徴とする。即ち、本発明は第1図の拡大断面図で示すよ
うに、非磁性支持体(1)の主面上にタリウムTR下地
層(2)を蒸着し、その上にコバル) Co層(3)を
蒸着して磁気記録媒体(4)を構成する。
The magnetic recording medium according to the present invention is characterized in that it has a magnetic thin film based on a two-layer structure film consisting of a thallium TQ underlayer and a metallic magnetic thin film, such as a cobalt CO layer, thereon. That is, as shown in the enlarged cross-sectional view of FIG. 1, the present invention deposits a thallium TR underlayer (2) on the main surface of a nonmagnetic support (1), and deposits a Cobalt (Co) layer (3) thereon. is deposited to form a magnetic recording medium (4).

非磁性支持体(1)としては高分子フィルム(ポリイミ
ド、ポリエチレンテレフタレート等)、ガラス板、セラ
ミック板或いは表面を酸化した金属板等を使用できる。
As the nonmagnetic support (1), a polymer film (polyimide, polyethylene terephthalate, etc.), a glass plate, a ceramic plate, a metal plate with an oxidized surface, etc. can be used.

蒸着時の支持体(1)の温度は70℃〜150Cに選び
、またタリウムTQ下地層(2)の膜厚は50f以上と
し、さらにコバル) Co層(3)の膜厚は200X〜
550Xとするのが好ましい。なお、コバ及800層(
3)の膜厚は磁化量から算出したものである。
The temperature of the support (1) during vapor deposition is selected to be 70°C to 150°C, the thickness of the thallium TQ underlayer (2) is set to 50f or more, and the thickness of the Cobalt (Co) layer (3) is set to 200x to 150°C.
It is preferable to set it as 550X. In addition, the top and 800 layers (
The film thickness in 3) was calculated from the amount of magnetization.

第2図は本発明に適用される蒸着装置の概略な示すもの
である。同図において、■)は真空ポンプにょろり磁気
(12+によって例えば真空度略5XIO’Torrと
なした真空容器を示し、この容器θυ内に蒸発源(IJ
と、被蒸着体の非磁性支持体(1)が配される。
FIG. 2 schematically shows a vapor deposition apparatus applied to the present invention. In the same figure, ■) indicates a vacuum container in which the degree of vacuum is approximately 5XIO'Torr using a vacuum pump (12+), and an evaporation source (IJ
and a non-magnetic support (1) for the object to be deposited.

この非磁性支持体(1)は基板ボルダ−0最によって支
持され、且つ基板ホルダー05)に供給される熱媒体(
16)によって所定の基板温度に保持される。蒸発源(
■3)は例えば電子ビームの衝撃により加熱蒸発される
。なお、蒸発源(13)の蒸発は抵抗加熱法、高周波誘
導加熱法によることもでき、又非磁性支持体(1,)と
蒸発源(13)との間にはシャッター07)が配される
This non-magnetic support (1) is supported by the substrate boulder (05) and is supplied with a heat medium (05) to the substrate holder (05).
16), the substrate temperature is maintained at a predetermined temperature. Evaporation source (
(3) is heated and evaporated by the impact of an electron beam, for example. Note that the evaporation of the evaporation source (13) can also be performed by a resistance heating method or a high frequency induction heating method, and a shutter 07) is arranged between the nonmagnetic support (1,) and the evaporation source (13). .

尚、各膜厚は水晶振動子モニタで制御し得る。Note that each film thickness can be controlled by a crystal oscillator monitor.

次に本発明による実施例を説明する。Next, embodiments according to the present invention will be described.

実施例1 第2図に示す蒸着装置を用いて、ポリエチレンテレフタ
レートフィルムより成る非磁性支持体(1)を100C
に加熱し、これの上にタリウムのTg蒸着膜(2)を3
00Xの膜厚に蒸着し、さらにこれの上にコバル) C
o層(3)を400Xの厚さに蒸着して磁気記録媒体を
得た。
Example 1 A non-magnetic support (1) made of polyethylene terephthalate film was heated to
Then, a Tg evaporated film (2) of thallium is placed on top of this.
Vapor deposited to a film thickness of 00X, and then coated with cobal) C
A magnetic recording medium was obtained by depositing an o layer (3) to a thickness of 400×.

この実施例による磁気記録媒体は抗磁力TIcが410
0eで角型比&が074であった。
The magnetic recording medium according to this example has a coercive force TIc of 410
The squareness ratio & was 074 at 0e.

実施例2 上側と同様に第2図に示す蒸着装置を用いて、非磁性支
持体tl)を120Cに加熱し、タリウムTe蒸着膜(
2)を300 Xの膜厚に蒸着し、これの上にコバル)
 Co層(3)を400Åり厚さに蒸着して磁気記録媒
体を得た。
Example 2 As in the case above, using the vapor deposition apparatus shown in FIG.
2) was evaporated to a thickness of 300×, and Cobal) was deposited on top of this.
A magnetic recording medium was obtained by depositing a Co layer (3) to a thickness of 400 Å.

この実施例による磁気記録媒体は抗磁力f(cが420
0eで角型比Rsが0.78テあツタ。
The magnetic recording medium according to this embodiment has a coercive force f (c of 420
At 0e, the squareness ratio Rs is 0.78.

上記実施例の他に非磁性支持体の加熱温度を120C一
定、タリウムTQ下地層の膜厚をaooX一定とし、コ
バル) Co層の膜厚を変えた実施例のコバ及800層
の膜厚に対する抗磁力Hcの特性を第3図に示す。
In addition to the above examples, the heating temperature of the nonmagnetic support was kept constant at 120C, the thickness of the thallium TQ underlayer was kept constant at aooX, and the thickness of the Cobal layer was changed. The characteristics of the coercive force Hc are shown in FIG.

第4図はコバル) Co層の膜厚を400 X一定とし
、タリウムTQ下地層の膜厚及び非磁性支持体の加熱温
度を変えた実施例における非磁性支持体の加熱温度に対
する抗磁力Hcの特性を示す。但し、・印、×印及び○
印は夫々タリウムT2下地層の膜厚200X 、 30
0X及び500Xの場合である。
Figure 4 shows the coercive force Hc with respect to the heating temperature of the non-magnetic support in an example in which the thickness of the Cobalt layer was constant at 400× and the thickness of the thallium TQ underlayer and the heating temperature of the non-magnetic support were varied. Show characteristics. However, * mark, × mark and ○
The marks indicate the thickness of the thallium T2 underlayer, 200X and 30X, respectively.
This is the case for 0X and 500X.

以上の結果から明らかなように本発明による磁気記録媒
体は非磁性支持体の温度が70C〜150C。
As is clear from the above results, in the magnetic recording medium according to the present invention, the temperature of the nonmagnetic support is 70C to 150C.

タリウム貴下地層の膜厚が50X・〜500X及びコバ
及800層の膜厚が200x〜550Xにおいて抗磁力
Hc = 2800e 〜4200eを得ることができ
る。
Coercive force Hc = 2800e to 4200e can be obtained when the thickness of the thallium noble underlayer is 50X to 500X and the thickness of the edge and 800 layers is 200X to 550X.

そして、特に非磁性支持体の温度が12f) C,タリ
ウム貴下地層の膜厚300X及びコバル)−Co層の膜
厚400Xのとき高抗磁力Heが得られることから、例
えばポリエチレンテレフタレートの如き比較的耐熱性に
乏しい高分子フィルムも非磁性支持体の材料として使用
することが出来、支持体材料の選択の自由度が増大する
In particular, a high coercive force He can be obtained when the temperature of the non-magnetic support is 12f) C, thallium noble underlayer thickness 300X and cobal)-Co layer thickness 400X. Even polymer films with poor heat resistance can be used as the material for the nonmagnetic support, increasing the degree of freedom in selecting the support material.

また、非磁性支持体として高分子フィルムを用いた場合
、その高分子フィルム上に先ず下地層として低沸点(1
457C)のタリウムTQ層を蒸着するため、タリウム
TR層蒸着に際しての蒸発の加熱パワーは少くて済み、
高分子フィルムの熱輻射は小さい。次いで上層のコバ及
800層は高沸点(3185tl’)であるために蒸着
に要する加熱パワーは犬きぐ、熱輻射は大きいがタリウ
ムTQ層が付着されているので高分子フィルム上へは直
接の熱輻射は小さく熱変形が少くなる。
In addition, when a polymer film is used as a non-magnetic support, a base layer with a low boiling point (1
457C), the heating power for evaporation during deposition of the thallium TR layer is small;
Thermal radiation of polymer films is small. Next, the top layer and 800 layer have a high boiling point (3185 tl'), so the heating power required for vapor deposition is extremely high, and the thermal radiation is large, but since the thallium TQ layer is attached, no direct heat is applied to the polymer film. Radiation is small and thermal deformation is reduced.

なお、上側では非磁性支持体上にタリウム實下地層とコ
バル) Co層の2層構造の磁性薄膜を蒸着して構成し
た場合であるが、その他必要な磁束をとるためにタリウ
ムTQ下地層とコバルト00層の2層構造を基本とした
磁性薄膜を多層化することも可能である。また、上側で
は金属磁性薄膜としてコバルト単体を用いたが、その他
の金属磁性薄膜例えばCo−Ni合金等を用いることも
できる。
The upper side is constructed by depositing a magnetic thin film with a two-layer structure of a thallium actual underlayer and a cobalt (Cobal) layer on a non-magnetic support, but a thallium TQ underlayer and a thallium TQ underlayer are also used to obtain the necessary magnetic flux. It is also possible to multilayer a magnetic thin film based on a two-layer structure of cobalt 00 layers. Moreover, although cobalt alone was used as the metal magnetic thin film on the upper side, other metal magnetic thin films such as a Co--Ni alloy may also be used.

上述したように本発明によれば、磁気記録媒体は金属磁
性材の斜め蒸着によらずして高抗磁力の磁性層を得るこ
とができるので、蒸着効率を高めることができると共に
タリウムTQの下地層は通常の蒸着法で形成できるので
生産性の向上をはかることができてコストの低減が可能
となり、また非磁性支持体は百数十度の温度に加熱する
たけで良いので支持体として′1−ぐれた性能を有する
ポリエチレンテレフタレートフィルム等の高分子フィル
ムを使用でき、各種使用態様、目的に応じた磁気記録媒
体を構成できる等の効果を有する。
As described above, according to the present invention, a magnetic recording medium can obtain a magnetic layer with high coercive force without oblique vapor deposition of a metal magnetic material, so that the vapor deposition efficiency can be increased and the thallium TQ layer can be Since the geological layer can be formed by a normal vapor deposition method, it is possible to improve productivity and reduce costs, and since the non-magnetic support only needs to be heated to a temperature of 100-odd degrees, it is suitable for use as a support. 1- It is possible to use a polymer film such as a polyethylene terephthalate film having excellent performance, and it has the advantage that magnetic recording media can be constructed according to various usage modes and purposes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の磁気記録媒体の一例を示す拡大断面図
、第2図は本発明に適用される蒸着装置の概略図、第3
図及びm4図は夫々本発明の磁気記録媒体の特性図であ
る。 図中(])は非磁性支持体、(2)はタリウム實下地層
、(3)はコバルト00層である。 第1図 第2図
FIG. 1 is an enlarged sectional view showing an example of the magnetic recording medium of the present invention, FIG. 2 is a schematic diagram of a vapor deposition apparatus applied to the present invention, and FIG.
Figures 1 and 4 are characteristic diagrams of the magnetic recording medium of the present invention, respectively. In the figure, ( ) is a nonmagnetic support, (2) is a thallium underlayer, and (3) is a cobalt 00 layer. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 非磁性支持体と、タリウムより成る下地層と、該下地層
上に形成された厚さ200X乃至550Xの金Ra性薄
膜より成る磁気記録媒体。
A magnetic recording medium comprising a nonmagnetic support, an underlayer made of thallium, and a gold-Ra thin film with a thickness of 200X to 550X formed on the underlayer.
JP56142824A 1981-09-10 1981-09-10 Magnetic recording medium Pending JPS5845624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56142824A JPS5845624A (en) 1981-09-10 1981-09-10 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56142824A JPS5845624A (en) 1981-09-10 1981-09-10 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS5845624A true JPS5845624A (en) 1983-03-16

Family

ID=15324471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56142824A Pending JPS5845624A (en) 1981-09-10 1981-09-10 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5845624A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117962U (en) * 1985-01-09 1986-07-25

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117962U (en) * 1985-01-09 1986-07-25
JPH026303Y2 (en) * 1985-01-09 1990-02-15

Similar Documents

Publication Publication Date Title
US6020060A (en) Magnetic recording medium, process for producing the same and magnetic disk device
JP4102221B2 (en) Method for manufacturing magnetic recording medium
JPS5845624A (en) Magnetic recording medium
JPH0814889B2 (en) Perpendicular magnetic recording media
JPS60231911A (en) Magnetic recording medium
JP3113069B2 (en) Magnetic recording film, magnetic recording medium, and magneto-optical recording medium
JPS62128019A (en) Magnetic recording medium
JP3520751B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same
JPH0532809B2 (en)
JPS6256570B2 (en)
JPS63142515A (en) Magnetic recording medium and its manufacture
JP2677108B2 (en) Magnetic recording media
JP2909767B2 (en) Magnetic recording media
JPS60202524A (en) Magnetic recording medium
JP3658586B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic storage device
JPH0656650B2 (en) Magnetic recording medium
JPS6379954A (en) Formation of magnetic structrue
JPS60202525A (en) Magnetic recording medium
JPH0757261A (en) Magnetic recording medium and magnetic head and its method and apparatus for production
JPS63124213A (en) Perpendicular magnetic recording medium
JPH0628725A (en) Magneto-optical recording method
JPS59141210A (en) Vacuum deposition device
JPS61120332A (en) Vertical magnetic recording medium
JPH0380417A (en) Magnetic recording medium and production thereof
JPH0532808B2 (en)