JPS61120332A - Vertical magnetic recording medium - Google Patents

Vertical magnetic recording medium

Info

Publication number
JPS61120332A
JPS61120332A JP23949784A JP23949784A JPS61120332A JP S61120332 A JPS61120332 A JP S61120332A JP 23949784 A JP23949784 A JP 23949784A JP 23949784 A JP23949784 A JP 23949784A JP S61120332 A JPS61120332 A JP S61120332A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
underlying layer
alloy
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23949784A
Other languages
Japanese (ja)
Inventor
Osamu Kitagami
修 北上
Hideo Fujiwara
英夫 藤原
Kiyotaka Oshima
尾島 清高
Yoichi Ogawa
容一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP23949784A priority Critical patent/JPS61120332A/en
Publication of JPS61120332A publication Critical patent/JPS61120332A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To form a thin soft magnetic underlying layer and to improve the flexibility of a recording medium by forming said underlying layer of a thin Co-Fe film. CONSTITUTION:e thin Co-Fe alloy film having large saturation magnetization is adopted for the material of the soft magnetic underlying layer of a multi-layered vertical magnetic recording medium. The Co-Re alloy has fairly larger saturation magnetization then the satura tion magnetization of 'Permalloy(R)' and Co-base amorphous material and consequently the film thickness of the soft magnetic underlying larger of the two-layered film medium can be decreased. The flexibility of the magnetic recording medium such as flexible disk and magnetic tape is improved. The Co-Fe alloy has a small anisotropy constant in an ade quate compsn. ratio and has therefore a small anisotropic magnetic field and large magnetic permeability. The compsn. of a vapor source changes in the case of forming continuously the underlying layer consisting of 'Permalloy(R)' for a long period of time by vapor deposition and therefore the underlying layer having the consistent quality is not obtainable with the underlying layer formed in a initial period and the underlying layer formed after lapse of some time. The Co-Fe alloy has a small compsn. flucuation and yields the underlying layer having the stable quality in the above-mentioned respect. The substrate temp. may be about 150 deg.C in the case of forming the underlying layer. The selection range for the substrate is thus widened.

Description

【発明の詳細な説明】 〔発明の利用分野および発明の目的〕 本発明は、多層型垂直磁気記録媒体の軟質磁性下地層の
改良に係り、可撓性に優れた垂直磁気記録媒体を提供す
ることを目的とする。
[Detailed Description of the Invention] [Field of Application of the Invention and Object of the Invention] The present invention relates to improvement of a soft magnetic underlayer of a multilayer perpendicular magnetic recording medium, and provides a perpendicular magnetic recording medium with excellent flexibility. The purpose is to

〔従来の技術〕[Conventional technology]

軟質磁性下地層上に垂直磁気異方性膜を設けた垂直磁気
記録用二層膜媒体は、非磁性基体上に垂直磁気異方性膜
のみを設けた単層膜媒体に比べ。
Double-layer media for perpendicular magnetic recording, in which a perpendicular magnetic anisotropic film is provided on a soft magnetic underlayer, are superior to single-layer media in which only a perpendicular magnetic anisotropic film is provided on a non-magnetic substrate.

記録電流を低減し、かつ再生出力を大幅に向上すること
ができる。垂直磁気記録用二層膜媒体における上記二点
の記録再生特性の改善は、軟質磁性下地層が磁気ヘッド
から発生する磁束を有効に記録領域に集束する役割を果
たすと同時に、11I面に対し垂直方向に記録された磁
化をより安定に垂直方向に存在させる役割を果たすこと
による。このような役割をもつ軟質磁性下地層が有効に
機能するには、磁気ヘッドから発生する磁束を記録領域
に有効に集束できる程度に、その透磁率、飽和磁化及び
膜厚が大きいことが要求される。
It is possible to reduce the recording current and significantly improve the reproduction output. The above two improvements in the recording and reproducing characteristics of the double-layer film medium for perpendicular magnetic recording are achieved by the soft magnetic underlayer having the role of effectively focusing the magnetic flux generated from the magnetic head onto the recording area, and at the same time, This is because it plays a role in making the magnetization recorded in the direction more stable exist in the perpendicular direction. In order for the soft magnetic underlayer to function effectively as described above, its magnetic permeability, saturation magnetization, and film thickness must be large enough to effectively focus the magnetic flux generated from the magnetic head onto the recording area. Ru.

従来、垂直磁気記録用二層膜媒体の軟質磁性下地層材料
としては、パーマロイ薄[、Goベース非晶質薄膜など
が中心に検討されてきたが、それらの飽和磁化は900
ガウス程度であり、磁気ヘッドから発生する磁束を有効
に記録領域に集束するには、どうしても上記下地層の膜
厚を大きくしなければならず、特にこれらの下地層材料
をフレキシブルディスクや磁気テープをはじめとする可
撓性磁気記録媒体に応用した場合には、媒体の剛性が大
きくなり、磁気記録媒体表面に対する磁気ヘッドの安定
な接触状態が得られず、十分な磁気特性が得られない。
Conventionally, permalloy thin [, Go-based amorphous thin films, etc.] have been mainly studied as soft magnetic underlayer materials for double-layer media for perpendicular magnetic recording, but their saturation magnetization is 900
Gaussian, and in order to effectively focus the magnetic flux generated from the magnetic head onto the recording area, it is necessary to increase the film thickness of the underlayer. When applied to other flexible magnetic recording media, the rigidity of the medium increases, making it impossible to obtain stable contact of the magnetic head with the surface of the magnetic recording medium, and insufficient magnetic properties.

C問題点を解決するための手段〕 そこで本発明は、かかる従来技術がもつ欠点を解消すべ
く、多層垂直磁気記録媒体の軟質磁性下地層材料として
、飽和磁化の大きいGo−Fe合金薄膜を採用している
Means for Solving Problem C] Therefore, in order to solve the drawbacks of the conventional technology, the present invention adopts a Go-Fe alloy thin film with large saturation magnetization as the soft magnetic underlayer material of a multilayer perpendicular magnetic recording medium. are doing.

G o −F e合金は、パーマロイや、Goベース非
晶質に比べ飽和磁化がかなり大きく、その結果。
As a result, the Go-Fe alloy has a considerably larger saturation magnetization than Permalloy or Go-based amorphous.

二層膜媒体の軟質磁性下地層の膜厚を大幅に薄くするこ
とができる。このことは、先にも述べたように、フレキ
シブルディスクや磁気テープなどの磁気記録媒体の可撓
性を向上し、磁気記録媒体表面に対する磁気記録ヘッド
の接触状態を大きく改善することができる。
The thickness of the soft magnetic underlayer of a two-layer film medium can be significantly reduced. As mentioned above, this can improve the flexibility of magnetic recording media such as flexible disks and magnetic tapes, and can greatly improve the contact state of the magnetic recording head with the surface of the magnetic recording medium.

またGo−Fe合金は適正組成範囲に於て異方性定数が
小さいため、異方性磁界が小さく、透磁率が大である。
Furthermore, since the Go-Fe alloy has a small anisotropy constant in an appropriate composition range, the anisotropic magnetic field is small and the magnetic permeability is large.

さらにパーマロイの下地層を蒸着により長時間連続し七
形成する場合、蒸発源の組成が変わるため初期に形成し
たものとある程度時間が経過したものとでは、パーマロ
イ下地層の組成が変動してしまい1品質の一定した下地
層が得られない、この点G o −F s合金は組成変
動が小さく、品質の安定した下地層が得られる。さらに
また、蒸着によりパーマロイの下地層を形成する場合は
基板温度を約350℃京で上げる必要があるため、基板
に耐熱性が要求され、基板の選択範囲が制限さ五て結果
的にはコスト高となる。この点本発明のようにCo−F
e合金の下地層を形成する場合は基板温度は約350℃
京度でよく、そのため基板の選択範囲が拡くなり、結局
コスト低減を図ることができる。
Furthermore, when forming a permalloy base layer continuously for a long period of time by vapor deposition, the composition of the permalloy base layer changes between the one formed initially and the one formed after a certain period of time because the composition of the evaporation source changes. In this respect, the G o -F s alloy has a small compositional variation and can provide an underlayer with stable quality. Furthermore, when forming a permalloy underlayer by vapor deposition, it is necessary to raise the substrate temperature to about 350 degrees Celsius, which requires the substrate to be heat resistant, which limits the range of substrate selection and ultimately increases costs. Becomes high. In this respect, as in the present invention, Co-F
When forming an e-alloy base layer, the substrate temperature is approximately 350°C.
As a result, the selection range of substrates is widened, and the cost can be reduced after all.

但し、Go−Fe合金の薄膜を下地層とし、その下地層
上に直接Co−Cr合金薄膜などの垂直異方性膜を設け
ると、ベースフィルムやガラス基板などの非磁性基体上
に直接設けた場合に比べ。
However, if a thin Go-Fe alloy film is used as an underlayer and a perpendicularly anisotropic film such as a Co-Cr alloy thin film is provided directly on the underlayer, it will be possible to form a thin film directly on a non-magnetic substrate such as a base film or a glass substrate. Compared to the case.

垂直磁気異方性膜の結晶学的配向性が劣化し、膜面に対
し垂直方向の磁性特性例えば保磁力、角形比などが劣化
する傾向にある。そこで本発明者等は、非磁性基体上に
G o −F a合金の軟質磁性下地層を設けた後、 
G o −F e合金薄膜上に薄い中間層を形成し、中
間層上に垂直磁気異方性膜を形成することにした。中間
層としては種々の非磁性薄膜を検討したが、特に六方会
密構造をとり、しかもその格子定数が垂直磁気異方性膜
の格子定数に近い材料の薄膜1例えば垂直磁気異方性膜
がco−Cr合金薄膜の場合にはTi、Znなとの非磁
性薄膜がCo −Cr合金薄膜の結晶学的配向を妨げず
良好な垂直磁化膜が得られる。また、C。
The crystallographic orientation of the perpendicular magnetic anisotropic film tends to deteriorate, and the magnetic properties in the direction perpendicular to the film surface, such as coercive force and squareness ratio, tend to deteriorate. Therefore, the present inventors provided a soft magnetic underlayer of Go-Fa alloy on a non-magnetic substrate, and then
A thin intermediate layer was formed on the Go-Fe alloy thin film, and a perpendicular magnetic anisotropy film was formed on the intermediate layer. Various nonmagnetic thin films were considered as the intermediate layer, but in particular, thin films made of materials that have a hexagonal close-packed structure and whose lattice constant is close to that of the perpendicular magnetic anisotropic film 1, for example, a perpendicular magnetic anisotropic film. In the case of a co-Cr alloy thin film, a non-magnetic thin film such as Ti or Zn does not interfere with the crystallographic orientation of the Co-Cr alloy thin film, and a good perpendicular magnetization film can be obtained. Also, C.

−Faの軟磁性下地層を形成した状態で非晶質化してい
るような中間層も、特に材料には限定され−ず、垂直磁
気異方性膜の結晶学的配向を妨げない。
The material of the intermediate layer, which is amorphous after forming the -Fa soft magnetic underlayer, is not particularly limited in material, and does not interfere with the crystallographic orientation of the perpendicular magnetic anisotropic film.

この場合には、ベースフィルムやガラス基板上に直接垂
直異方性膜を設けた場合の結晶学的配向度と殆んど変化
はない。
In this case, there is almost no difference in the degree of crystallographic orientation from the case where the vertically anisotropic film is provided directly on the base film or glass substrate.

なお1本発明におけるG o −F a合金薄膜は、ス
パッタリング法、真空蒸着法など物理蒸着法により形成
可能であり、好ましい合金組成はCOの含有率が20〜
60原子%の範囲であるa Co含有率がこの適正合金
組成範囲に達つせずどもあるいは越えても合金の飽和磁
化は減少し、本発明の効果は若干低下する。また上記中
間層の最適膜厚範囲は、50A〜100OAの範囲にあ
り、50A未満では、中間層の効果は弱く、またtoo
Note that the G o -F a alloy thin film in the present invention can be formed by a physical vapor deposition method such as a sputtering method or a vacuum evaporation method, and a preferable alloy composition has a CO content of 20 to 20.
Even if the a Co content, which is in the range of 60 atomic %, does not reach or exceed this appropriate alloy composition range, the saturation magnetization of the alloy decreases, and the effect of the present invention is slightly reduced. Further, the optimum film thickness range of the above-mentioned intermediate layer is in the range of 50A to 100OA, and below 50A, the effect of the intermediate layer is weak and too thick.
.

Aを越すと特に可撓性磁気記録媒体の場合には。Above A, especially in the case of flexible magnetic recording media.

記録媒体の剛性が大きくなり、記録媒体表面に対する磁
気ヘッドの接触安定性が劣化する。
The rigidity of the recording medium increases, and the contact stability of the magnetic head with the surface of the recording medium deteriorates.

以上述べたように軟質磁性下地層を備えた垂直磁気記録
媒体に於て、軟質磁性下地層をGo−Fe合金薄膜とす
ることにより、記録媒体の電磁変換特性を損うことなく
磁気記録媒体表面に対する磁気ヘッドの接触安定性を向
上することができる。
As described above, in a perpendicular magnetic recording medium equipped with a soft magnetic underlayer, by using a Go-Fe alloy thin film as the soft magnetic underlayer, the surface of the magnetic recording medium can be improved without impairing the electromagnetic conversion characteristics of the recording medium. The contact stability of the magnetic head against the magnetic head can be improved.

〔実施例〕〔Example〕

以下本発明の実施例について図面とともに説明する。 Embodiments of the present invention will be described below with reference to the drawings.

実施例1 軟質磁性下地層として、 Coo gNblx Zr4
非晶質層あるいはGo−Fe合金属2 (Go金含有率
0原子%)をポリエチレンテレフタレートフィルムl 
(フィルム厚50μm)上に設け、更に中間層として膜
厚0.01μmのTi層3.更に膜厚0.15μmのC
o−Cr合金層4(Cr含有率20重量%)を形成した
。前記薄膜の形成法は全て高周波スパッタリング法とし
た。なお軟質磁下地層がCo N b Z r非晶質層
であっても、Co−Fe合金属であっても、Ti属を介
して形成されるC。
Example 1 CoogNblx Zr4 as a soft magnetic underlayer
An amorphous layer or a Go-Fe alloy 2 (Go gold content 0 at%) is added to a polyethylene terephthalate film.
(film thickness: 50 μm) and a Ti layer with a thickness of 0.01 μm as an intermediate layer 3. Furthermore, C with a film thickness of 0.15 μm
An o-Cr alloy layer 4 (Cr content: 20% by weight) was formed. The method for forming the thin films was all high-frequency sputtering. Note that whether the soft magnetic underlayer is a CoNbZr amorphous layer or a Co-Fe alloy, C is formed through the Ti group.

−Cr合金層の結晶学的配向性及び磁気的特性に大きな
差異は呪われない。
Large differences in crystallographic orientation and magnetic properties of the -Cr alloy layer are not a curse.

なお第2図中の1は基板である0以上のようにして得た
多層構造の垂直磁気記録媒体を主磁極励磁型垂直ヘッド
(主磁極厚0.7μm、トラック幅120μm)により
評価した6図に各軟質磁性下地層の厚さに対する出力の
依存性を測定した結果を示す、なお測定記録密度は2k
BPIで図中の曲線1はG o −F e合金層の軟質
磁性層を用いた記録媒体、曲線2はG o −N b 
−Z r非晶質層の軟質磁性層を用いた記録媒体の特性
曲線である。
Note that 1 in Fig. 2 is a substrate. 0 The perpendicular magnetic recording medium with a multilayer structure obtained in the above manner was evaluated using a main pole excitation type perpendicular head (main pole thickness 0.7 μm, track width 120 μm). Figure 2 shows the results of measuring the dependence of output on the thickness of each soft magnetic underlayer, and the measured recording density is 2k.
In BPI, curve 1 in the figure is a recording medium using a soft magnetic layer of Go-Fe alloy layer, and curve 2 is Go-Nb.
-Zr It is a characteristic curve of a recording medium using a soft magnetic layer of an amorphous layer.

この図の結果より、所定の記録電流に対して再生出力が
飽和するための軟質磁性下地層厚さは。
From the results in this figure, what is the thickness of the soft magnetic underlayer for the reproduction output to be saturated for a given recording current?

Go−Nb−Zrの非晶質薄膜の場合に比べ、Go−F
e合金薄膜の場合には、1/2〜1/3の膜厚ですむこ
とが分る。このことは、Go−F@合金薄膜を軟質磁性
下地層として使用すれば、下地層の厚さを薄くすること
ができ、記録媒体の可撓性を改善できることを示してい
る。今回の実験条件では、軟質磁性下地層厚が0.3〜
0,4μmを越えると記録媒体表面に対する磁気ヘッド
の接触状態が不安定となり、再生出力エンベロープが不
均質になったが、l!!厚0.3pm以下のCo −F
 e合金下地層の場合には、出力の大きい均質な再生出
力エンベロープが得られた。
Compared to the case of Go-Nb-Zr amorphous thin film, Go-F
It can be seen that in the case of an e-alloy thin film, a film thickness of 1/2 to 1/3 is sufficient. This shows that if the Go-F@alloy thin film is used as a soft magnetic underlayer, the thickness of the underlayer can be reduced and the flexibility of the recording medium can be improved. Under the present experimental conditions, the soft magnetic underlayer thickness was 0.3~
If it exceeds 0.4 μm, the contact state of the magnetic head with the recording medium surface becomes unstable, and the reproduction output envelope becomes non-uniform, but l! ! Co-F with a thickness of 0.3 pm or less
In the case of the e-alloy base layer, a homogeneous reproduction output envelope with a large output was obtained.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように、多層垂直磁気記録用媒体の軟質
磁性下地層をG o −F s薄膜とすることにより、
下地層厚を薄くし、記録媒体の可撓性を大きく改善する
ことができる。
As explained above, by using a Go-Fs thin film as the soft magnetic underlayer of the multilayer perpendicular magnetic recording medium,
The thickness of the underlayer can be reduced and the flexibility of the recording medium can be greatly improved.

特に、実施例で示したようにCo−Fe合全会下地層上
Co−Cr合金薄膜などの垂直磁気異方性膜を設ける際
1問題になる垂直異方性質の結晶学的配向性の乱れも、
Co −F e合金下地層と垂直磁気異方性膜の間に特
定の中間層を設ける二とにより解消できる。
In particular, as shown in the examples, when forming a perpendicular magnetic anisotropic film such as a Co-Cr alloy thin film on a Co-Fe alloy underlayer, one problem is the disturbance of the crystallographic orientation of the perpendicular anisotropy. ,
This problem can be solved by providing a specific intermediate layer between the Co--Fe alloy underlayer and the perpendicular magnetic anisotropy film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は垂直磁気記録媒体の軟磁性下地層厚と再生出力
との関係を示す特性図、第2図は本発明の実施例に係る
垂直磁気記録媒体の断面図である。 1・・・・・・基板、2・・・・・・G o −F a
合金層、3・・・・・・Ti層、4−− Ca −Cr
層。
FIG. 1 is a characteristic diagram showing the relationship between the soft magnetic underlayer thickness and reproduction output of a perpendicular magnetic recording medium, and FIG. 2 is a sectional view of a perpendicular magnetic recording medium according to an embodiment of the present invention. 1...Substrate, 2...G o -F a
Alloy layer, 3...Ti layer, 4--Ca-Cr
layer.

Claims (1)

【特許請求の範囲】 1、基板上に軟質磁性層を形成し、その軟質磁性層の上
方に垂直磁気異方性を有する記録磁性層を形成した多層
型の垂直磁気記録媒体において、軟質磁性下地層として
コバルト−鉄合金薄膜を設けたことを特徴とする垂直磁
気記録媒体。 2、特許請求の範囲第1項記載の磁気記録媒体において
、コバルト−鉄合金薄膜のコバルト含有率が20〜60
原子%の範囲に規制されていることを特徴とする垂直磁
気記録用媒体。 3、特許請求の範囲第1項記載において、前記軟質磁性
下地層と垂直磁気異方性を有する記録磁性層との間に、
非磁性の中間層が形成されていることを特徴とする垂直
磁気記録媒体。 4、特許請求の範囲第3項記載において、前記中間層が
、六方稠密構造を有し格子定数が前記垂直磁気異方性記
録磁性層の格子定数に近い材料で構成されていることを
特徴とする垂直記録媒体。 5、特許請求の範囲第3項記載において、前記軟質磁性
下地層がコバルト−鉄合金薄膜、中間層がチタンおよび
亜鉛のグループから選択された1種以上の薄膜、垂直磁
気異方性記録磁性層がコバルト−クロム合金薄膜で構成
されていることを特徴とする垂直磁気記録媒体。
[Claims] 1. A multilayer perpendicular magnetic recording medium in which a soft magnetic layer is formed on a substrate and a recording magnetic layer having perpendicular magnetic anisotropy is formed above the soft magnetic layer. A perpendicular magnetic recording medium characterized in that a cobalt-iron alloy thin film is provided as a geological layer. 2. In the magnetic recording medium according to claim 1, the cobalt content of the cobalt-iron alloy thin film is 20 to 60.
A perpendicular magnetic recording medium characterized by being regulated within an atomic percent range. 3. In claim 1, between the soft magnetic underlayer and the recording magnetic layer having perpendicular magnetic anisotropy,
A perpendicular magnetic recording medium characterized in that a nonmagnetic intermediate layer is formed. 4. Claim 3, characterized in that the intermediate layer is made of a material having a hexagonal close-packed structure and a lattice constant close to that of the perpendicular magnetic anisotropic recording magnetic layer. perpendicular recording medium. 5. Claim 3, wherein the soft magnetic underlayer is a cobalt-iron alloy thin film, the intermediate layer is one or more thin films selected from the group of titanium and zinc, and a perpendicular magnetic anisotropic recording magnetic layer. 1. A perpendicular magnetic recording medium, comprising a cobalt-chromium alloy thin film.
JP23949784A 1984-11-15 1984-11-15 Vertical magnetic recording medium Pending JPS61120332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23949784A JPS61120332A (en) 1984-11-15 1984-11-15 Vertical magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23949784A JPS61120332A (en) 1984-11-15 1984-11-15 Vertical magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS61120332A true JPS61120332A (en) 1986-06-07

Family

ID=17045659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23949784A Pending JPS61120332A (en) 1984-11-15 1984-11-15 Vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61120332A (en)

Similar Documents

Publication Publication Date Title
US6020060A (en) Magnetic recording medium, process for producing the same and magnetic disk device
JPS6143769B2 (en)
JPH056738B2 (en)
JPS61120332A (en) Vertical magnetic recording medium
JPH0252845B2 (en)
US20020001736A1 (en) Magnetic recording medium
JPH0785401A (en) Magnetic recording method
JP3864637B2 (en) Magnetic recording medium
Turilli et al. Magneto and magneto-optical recording materials
JPH0430083B2 (en)
JPS58171717A (en) Magnetic recording medium
JPH0570205B2 (en)
JPH0532809B2 (en)
JP2909767B2 (en) Magnetic recording media
JP3658586B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic storage device
JPH01173312A (en) Magnetic recording medium
JPS60129922A (en) Magnetic recording medium
JPH071535B2 (en) Magnetic recording medium
JPH053050B2 (en)
JPS58130439A (en) Magnetic recording medium
JPS61122919A (en) Vertical magnetic recording medium
JPH0532808B2 (en)
JPH03183011A (en) Perpendicular magnetic recording medium and recording device for the same
JPS62232722A (en) Magnetic recording medium
JPS6124011A (en) Vertical magentic recording medium