JPS60202525A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS60202525A
JPS60202525A JP5885984A JP5885984A JPS60202525A JP S60202525 A JPS60202525 A JP S60202525A JP 5885984 A JP5885984 A JP 5885984A JP 5885984 A JP5885984 A JP 5885984A JP S60202525 A JPS60202525 A JP S60202525A
Authority
JP
Japan
Prior art keywords
vapor
substrate
layer
vapor deposition
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5885984A
Other languages
Japanese (ja)
Inventor
Hitoshi Kimura
均 木村
Kenji Yazawa
健児 矢沢
Kazunori Ozawa
和典 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP5885984A priority Critical patent/JPS60202525A/en
Publication of JPS60202525A publication Critical patent/JPS60202525A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain the titled recording medium having excellent magnetic characteristics and to improve the preparation conditions by forming an In layer and a metallic magnetic layer successively on a nonmagnetic substrate with vapor plating. CONSTITUTION:In a vapor deposition apparatus 1, In is firstly vapor-deposited on a traveling nonmagnetic substrate 4 from an In vapor deposition source 7 to form an In vapor-deposited film on the substrate 4. Succeedingly, a metallic magnetic material is vapor-deposited thereon from a metallic magnetic material vapor deposition source 8 to deposite and form a metallic magnetic layer. High coercive force and high squareness ratio can be obtained in this way. Since the undercoat In layer consists of a low-melting point metal, the film can be formed at low temps. of the substrate. Accordingly, a high molecular film having inferior heat resistance can be used as the nonmagnetic substrate.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁気記録媒体に関する。[Detailed description of the invention] Industrial applications The present invention relates to magnetic recording media.

背景技術とその問題点 近年、磁気記録の高密度化の目的で磁性薄膜型の磁気記
録媒体即ち非磁性基体上に真空蒸着、スパッタリング等
の方法によりCo、 Pa、 Nl或いはこれらの合金
による強磁性薄膜を形成させた磁気記録媒体についての
研究が盛んである。
BACKGROUND TECHNOLOGY AND PROBLEMS In recent years, for the purpose of increasing the density of magnetic recording, ferromagnetic materials such as Co, Pa, Nl, or alloys thereof have been produced on magnetic thin-film magnetic recording media, that is, non-magnetic substrates, by methods such as vacuum evaporation and sputtering. Research into magnetic recording media in which thin films are formed is active.

このような磁性*ii+型の磁気記録媒体において、面
内方向に高い抗磁力Hcを得るには、強磁性金属材を非
磁性基体に対して斜め蒸着して(所謂斜め蒸着法で)磁
性層を形成する方法、或いは非磁性基体上にCoを下地
として基体温度を300℃以上でCoを蒸着して磁性層
を形成する方法等が提案されている。
In order to obtain a high coercive force Hc in the in-plane direction in such a magnetic *ii+ type magnetic recording medium, a ferromagnetic metal material is obliquely deposited on a non-magnetic substrate (by the so-called oblique deposition method) to form a magnetic layer. A method of forming a magnetic layer on a non-magnetic substrate, or a method of forming a magnetic layer by vapor depositing Co on a non-magnetic substrate using Co as a base at a substrate temperature of 300° C. or higher has been proposed.

しかし乍ら、前者の斜め蒸着法の場合には蒸着効率が数
%と低く生産性に問題があった。また後者の方法の場合
には基体温度を高くする必要があるため、非磁性基体と
してポリエチレンテレフタレートの如き耐熱性に劣る轟
分子フィルムが使用できないという欠点があった。
However, in the case of the former oblique evaporation method, the evaporation efficiency was as low as a few percent, causing problems in productivity. Moreover, in the latter method, since it is necessary to raise the temperature of the substrate, there is a drawback that it is impossible to use a Todoroki molecular film, which has poor heat resistance, such as polyethylene terephthalate, as a nonmagnetic substrate.

発明の目的 本発明は、上述の点に鑑み、磁気特性に優れると共に、
作製条件が改善される磁気記録媒体を提供するものであ
る。
Purpose of the Invention In view of the above points, the present invention has excellent magnetic properties and
The present invention provides a magnetic recording medium with improved manufacturing conditions.

発明の概要 本発明は、非磁性基体上にIn層と金属磁性層を連続し
て蒸着、スパッタリング等の気相メッキにより形成して
成る磁気記録媒体である。
Summary of the Invention The present invention is a magnetic recording medium in which an In layer and a metal magnetic layer are successively formed on a nonmagnetic substrate by vapor phase plating such as vapor deposition or sputtering.

この発明の磁気記録媒体では、高い抗磁力及び角形比が
得られ、且つ低い基体温度での磁性層の形成が可能とな
り、磁気記録媒体の作製条件が改善される。
In the magnetic recording medium of the present invention, high coercive force and squareness ratio can be obtained, and the magnetic layer can be formed at a low substrate temperature, thereby improving the manufacturing conditions of the magnetic recording medium.

実施例 以下、本発明の詳細な説明する。Example The present invention will be explained in detail below.

本発明においては、非磁性基体上に蒸着、スパッタリン
グ等の所謂気相メッキによってIn層と金属磁性層とを
連続して形成して磁気記録媒体を得る。
In the present invention, a magnetic recording medium is obtained by continuously forming an In layer and a metal magnetic layer on a nonmagnetic substrate by so-called vapor phase plating such as vapor deposition or sputtering.

非磁性基体としては、例えばポリエチレンテレフタレー
ト、ポリアミド、ポリアミドイミド、ポリイミド等の高
分子フィルムを用い得る。
As the nonmagnetic substrate, for example, a polymer film such as polyethylene terephthalate, polyamide, polyamideimide, polyimide, etc. can be used.

下地のIn層は非磁性基体上に蒸着或いはスパッタリン
グ等の気相メッキによって被着するもので、その厚さは
50人〜500人に選定される。
The underlying In layer is deposited on the nonmagnetic substrate by vapor phase plating such as evaporation or sputtering, and its thickness is selected from 50 to 500 layers.

金属磁性層はIn層上に蒸着或いはスパッタリング等の
気相メッキによってCo、 Pg、 Niのいずれか、
或いはその合金を100人〜1000人の厚さに被着す
ることによって形成し得る。
The metal magnetic layer is made of Co, Pg, or Ni by vapor phase plating such as evaporation or sputtering on the In layer.
Alternatively, the alloy can be formed by depositing the alloy to a thickness of 100 to 1000 layers.

また、In層及び金属磁性層の気相メッキ時の非磁性基
体の基体温度は室温〜100℃程度に選び得る。
Further, the temperature of the nonmagnetic substrate during vapor phase plating of the In layer and the metal magnetic layer can be selected from room temperature to about 100°C.

第1図は本発明に連用される蒸着装置である。FIG. 1 shows a vapor deposition apparatus used in the present invention.

この蒸着装置illは真空チャンバー(2)内に金属キ
ャン(3)が設けられ、これを繞って例えば非磁性基体
(4)が供給リール(5)及び巻取リール(6)間に走
行するようになされる。一方、金属キャン(3)に対向
してIn蒸着源(7)と金属磁性層の蒸着源例えばCo
の蒸着源(8)が配置される。(9)は蒸着源(7)及
び(8)よりの各金属蒸気流を相互に遮蔽する遮蔽板で
、両蒸着源(7)及び(8)間から金属キャン(3)の
前方に渡って設けられる。 01は各蒸着源(7)及び
(8)と金属キャン(3)との間に配置されたシャッタ
ーである。なお、蒸着源(7)及び(8)は例えば図示
しないが電子、銃からの電子ビームの衝撃によって蒸着
材が蒸発するようになされる。この装置では、非磁性基
体(4)の走行途上において先ずIn蒸着源(7)から
Inの蒸着をなして基体(4)上にIn蒸着膜を形成し
、引き続いてこれの上に例えばCo蒸着源(8)からの
Coを蒸着して金属磁性層を被着形成するようになす。
This vapor deposition apparatus ill is provided with a metal can (3) in a vacuum chamber (2), and a non-magnetic substrate (4), for example, runs between a supply reel (5) and a take-up reel (6) surrounding this. It is done like this. On the other hand, an In evaporation source (7) and an evaporation source for the metal magnetic layer, for example, a Co
evaporation sources (8) are arranged. (9) is a shielding plate that mutually shields the metal vapor flows from the deposition sources (7) and (8), and extends from between the deposition sources (7) and (8) to the front of the metal can (3). provided. 01 is a shutter placed between each vapor deposition source (7) and (8) and the metal can (3). Incidentally, the vapor deposition sources (7) and (8) are configured such that the vapor deposition material is vaporized by the impact of electrons or an electron beam from a gun (not shown), for example. In this device, while the non-magnetic substrate (4) is traveling, In is first vapor deposited from the In vapor deposition source (7) to form an In vapor deposition film on the substrate (4), and then, for example, Co vapor is deposited on this. Co from source (8) is deposited to form a metallic magnetic layer.

実施例1 上記蒸着装置(11を使用し、ポリイミドフィルムより
なる非磁性基体(4)上にInを蒸着し、引続きその上
にGoを300人の厚さに蒸着してin下地層上にco
磁性層を被着した。そして、このときInの厚みを種々
変えて蒸着し、各磁気記録媒体を作製した。
Example 1 Using the above-mentioned vapor deposition apparatus (11), In was vapor-deposited on a non-magnetic substrate (4) made of a polyimide film, and then Go was vapor-deposited thereon to a thickness of 300 nm to form a co-coat layer on the In base layer.
A magnetic layer was applied. At this time, In was deposited with various thicknesses to produce each magnetic recording medium.

基体温度を室温にして蒸着して得た各磁気記録媒体を思
料^−1,^−2,A−3及び八−4とし、基体温度を
110℃にして蒸着して得た各磁気記録媒体を試料B−
1,B−2,B−3及びB−4とした。各試料の作製条
件を表1に示す。
The magnetic recording media obtained by vapor deposition at a substrate temperature of room temperature are referred to as Shiryo ^-1, ^-2, A-3, and 8-4, and each magnetic recording medium obtained by vapor deposition at a substrate temperature of 110 ° C. Sample B-
1, B-2, B-3 and B-4. Table 1 shows the preparation conditions for each sample.

表 1 上記各試料について抗磁力Hcを測定した結果を第2図
に、角形非R3を測定した結果を第3図に夫々示す、同
図において曲線(1)、(1)は試料へ−1〜A−4の
もの、曲線(II) 、(It/)は試料B−1〜B−
4のものである。
Table 1 The results of measuring the coercive force Hc for each of the above samples are shown in Figure 2, and the results of measuring the rectangular non-R3 are shown in Figure 3. In the same figure, curves (1) and (1) indicate -1 ~A-4, curve (II), (It/) is for samples B-1~B-
4.

第2図及び第3図より明らかなようにIn下地層は抗磁
力託の向上に効果、があり、また角形比Rsも80%以
上と高い、基体温度による差はあまりなく、むしろ低い
温度の方が角形比R3の減少がゆるやかで、磁気特性と
して良好である0本例ではIn層及びCo層がほぼ垂直
蒸着で形成されるので、抗磁力Hc及び角形比Rsは膜
面内で異方性はなく等友釣であった。
As is clear from Figures 2 and 3, the In underlayer is effective in improving coercive force, and the squareness ratio Rs is as high as 80% or more. In this example, the In layer and Co layer are formed by almost vertical deposition, so the coercive force Hc and the squareness ratio Rs are anisotropic within the film plane. There was no gender, and it was Tomo fishing.

そして、基体温度としてはポリエチレンテレフタレート
のガラス転移温度即ち約80℃以下で膜作製ができる。
The film can be formed at a substrate temperature below the glass transition temperature of polyethylene terephthalate, that is, about 80°C.

このため非磁性基体としては耐熱性に劣るポリエチレン
テレフタレートフィルムなどの使用が可能となる。
Therefore, it is possible to use polyethylene terephthalate film, which has poor heat resistance, as the nonmagnetic substrate.

尚、金属磁性層は一層に限られるものではなく、上述の
In下地層を介在させた多層構造とすることもできる。
Note that the metal magnetic layer is not limited to one layer, and may have a multilayer structure with the above-mentioned In underlayer interposed therebetween.

また、上側ではIn層及び金属磁性層を蒸着で形成した
が、その他スパッタリング等にても形成できる。
Moreover, although the In layer and the metal magnetic layer were formed by vapor deposition on the upper side, they can also be formed by sputtering or the like.

発明の効果 上述した本発明によれば、非磁性基体上にIn層を介し
て金属磁性層を形成することにより、高い抗磁力Heを
得、また高い角形比Rsを得ることができる。そして、
下地のIn層が低融点金属であり、例えば約80℃以下
の低い基体温度での膜作製ができるので、非磁性基体と
して耐熱性に劣る高分子フィルム特にポリエチレンテレ
フタレートフィルムの使用が可能となる。
Effects of the Invention According to the present invention described above, by forming a metal magnetic layer on a nonmagnetic substrate via an In layer, a high coercive force He and a high squareness ratio Rs can be obtained. and,
Since the underlying In layer is a low melting point metal and the film can be formed at a low substrate temperature of, for example, about 80° C. or less, it is possible to use a polymer film, particularly a polyethylene terephthalate film, which has poor heat resistance as a nonmagnetic substrate.

また、垂直方向の気相メッキで金属磁性層が形成される
ので、金属磁性層のバンキングが密になり磁束密度が高
くなる。また斜め蒸着法に比して垂直蒸着であるので蒸
着効率が高く生産性が向上する。さらに磁気的に面内等
方性の磁性層であるためテープ、ディスク等応用範囲が
極めて広い。
Furthermore, since the metal magnetic layer is formed by vertical vapor phase plating, the banking of the metal magnetic layer becomes dense and the magnetic flux density increases. Furthermore, compared to the oblique evaporation method, since the method is vertical evaporation, the evaporation efficiency is higher and productivity is improved. Furthermore, since it is a magnetic layer that is magnetically isotropic in the plane, it has an extremely wide range of applications such as tapes and disks.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に適用される蒸着装置の例を示す構成図
、第2図は本発明の実施例のIn層の厚に対する抗磁力
の関係を示す特性図、第3図は同様のIn層の厚さに対
する角形比の関係を示す特性図である。 (2)は真空チャンバー、(3)は金属キャン、(4)
は非磁性基体、15116)はリール、(7)はIn蒸
着源、(8)は金属磁性材の蒸着源である。 第2図 第3図 1n4aJl?(λ)
FIG. 1 is a configuration diagram showing an example of a vapor deposition apparatus applied to the present invention, FIG. 2 is a characteristic diagram showing the relationship between the coercive force and the thickness of an In layer in an example of the present invention, and FIG. FIG. 3 is a characteristic diagram showing the relationship between the squareness ratio and the layer thickness. (2) is a vacuum chamber, (3) is a metal can, (4)
15116) is a non-magnetic substrate, 15116) is a reel, (7) is an In vapor deposition source, and (8) is a metal magnetic material vapor deposition source. Figure 2 Figure 3 1n4aJl? (λ)

Claims (1)

【特許請求の範囲】[Claims] 非磁性基体上に11層と金属磁性層が連続して気相メッ
キにより形成されて成る磁気記録媒体。
A magnetic recording medium comprising 11 layers and a metal magnetic layer successively formed on a non-magnetic substrate by vapor phase plating.
JP5885984A 1984-03-26 1984-03-26 Magnetic recording medium Pending JPS60202525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5885984A JPS60202525A (en) 1984-03-26 1984-03-26 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5885984A JPS60202525A (en) 1984-03-26 1984-03-26 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS60202525A true JPS60202525A (en) 1985-10-14

Family

ID=13096429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5885984A Pending JPS60202525A (en) 1984-03-26 1984-03-26 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60202525A (en)

Similar Documents

Publication Publication Date Title
US3342632A (en) Magnetic coating
US3929604A (en) Method for producing magnetic recording medium
JPS60202525A (en) Magnetic recording medium
JPH01238106A (en) Corrosion-resistant ferromagnetic thin-film
JPS61240429A (en) Magnetic recording medium
JPS6379968A (en) Production of magnetic recording medium
JPS60202524A (en) Magnetic recording medium
JPS60231911A (en) Magnetic recording medium
JPS62128019A (en) Magnetic recording medium
JPH1074658A (en) Manufacture of spin valve magnetoresistive effect device
JPS58158030A (en) Magnetic recording medium
JPS61242321A (en) Magnetic recording medium
JPH0261819A (en) Perpendicular magnetic recording medium
JPS59157833A (en) Magnetic recording medium
JP3520751B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same
JPS59157828A (en) Magnetic recording medium
JPH06349662A (en) Forming method of magnetoresistance effect film
JPS60237625A (en) Magnetic recording medium
JPH0512765B2 (en)
JPS60140542A (en) Production of magnetic recording medium
JPS61292219A (en) Magnetic recording medium
JPS5845624A (en) Magnetic recording medium
JPS62291719A (en) Magnetic recording medium
JPS61144722A (en) Magnetic recording medium
JPS6364623A (en) Magnetic recording medium