JPS5844224A - Rotary piston engine - Google Patents

Rotary piston engine

Info

Publication number
JPS5844224A
JPS5844224A JP56142962A JP14296281A JPS5844224A JP S5844224 A JPS5844224 A JP S5844224A JP 56142962 A JP56142962 A JP 56142962A JP 14296281 A JP14296281 A JP 14296281A JP S5844224 A JPS5844224 A JP S5844224A
Authority
JP
Japan
Prior art keywords
intake
working chamber
engine
valve
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56142962A
Other languages
Japanese (ja)
Inventor
Shuichi Kitamura
修一 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56142962A priority Critical patent/JPS5844224A/en
Publication of JPS5844224A publication Critical patent/JPS5844224A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/04Charge admission or combustion-gas discharge
    • F02B53/06Valve control therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/04Charge admission or combustion-gas discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B2053/005Wankel engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To completely scavenge exhaust gas in an engine, by closing a sub- intake passage with an intake shut-off valve, interposing an air supply device in the intake shut-off valve and jetting air for a specific period in an exhaust stroke of the engine. CONSTITUTION:A closing valve 22 is provided in a prescribed position of a main intake passage 6, communicated to a working chamber 4 of a rotary piston engine, and an intake shut-off valve 18 is provided in a prescribed position of a sub-intake passage 17. At about the conversion point transferred from an exhaust stroke to an intake stroke, intake air, forcibly fed from a pump 12, is jetted through the intake shut-off valve 18 to scavenge residual gas in the working chamber 4. In this way, fuel consumption of the engine can be improved.

Description

【発明の詳細な説明】 本発明は機関の低負荷域に吸気行程の中途で吸No5 気の吸入を中断する事によって吸気絞りの度合を小さく
して、吸気抵抗損失を低減させたロータリピストン機関
において、機関の燃費を向上させる事を目的としたもの
である。
Detailed Description of the Invention The present invention is a rotary piston engine that reduces intake resistance loss by reducing the degree of intake throttling by interrupting the intake of No. 5 air in the middle of the intake stroke in the low load range of the engine. The purpose is to improve the fuel efficiency of the engine.

一般に機関の燃費を向上(改善)させる手段としては、
機関の作動室の残留ガスを掃気する事、機関に吸入され
る吸気に適当な流動(渦流、旋回流、乱れ等)を与える
事、更には気化器等の燃料供給装置によって供給された
燃料の微粒化を促進する事が有効であるとされている。
In general, as a means to improve (improve) the fuel efficiency of an engine,
It scavenges the residual gas in the working chamber of the engine, provides an appropriate flow (vortex, swirling flow, turbulence, etc.) to the intake air taken into the engine, and also controls the flow of fuel supplied by a fuel supply device such as a carburetor. It is said that promoting atomization is effective.

即ち、機関の低負荷域においては■気に対する残留ガス
の割合が大きい理由の為、燃焼が不安定となり、機関の
要求する混合気は理論混合比よりもかなり濃くしてやる
必要があり、為に燃費が悪化する。
In other words, in the low load range of the engine, the ratio of residual gas to air is large, so combustion becomes unstable, and the mixture required by the engine needs to be much richer than the stoichiometric mixture ratio, resulting in lower fuel efficiency. becomes worse.

故に残留ガスを十分に掃気してやれば、燃費が向上する
事は明らかである。
Therefore, it is clear that fuel efficiency will improve if residual gas is sufficiently scavenged.

又、機関に吸入される吸気に適当な流道が与えられると
、燃料の気化が促進されて良質な混合気が形成され、特
に機関の圧縮行程中にも残存する如No6 く強い流動が与えられると、これにより点火栓の近傍が
掃気されて着火性が高まり、点火後の火災伝播速度が増
大して燃費が向上する。
Also, if an appropriate flow path is provided for the intake air taken into the engine, vaporization of the fuel will be promoted and a high-quality air-fuel mixture will be formed, and in particular, a strong flow will be provided that remains even during the compression stroke of the engine. This scavenges air near the ignition plug, improving ignitability, increasing the speed of fire propagation after ignition, and improving fuel efficiency.

気化器等の燃料供給装置から供給された燃料の微粒化を
促進する事は、燃費向上に有効であるのは言うまでもな
い。
It goes without saying that promoting atomization of fuel supplied from a fuel supply device such as a carburetor is effective in improving fuel efficiency.

本発明は以上の様な目的を達成しようとしたもので、以
下図面に従って説明する。
The present invention aims to achieve the above objects, and will be explained below with reference to the drawings.

第1図は本発明によるロータリピストン機関の一実施例
で、機関に吸入される吸気を絞って出力を制御する絞弁
8を備えると共に、機関の出力軸、又は電動機(モータ
ー)等で駆動されるポンプ12を備えてある。
FIG. 1 shows an embodiment of a rotary piston engine according to the present invention, which is equipped with a throttle valve 8 that throttles the intake air taken into the engine and controls the output. A pump 12 is provided.

本発明を理解する為に先ず、機関の低負荷域において吸
気行程の中途で吸気の吸入を中断し、機関の吸気絞りの
度合を小さくする事によって吸気抵抗損失を低減させる
機構について説明する。
In order to understand the present invention, first, a mechanism for reducing intake resistance loss by interrupting intake air in the middle of the intake stroke in a low load range of the engine and reducing the degree of intake throttling of the engine will be explained.

吸気通路6は機関の低負荷域でこれを閉鎖しておく閉鎖
弁22を有する他は通常のものと何ら変りはないが、分
岐部19で吸気通路6から分岐してきたNo7 副吸気通路20は吸気行程の中途で閉じる様になってい
る。
The intake passage 6 is no different from a normal one except that it has a closing valve 22 that closes it in the low load range of the engine. It closes in the middle of the intake stroke.

即ち、副吸気通路20に吸気遮断弁15(機関出力軸の
回転の1/2に減速して駆動されるロータリ弁を使用し
た)を備え、吸気行程の中途で(例えば、吸気行程は出
力軸角度で270°あると考えられるが、吸気行程の初
期より出力軸角度で110°回転した時点で)その閉鎖
部16が図示の如く副吸気通路20を閉鎖する様になっ
ている。
That is, the auxiliary intake passage 20 is equipped with an intake cutoff valve 15 (using a rotary valve that is driven by decelerating to 1/2 of the rotation of the engine output shaft), and in the middle of the intake stroke (for example, the intake stroke The closing portion 16 closes the auxiliary intake passage 20 as shown in the figure (when the output shaft angle has rotated 110 degrees from the beginning of the intake stroke, although the angle is thought to be 270 degrees).

この場合、吸気遮断弁15は吸気行程の開始と同時に開
く様にしても良いし、それ以前に既に開いている様にし
ても良い。
In this case, the intake cutoff valve 15 may be opened at the same time as the intake stroke starts, or may be already opened before that.

後者の場合を採用すると、第2図に示す如く吸気遮断弁
15の閉鎖部16を狭くして建通路17を広くできる利
点がある。
If the latter case is adopted, there is an advantage that the closing portion 16 of the intake cutoff valve 15 can be narrowed and the built-in passage 17 can be widened, as shown in FIG.

今、気化器7の絞弁8が十分に閉じた機関の低負荷域に
おいて、吸気遮断弁15が開き(建通路17が副吸気通
路20に連通し)吸気行程が始まると、吸気は吸気行程
の中途まで(吸気遮断弁15が閉じるまで)副吸気通路
20からのみ作動室4(ロータリピストン1、ローター
ハウジング2、サイドハウジング3により形成される空
間)へ吸入される。
Now, in the low load range of the engine when the throttle valve 8 of the carburetor 7 is fully closed, when the intake stroke begins when the intake cutoff valve 15 opens (the built-in passage 17 communicates with the auxiliary intake passage 20), the intake air flows through the intake stroke. Air is drawn into the working chamber 4 (the space formed by the rotary piston 1, the rotor housing 2, and the side housing 3) only from the sub-intake passage 20 until halfway (until the intake cutoff valve 15 closes).

この時、機関の低負荷域には閉鎖弁22が閉じて(全閉
して)いるから、ここを通過して吸気は作動室4へ吸入
されない(図示した閉鎖弁22は回転軸を中心として開
閉する形式のものであるが、上下に昇降して開閉する板
状又は円筒状のものでも良い)。
At this time, the shutoff valve 22 is closed (fully closed) in the low load range of the engine, so the intake air is not drawn into the working chamber 4 through it (the shutoff valve 22 shown is centered around the rotation axis). Although it is of the type that opens and closes, it may also be a plate-shaped or cylindrical type that opens and closes by going up and down.)

従って、吸気遮断弁15の閉鎖後は作動室4へ吸気が吸
入されず吸気行程は事実上短期間となるから(中途で打
切られるから)、作動室4へ同一吸気重量を吸入する場
合には(従来より)吸気絞りの度合は(絞弁8による)
小さくて良い。
Therefore, after the intake shutoff valve 15 is closed, no intake air is drawn into the working chamber 4, and the intake stroke is effectively short-term (because it is interrupted midway). (Conventionally) The degree of intake throttling (based on throttle valve 8)
Small and good.

この様にして絞弁8による吸気絞りの度合いは小さくな
るから、機関の低負荷域における吸気抵抗損失を大幅に
低減させる事ができるのである。
In this way, the degree of intake throttling by the throttle valve 8 is reduced, so that the intake resistance loss in the low load range of the engine can be significantly reduced.

(一般に、吸気抵抗損失は絞弁8による吸気絞りの度合
が大きい程−低負荷域程−増加する)これは燃費向上に
つながる。
(In general, the intake resistance loss increases as the degree of intake throttling by the throttle valve 8 increases, i.e., in the lower load range.) This leads to improved fuel efficiency.

次に、絞弁8を更に開いて機関の負荷を増してゆNo9 くと、絞弁8と機械的に連動する閉鎖弁22が開き始め
(全開は同時に行なわれる)、吸気通路6からも(閉鎖
弁22を連通して)吸気が吸入され、吸気行程の全域に
わたって吸気の吸入が行なわれる様になる(閉鎖弁22
は絞弁8の下流側の負圧を感知して作動するがダイアフ
ラム装置−図示せず−で開閉する事も考えられる)。
Next, when the throttle valve 8 is further opened to increase the engine load, the stop valve 22 mechanically interlocked with the throttle valve 8 begins to open (full opening is done at the same time), and the intake passage 6 also opens ( The intake air is drawn in through the closing valve 22), and the intake air is sucked throughout the entire intake stroke (through the closing valve 22).
is operated by sensing the negative pressure downstream of the throttle valve 8, but it is also conceivable that the valve may be opened and closed by a diaphragm device (not shown).

即ち、従来通りとなる。In other words, it remains the same as before.

この時には絞弁8は十分に開いているから、吸気抵抗損
失は少ない。
At this time, the throttle valve 8 is sufficiently open, so the intake resistance loss is small.

分岐部19の位置は絞弁8の直下でも良いと共に、副吸
気通路20を専用の気化器に接続する様にしても良いも
のである。
The branch portion 19 may be located directly below the throttle valve 8, or the auxiliary intake passage 20 may be connected to a dedicated carburetor.

(もちろんいずれの場合にも、副吸気通路20は閉鎖弁
22をバイパスして作動室4へ通ずる様に構成する)。
(Of course, in either case, the auxiliary intake passage 20 is configured to bypass the closing valve 22 and communicate with the working chamber 4).

又、副吸気通路20の開口部21は閉鎖弁22の下流側
の吸気通路6に設定されているが、サイドハウジング3
の所定位置に直接設定する様にしても良いものである。
Furthermore, the opening 21 of the sub-intake passage 20 is set in the intake passage 6 on the downstream side of the closing valve 22;
It is also possible to set it directly at a predetermined position.

No10 尚、閉鎖弁22は二段式気化器においては2次側絞弁で
代用する事ができる。
No. 10 The closing valve 22 can be replaced with a secondary throttle valve in a two-stage carburetor.

これも第3図に示すが、吸気通路6は2次側絞弁25へ
接続し、副吸気通路20は1次側絞弁24へ接続してお
り、2次側絞弁25(即ち閉鎖弁)は低負荷域には吸気
通路6を閉鎖していると共に、副吸気通路20は2次側
絞弁25(即ち閉鎖弁)をバイパスして作動室へ通ずる
様になっている。
Also shown in FIG. 3, the intake passage 6 is connected to the secondary throttle valve 25, the auxiliary intake passage 20 is connected to the primary throttle valve 24, and the secondary throttle valve 25 (i.e., the closing valve ) closes the intake passage 6 in the low load range, and the sub-intake passage 20 bypasses the secondary throttle valve 25 (ie, closing valve) and communicates with the working chamber.

本発明の特徴は、以上の様に吸気絞りの度合を小さくし
て吸気抵抗損失を低減させたロータリピストン機関にお
いて、ポンプから圧送されてくる吸気の高速気流によっ
て作動室の残留ガスを掃気するところにある(再び第1
図に戻って説明する)。
The feature of the present invention is that, in a rotary piston engine in which intake resistance loss is reduced by reducing the degree of intake throttling as described above, residual gas in the working chamber is scavenged by a high-speed airflow of intake air pressured from the pump. (again in the first
(Return to the figure for explanation).

即ち、ある1つの作動室4に注目して、その作動室4の
排気行程において燃焼ガスの殆どを排気ポート23から
排出して排気行程から吸気行程へ移り変る変換点の近傍
になると、今迄吸気遮断弁15によって閉鎖されていた
ポンプ吐出側通路13が開かれ(吸気遮断弁15に形成
された連通路18がポンプ吐出側通路13に連通して)
、ポンプ12から圧送さNo11 れてくる吸気(この場合は空気)は吸気遮断弁15を介
して(連通路18を介して)噴口14から一定期間前記
作動室4へ激しく噴出する様になっている。
That is, focusing on one working chamber 4, in the exhaust stroke of the working chamber 4, most of the combustion gas is exhausted from the exhaust port 23, and when it comes to the vicinity of the conversion point where the exhaust stroke changes to the intake stroke, up to now. The pump discharge side passage 13, which had been closed by the intake cutoff valve 15, is opened (the communication passage 18 formed in the intake cutoff valve 15 communicates with the pump discharge side passage 13).
, the intake air (air in this case) that is pumped from the pump 12 is violently jetted out from the nozzle 14 (via the communication passage 18) into the working chamber 4 for a certain period of time via the intake cutoff valve 15 (via the communication passage 18). There is.

これにより、作動室4の残留ガスを十分に掃気する事が
できるから(噴口14を吸気遮断弁15の下流側の副吸
気通路20の所定位置に開口させる様にした場合には、
残留ガスの副吸気通路20への逆流も防止されるから)
、薄い混合気でも安定燃焼させる事ができ、機関の燃費
は向上する。
This makes it possible to sufficiently scavenge the residual gas in the working chamber 4 (if the nozzle 14 is opened at a predetermined position in the sub-intake passage 20 on the downstream side of the intake cutoff valve 15,
(This also prevents residual gas from flowing back into the sub-intake passage 20.)
, it is possible to achieve stable combustion even with a lean air-fuel mixture, improving the fuel efficiency of the engine.

この場合、噴口14はこれを複数個に形成し、作動室4
もまんべんなく掃気する様にしても良いと共に、噴口1
4からの吸気の噴出開始は吸気通路6がロータリピスト
ン1の側面によって開かれる時期よりも若干早くする事
が望ましい。
In this case, the nozzle 14 is formed into a plurality of pieces, and the working chamber 4
It is also possible to scavenge the air evenly.
It is desirable that the intake air from the rotary piston 4 starts blowing out a little earlier than when the intake passage 6 is opened by the side surface of the rotary piston 1.

そして噴口14からの吸気の噴出は、残留ガスの掃気が
目的であるから、残留ガスを掃気しようとする作動室4
と排気ポート23との連通が遮断される時期の近傍まで
とするのが良い。
Since the purpose of blowing out the intake air from the nozzle 14 is to scavenge the residual gas, the working chamber 4 tries to scavenge the residual gas.
It is preferable to close the time when the communication between the exhaust port 23 and the exhaust port 23 is cut off.

又、噴口14も二点鎖線示の如く排気ポート23の内壁
に形成し、ここから吸気を作動室へ向って噴出させて残
留ガスを掃気する事も可能である。
It is also possible to form a nozzle 14 on the inner wall of the exhaust port 23, as shown by the two-dot chain line, and to eject intake air from there toward the working chamber to scavenge residual gas.

尚、機関の(中)高負荷域においては■気に対する残留
ガスの割合が小さくなるから、噴口14からの吸気の噴
出は停止させても良い。
Note that in the (medium) high load region of the engine, the ratio of residual gas to air becomes small, so the injection of intake air from the nozzle 14 may be stopped.

次にポンプ12に吸入される吸気の流量(噴口14から
噴出するポンプ12の吐出流量)は、機関の吸入吸気流
量に応じて細かく制御する様にした方が良い事が多い。
Next, it is often better to finely control the flow rate of the intake air sucked into the pump 12 (the discharge flow rate of the pump 12 from the nozzle 14) in accordance with the intake air flow rate of the engine.

ポンプ12の吐出流量を制御する方法としては、空気通
路9に絞弁8と機械的に連動する小絞弁10を設置した
り、二点鎖線示の如く空気ジェット11を設置する事が
考えられる。
Possible methods for controlling the discharge flow rate of the pump 12 include installing a small throttle valve 10 mechanically interlocked with the throttle valve 8 in the air passage 9, or installing an air jet 11 as shown by the two-dot chain line. .

又二点鎖線示の如く、絞弁8が最小開度の時は第1吸気
孔aからのみ吸気をポンプ12に吸入させ、絞弁8が開
くに従って第2吸気孔bからも吸気を吸入させる様にす
る事が考えられる。
Also, as shown by the two-dot chain line, when the throttle valve 8 is at its minimum opening, the pump 12 draws in air only from the first intake hole a, and as the throttle valve 8 opens, it also draws air from the second intake hole b. It is possible to do something like this.

第1図における吸気遮断弁15をディスク式ロータリ弁
形式にした実施例を第4図に示す。
FIG. 4 shows an embodiment in which the intake cutoff valve 15 in FIG. 1 is of a disc type rotary valve type.

即ち第4図において、吸気遮断弁15はディスク式ロー
タリ弁形式を併用してあり(この吸気遮断弁No13 15は手前のサイドハウジングに備えられている為、二
点鎖線で示してある)、副吸気通路20の吸気遮断弁1
5に接する断面20’が連通路17に連通する期間を吸
気行程の中途までとし、吸気絞りの度合を小さくして吸
気抵抗損失を低減させてある。
That is, in Fig. 4, the intake cutoff valve 15 is of the disk type rotary valve type (this intake cutoff valve No. 13 and 15 is shown with a chain double-dashed line because it is provided in the side housing in front), and the secondary Intake cutoff valve 1 of intake passage 20
The period during which the cross section 20' in contact with 5 communicates with the communication passage 17 is set to the middle of the intake stroke, and the degree of intake throttling is reduced to reduce intake resistance loss.

18は連通路で、排気行程から吸気行程へ移り変る変換
点の近傍で一定期間ポンプ吐出側通路13を開き、ポン
プから圧送されてくる吸気を噴口14から噴出させて作
動室の残留ガスを掃気するものである。
Reference numeral 18 denotes a communication passage, which opens the pump discharge side passage 13 for a certain period of time near the conversion point where the exhaust stroke changes to the intake stroke, and causes the intake air that is pressure-fed from the pump to be ejected from the nozzle 14 to scavenge residual gas in the working chamber. It is something to do.

第5図に示す本発明はポンプから圧送されてくる吸気の
高速気流によって、強力な吸気の流動(渦流、旋回流、
乱れ等)を形成しようとしたものである。
The present invention shown in FIG.
disorder, etc.).

即ち第5図において、ある1つの作動室4に注目して、
その作動室4の排気行程によって同作動室4の燃焼ガス
が排出され、更に同作動室4と排気ポート(図示せず)
との連通が遮断される時期の近傍になると、今迄吸気遮
断弁15によって閉鎖されていたポンプ吐出通路13が
開かれ(連通路18No14 が連通し)、ポンプ(図示せず)から圧送されてくる吸
気が吸気遮断弁15を介して(連通路18を介して)噴
口14から激しく噴出する。
That is, in FIG. 5, focusing on one working chamber 4,
The combustion gas in the working chamber 4 is exhausted by the exhaust stroke of the working chamber 4, and the working chamber 4 and the exhaust port (not shown) are
Near the time when the communication with the pump is cut off, the pump discharge passage 13, which has been closed until now by the intake cutoff valve 15, is opened (the communication passage 18 No. 14 is opened), and the pump (not shown) pumps the air. The intake air is violently ejected from the nozzle 14 via the intake cutoff valve 15 (via the communication passage 18).

この時、噴口14の方向は副吸気通路20の中心軸に対
して偏心させる如く設定してあるから、副吸気通路20
には強力な渦流が形成され、これが作動室4に流入して
新たに吸気の渦流(ロータリピストン1の回転方向に進
むらせん状の吸気の流動)を発生させる(この場合、副
吸気通路20はペリフェラルポート式にしてある)。
At this time, since the direction of the nozzle 14 is set to be eccentric with respect to the central axis of the sub-intake passage 20,
A strong vortex is formed, which flows into the working chamber 4 and generates a new vortex of intake air (a spiral flow of intake air that advances in the rotational direction of the rotary piston 1) (in this case, the auxiliary intake passage 20 (peripheral port type).

又、噴口14をサイドハウジング3に直接開口させる様
にしても(副吸気通路20の内壁に開口させるのではな
く)、高速気流が作動室4の内壁に衝突して同様にロー
タリピストン1の回転方向に進むらせん状の流動(渦流
)を形成する事ができる。
Furthermore, even if the nozzle 14 is opened directly into the side housing 3 (instead of opening into the inner wall of the auxiliary intake passage 20), the high-speed airflow collides with the inner wall of the working chamber 4 and similarly causes rotation of the rotary piston 1. It is possible to form a spiral flow (vortex) that moves in the same direction.

この様にして形成された強力な吸気の流動は圧縮行程中
も残存し、燃料の気化を促進すると共に点火栓(図示せ
ず)の近傍を掃気して着火性を高め、点火後の火災伝播
速度を増大させるから、機関の燃費は向上する。
The strong intake air flow formed in this way remains during the compression stroke, promoting vaporization of the fuel and scavenging the vicinity of the ignition plug (not shown) to improve ignitability and spread the fire after ignition. Since the speed is increased, the fuel efficiency of the engine is improved.

閉鎖弁22が閉じた低負荷域においては、吸気遮断弁1
5が閉じた後に作動室4へ新たに吸気が吸入されると吸
気抵抗損失は低減しないから、噴口14からの吸気の噴
出は吸気遮断弁15が(副吸気通路20を)閉じる時期
までには終了するものとする。
In the low load range when the shutoff valve 22 is closed, the intake cutoff valve 1
If intake air is newly drawn into the working chamber 4 after the intake valve 5 is closed, the intake resistance loss will not be reduced. shall be terminated.

19は分岐部で、この場合副吸気通路20は吸気通路6
から水平方向に分岐してくる(第1図の場合は垂直方向
に分岐している)。
19 is a branch part, in this case the sub intake passage 20 is connected to the intake passage 6.
It branches horizontally (in the case of Figure 1, it branches vertically).

又、29は閉鎖弁22が閉じている時に吸気通路6を流
れてくる燃料を全部副吸気通路20に流入させる為の副
閉鎖弁で、こらは閉鎖弁22と同時に開閉させる様にす
る。
Reference numeral 29 denotes a sub-closing valve for allowing all the fuel flowing through the intake passage 6 to flow into the sub-intake passage 20 when the closing valve 22 is closed, and these valves are opened and closed at the same time as the closing valve 22.

(副閉鎖弁29を設置した時は、閉鎖弁22を除去する
事ができるが、その場合には前者が後者の代用となる) 尚、閉鎖弁22が開く(中)高負荷域において更に強力
な吸気の流動が要求される場合は、二点鎖線示の如くポ
ンプ吐出側通路26を新設して、ポンプから圧送されて
くる吸気を吸気遮断弁15を介して(連通路18を介し
て)噴口27から噴出させる様にすると良い(例えば、
吸気行程から圧縮行程へ移り変る変換点の近傍で連通路
18からポンプ吐出側通路26を開く様にする)。
(When the auxiliary shutoff valve 29 is installed, the shutoff valve 22 can be removed, but in that case, the former will take the place of the latter.) In addition, the shutoff valve 22 is more powerful in the (medium) high load range when it opens. If a certain flow of intake air is required, a new pump discharge side passage 26 is installed as shown by the two-dot chain line, and the intake air sent under pressure from the pump is passed through the intake cutoff valve 15 (via the communication passage 18). It is preferable to eject it from the spout 27 (for example,
The pump discharge side passage 26 is opened from the communication passage 18 near the transition point where the intake stroke changes to the compression stroke).

閉鎖弁22が閉じて(全閉して)いる時には、電磁弁2
8等によりポンプ吐出側通路26を閉鎖しておく事は言
うまでもない。
When the closing valve 22 is closed (fully closed), the solenoid valve 2
It goes without saying that the pump discharge side passage 26 should be closed by a pipe 8 or the like.

第6図に示す本発明は作動室4の残留ガスを掃気すると
共に、強力な吸気の流動を形成する様にしたものである
The present invention shown in FIG. 6 scavenges residual gas in the working chamber 4 and forms a strong flow of intake air.

即ち、ある1つの作動室4の排気行程から吸気行程へ移
り変る変換点の近傍で連通路34がポンプ吐出側通路3
0に連通し、ポンプから圧送されてくる吸気を吸気遮断
弁15を介して噴口31から一定期間噴出させて前記作
動室4の残留ガスを掃気すると共に、連通路34がポン
プ吐出側通路32に連通すると、ポンプから圧送されて
くる吸気は吸気遮断弁15を介して噴口33から前記作
動室4へ再び噴出して、吸気の強力な流動を形成するの
である。
That is, in the vicinity of the conversion point where one working chamber 4 changes from the exhaust stroke to the intake stroke, the communication passage 34 connects to the pump discharge side passage 3.
0, and the intake air force-fed from the pump is ejected from the nozzle 31 through the intake cutoff valve 15 for a certain period of time to scavenge the residual gas in the working chamber 4, and the communication passage 34 is connected to the pump discharge side passage 32. When communicated, the intake air forced from the pump is ejected from the nozzle 33 into the working chamber 4 via the intake cutoff valve 15, forming a strong flow of intake air.

これにより機関の燃費は更に向上する。This further improves the fuel efficiency of the engine.

噴口33からの吸気の噴出は吸気遮断弁15が(副吸N
o17 気通路20を)閉じる時期までには終了するものとする
The intake air is ejected from the nozzle 33 by the intake cutoff valve 15 (sub-intake N
o17) It shall be completed by the time when the air passage 20) is closed.

噴口31と33とを一体化にした実施例を第7図に示す
FIG. 7 shows an embodiment in which the nozzles 31 and 33 are integrated.

即ち第7図において、ある1つの作動室4の排気行程か
ら吸気行程へ移り変る変換点の近傍で連通路38がポン
プ吐出側通路35に連通すると、ポンプから圧送されて
くる吸気を吸気遮断弁15を介して噴口36から噴出さ
せて前記作動室4の残留ガスを掃気すると共に、もう1
つの連通路39がポンプ吐出側通路37に連通すると、
ポンプから圧送されてくる吸気は吸気遮断弁15を介し
て噴口36から再び噴出して、前記作動室4に強力な渦
流(例えばロータリピストン1の回転方向に進むらせん
状の吸気の流動)を形成するのである。
That is, in FIG. 7, when the communication passage 38 communicates with the pump discharge side passage 35 near the transition point where one working chamber 4 changes from the exhaust stroke to the intake stroke, the intake air pressure-fed from the pump is passed through the intake cutoff valve. 15 from the nozzle port 36 to scavenge the residual gas in the working chamber 4, and also
When the two communication passages 39 communicate with the pump discharge side passage 37,
The intake air that is pressure-fed from the pump is ejected again from the nozzle 36 via the intake cutoff valve 15, forming a strong vortex flow (for example, a spiral flow of intake air that advances in the rotational direction of the rotary piston 1) in the working chamber 4. That's what I do.

尚、第7図において連通路38がポンプ吐出側通路35
を閉じ終る直前に連通路39がポンプ吐出側通路37を
開く様にすれば、噴口36からの吸気の噴出は連続的と
なり(途中で吸気の噴出が一時停止される事なく)、こ
の高速気流によって作動室4の残No18 留ガスが掃気されると共に、強力な吸気の流動が形成さ
れる様になる(第6図においても、その様にする事がで
きる)。
In addition, in FIG. 7, the communication passage 38 is connected to the pump discharge side passage 35.
If the communication passage 39 opens the pump discharge side passage 37 just before the pump discharge side passage 37 finishes closing, the jet of intake air from the nozzle 36 will be continuous (the jet of intake air will not be temporarily stopped on the way), and this high-speed airflow will be As a result, the remaining No. 18 residual gas in the working chamber 4 is scavenged, and a strong flow of intake air is formed (this can also be done in Fig. 6).

第8図に示す本発明は、ポンプから圧送されてくる吸気
の高速気流によって燃料の微粒化をも促進する様にした
ものである。
In the present invention shown in FIG. 8, the atomization of the fuel is also promoted by the high-speed airflow of the intake air that is force-fed from the pump.

即ち、第1図の気化器を第8図の気化器で置き換えて考
え、第1、8図において、40はポンプ12から圧送さ
れてくる吸気が噴出するノズルで、気化器7から機関の
作動室4へ到る吸気通路6の内壁に付着する液体燃料を
燃料ノズル41により吸い上げ、これに高速気流を衝突
させて微粒化するものである(気化器7から噴出した燃
料は燃料粒子のもつ自重・慣性等の理由の為、特に吸気
通路の屈曲部の底部6’に付着して、液状燃料となる事
が多い)。
That is, consider replacing the carburetor in FIG. 1 with the carburetor in FIG. 8. In FIGS. 1 and 8, 40 is a nozzle from which the intake air fed under pressure from the pump 12 is ejected, and the engine operation is carried out from the carburetor 7. Liquid fuel adhering to the inner wall of the intake passage 6 leading to the chamber 4 is sucked up by the fuel nozzle 41, and is atomized by colliding with a high-speed airflow (the fuel ejected from the carburetor 7 is・For reasons such as inertia, it often adheres to the bottom 6' of the bend in the intake passage and becomes liquid fuel.)

ポンプ12から圧送されてくる吸気の圧力がたとえ正圧
であっても、ノズル40から吸気が高速度で噴出すると
、先ず周囲の圧力まで減圧され、続いてそれ自身のもつ
運動エネルギーによって周囲の圧力よりも低くなって、
吸気通路の内壁に付着した液状燃料を燃料ノズル41か
ら吸上げ、これを微粒化する事ができるのである。
Even if the pressure of the intake air pumped from the pump 12 is positive, when the intake air is ejected from the nozzle 40 at high speed, it will first be reduced to the ambient pressure, and then the ambient pressure will be lowered by its own kinetic energy. becomes lower than
Liquid fuel adhering to the inner wall of the intake passage can be sucked up from the fuel nozzle 41 and atomized.

燃料の微粒化を更に促進する為には、燃料ノズル41又
はノズル40にらせん溝を形成し、燃料又は吸気がらせ
ん運動を描きながら噴出する様にすれば良い。
In order to further promote atomization of the fuel, a spiral groove may be formed in the fuel nozzle 41 or the nozzle 40 so that the fuel or intake air is ejected in a spiral motion.

燃料供給装置が燃料噴射装置である場合は、ポンプ12
から圧送されてくる吸気の高速気流を燃料噴射弁(図示
せず)より噴射された燃料に衝突させて微粒化する様に
する。
If the fuel supply device is a fuel injection device, the pump 12
The high-speed airflow of intake air that is force-fed from the fuel injection valve (not shown) collides with the fuel injected from the fuel injection valve (not shown) to atomize the fuel.

この様に第1・8図に示される発明によれば、気化器等
の燃料供給装置から供給された燃料が極めて良く微粒化
されるので、気化が促進されて完全燃焼が可能となり、
燃費を大幅に向上させる事ができる。
As described above, according to the invention shown in FIGS. 1 and 8, the fuel supplied from the fuel supply device such as a carburetor is extremely well atomized, so vaporization is promoted and complete combustion is possible.
Fuel efficiency can be significantly improved.

尚、第1・8図においては、機関の始動時には燃料の微
粒化をより促進する為に、ポンプ12から圧送されてく
る吸気をノズル40からのみ噴出させる様にしても良い
し、又機関の暖機後の絞弁8が十分に閉じた低負荷域で
は、燃料流量も少なく気化も活発に行なわれているから
、ポンプ12から圧送されてくる吸気を噴口14からの
み噴出させる様にしても良い。
In addition, in Fig. 1 and 8, in order to further promote atomization of fuel when starting the engine, the intake air that is pressure-fed from the pump 12 may be ejected only from the nozzle 40, or when the engine is started. In a low load range when the throttle valve 8 is fully closed after warming up, the fuel flow rate is low and vaporization is active, so even if the intake air pressured from the pump 12 is ejected only from the nozzle 14. good.

第4〜7図においても、同様に燃料供給装置から供給さ
れた燃料を微粒化する事ができる。
Also in FIGS. 4 to 7, the fuel supplied from the fuel supply device can be atomized in the same way.

第8図においては、燃料ノズル41から吸い上げられ高
速気流によって微粒化された燃料は、そのまま吸気通路
の内壁に衝突して付着し、再び液化する事も考えられる
から、第9図に示す如く燃料ノズル41、ノズル40の
組を2組備え、各々を互いに対向する如く設置する手段
も有効である。
In FIG. 8, the fuel that has been sucked up from the fuel nozzle 41 and atomized by the high-speed airflow may collide with the inner wall of the intake passage and become liquefied again. It is also effective to provide two sets of the nozzle 41 and nozzle 40 and install them so as to face each other.

即ち、燃料ノズル41から噴出して微粒化された燃料の
粒子は互いに衝突して混合し、気流に乗る様になる。
That is, the atomized fuel particles ejected from the fuel nozzle 41 collide with each other, mix, and become carried by the air current.

これにより、均質な混合気が形成され、燃費は一段と向
上する。
This creates a homogeneous air-fuel mixture, further improving fuel efficiency.

尚、ロータリピストン1個に付き1個の気化器が接続し
ている場合には燃料の分配性の問題が起らないから、第
10図に示す如く吸気通路の屈曲部のNo21 底部6’に付着した液状燃料を副吸気通路20まで導き
、燃料ノズル41から噴出さえると共にノズル40から
の高速気流によって微粒化する様にしても良い。
In addition, if one carburetor is connected to one rotary piston, there will be no problem with fuel distribution, so as shown in Fig. The adhered liquid fuel may be guided to the sub-intake passage 20, ejected from the fuel nozzle 41, and atomized by high-speed airflow from the nozzle 40.

本発明は以上の如く、機関に吸入される吸気を絞って出
力を制御する内燃機関の作動室へ通ずる吸気通路の所定
位置に閉鎖弁を備え、機関の低負荷域にはこの閉鎖弁を
閉鎖しておく様にし、更に前記閉鎖弁をバイパスして機
関の作動室へ通する副吸気通路の所定位置に、吸気行程
の中途でこの副吸気通路を閉鎖する吸気遮断弁を備える
様にしたロータリピストン機関において、 (1)ある作動室の排気行程から吸気行程へ移り変る変
換点の近傍から同作動室と排気ポートと連通が遮断され
る時期の近傍までに一定期間ポンプから圧送されてくる
吸気を前記吸気遮断弁を介して噴出させて、同作動室の
残留ガスを掃気したり、(2)ある作動室と排気ポート
との連通が遮断される時期の近傍から一定期間ポンプに
よって圧送されてくる吸気を前記吸気遮断弁を介して噴
出させ、No22 これにより、吸気の流動を形成する様にし、かつ前記閉
鎖弁が閉じている時には吸気遮断弁の閉鎖後はポンプか
ら圧送されてくる吸気を新たに同作動室へ吸入させない
様にしたり、 (3)又、ある作動室の排気行程から吸気行程へ移り変
る変換点の近傍でポンプから圧送されてくる吸気を前記
吸気遮断弁を介して噴出させて同作動室の残留ガスを掃
気すると共に、同作動室と排気ポートとの連通が遮断さ
れた後もポンプから圧送されてくる吸気を一定期間前記
吸気遮断弁を介して噴出させる事によって吸気の流動を
形成する様にし、かつ前記閉鎖弁が閉じている時には吸
気遮断弁の閉鎖後はポンプから圧送されてくる吸気を新
たに同作動室へ吸入させない様にしたりし、(4)更に
は(1)から(3)の各々にポンプから圧送されてくる
吸気の高速気流を燃料供給装置によって供給された燃料
に衝突させて微粒化する作用を付加する様にしたので、
機関の燃費を大幅に向上させる事ができる。
As described above, the present invention includes a closing valve at a predetermined position in the intake passage leading to the working chamber of an internal combustion engine that throttles intake air taken into the engine to control output, and closes the closing valve in a low load region of the engine. The rotary rotary rotary rotary rotary rotary rotary rotary rotary rotary rotary rotary rotary rotary rotary rotary rotary rotary rotary rotary rotary rotary rotary rotary rotary rotary rotary engine equipped with an intake cutoff valve that closes the auxiliary intake passage in the middle of the intake stroke at a predetermined position of the auxiliary intake passage that bypasses the closing valve and passes the auxiliary intake passage to the working chamber of the engine. In a piston engine, (1) Intake air that is pumped under pressure from a pump for a certain period of time from near the conversion point where a certain working chamber changes from the exhaust stroke to the intake stroke to near the time when communication between the working chamber and the exhaust port is cut off. is ejected through the intake cutoff valve to scavenge residual gas in the working chamber, or (2) is pumped for a certain period of time from around the time when communication between a certain working chamber and the exhaust port is cut off. No. 22 This causes the intake air to flow out through the intake cutoff valve, thereby forming a flow of intake air, and when the closing valve is closed, the intake air pressured from the pump is blown out after the intake cutoff valve is closed. (3) Also, in the vicinity of the conversion point where a certain working chamber changes from the exhaust stroke to the intake stroke, the intake air that is force-fed from the pump is blown out through the intake air cutoff valve. The remaining gas in the working chamber is scavenged, and even after the communication between the working chamber and the exhaust port is cut off, the intake air, which is pumped under pressure from the pump, is blown out through the intake cutoff valve for a certain period of time. (4) Furthermore, when the closing valve is closed, the intake air pressured from the pump is not newly sucked into the same working chamber after the intake shutoff valve is closed. In each of (1) to (3), an action is added to cause the high-speed airflow of intake air pumped from the pump to collide with the fuel supplied by the fuel supply device to atomize it.
The fuel efficiency of the engine can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

No23 第1・2・4・5〜10図は本発明によるロータリピス
トン機関及びそれに付属する装置の断面図、第3図は本
発明によるロータリピストン機関の図。 1はロータリピストン、2はローターハウジング、3は
サイドハウジング、4は作動室、5は点火栓、6は吸気
通路、7は気化器、8は絞弁、9は空気通路、10は小
絞弁、11は空気ジェット、12はポンプ、13・26
・30・32・35・37はポンプ吐出側通路、14・
14’・27・31・33・36は噴口、15は吸気遮
断弁、16は閉鎖部、17・18・34・38・39は
連通路、19は分岐部、20は副吸気通路、21は開口
部、22は閉鎖弁、23は排気ポート、24は1次側絞
弁、25は2次側絞弁、28は電磁弁、29は副閉鎖弁
、40はノズル、41は燃料ノズル、42は燃料集め部
、6’は吸気通路の屈曲部の底部、aは第1吸気孔、b
は第2吸気孔である。 特許出願人 北村 修一
No. 23 Figures 1, 2, 4, 5 to 10 are cross-sectional views of a rotary piston engine according to the present invention and devices attached thereto, and Figure 3 is a diagram of the rotary piston engine according to the present invention. 1 is a rotary piston, 2 is a rotor housing, 3 is a side housing, 4 is a working chamber, 5 is a spark plug, 6 is an intake passage, 7 is a carburetor, 8 is a throttle valve, 9 is an air passage, 10 is a small throttle valve , 11 is an air jet, 12 is a pump, 13.26
・30, 32, 35, 37 are pump discharge side passages, 14.
14', 27, 31, 33, and 36 are nozzle ports, 15 is an intake cutoff valve, 16 is a closing part, 17, 18, 34, 38, and 39 are communication passages, 19 is a branch part, 20 is a sub-intake passage, and 21 is a 22 is a closing valve, 23 is an exhaust port, 24 is a primary throttle valve, 25 is a secondary throttle valve, 28 is a solenoid valve, 29 is a sub-closing valve, 40 is a nozzle, 41 is a fuel nozzle, 42 6' is the bottom of the bent part of the intake passage, a is the first intake hole, b
is the second intake hole. Patent applicant Shuichi Kitamura

Claims (6)

【特許請求の範囲】[Claims] (1)機関に吸入される吸気を絞って出力を制御する内
燃機関の作動室へ通ずる吸気通路の所定位置に閉鎖弁を
備え、機関の低負荷域にはこの閉鎖弁を閉鎖しておく様
にし、更に前記閉鎖弁もバイパスして機関の作動室へ通
ずる副吸気通路の所定位置に、吸気行程の中途でこの副
吸気通路を閉鎖する吸気遮断弁を備える様にしたロータ
リピストン機関において、ある作動室の排気行程から吸
気行程へ移り変る変換点の近傍から同作動室と排気ポー
トとの連通が遮断される時期の近傍までに一定期間ポン
プから圧送されてくる吸気も前記吸気遮断弁を介して噴
出させて、同作動室の残留ガスを掃気する様にした事を
特徴とするロータリピストン機関。
(1) A closing valve is provided at a predetermined position in the intake passage leading to the working chamber of the internal combustion engine, which controls the output by throttling the intake air taken into the engine, and this closing valve is kept closed during low load areas of the engine. In a rotary piston engine, furthermore, an intake cutoff valve is provided at a predetermined position of a sub-intake passage that bypasses the closing valve and leads to the working chamber of the engine, and closes the sub-intake passage in the middle of the intake stroke. The intake air that is force-fed from the pump for a certain period of time from the vicinity of the conversion point where the working chamber changes from the exhaust stroke to the intake stroke until the time when communication between the working chamber and the exhaust port is cut off is also passed through the intake cutoff valve. A rotary piston engine characterized in that the residual gas in the working chamber is scavenged by ejecting air.
(2)機関に吸入される吸気を絞って出力を制御する内
燃機関の作動室へ通ずる吸気通路の所定位置に閉鎖弁を
備え、機関の低負荷域にはこの閉鎖弁をNo2 閉鎖しておく様にし、更に前記閉鎖弁もバイパスして機
関の作動室へ通ずる副吸気通路の所定位置に、吸気行程
の中途でこの副吸気通路を閉鎖する吸気遮断弁を備える
様にしたロータリピストン機関において、ある作動室と
排気ポートとの連通が遮断される時期の近傍から一定期
間ポンプによって圧送されてくる吸気も前記吸気遮断弁
を介して噴出させ、これにより吸気の流動も形成する様
にし、かつ前記閉鎖弁が閉じている時には吸気遮断弁の
閉鎖後はポンプから圧送されてくる吸気も新たに同作動
室へ吸入させない様にした事も特徴とするロータリピス
トン機関。
(2) A closing valve is provided at a predetermined position in the intake passage leading to the working chamber of the internal combustion engine, which controls the output by throttling the intake air taken into the engine, and this closing valve is kept closed during the low load range of the engine. In a rotary piston engine, furthermore, an intake cutoff valve is provided at a predetermined position of the auxiliary intake passage that bypasses the closing valve and leads to the working chamber of the engine, and closes the auxiliary intake passage in the middle of the intake stroke, The intake air, which is force-fed by the pump for a certain period of time near the time when communication between a certain working chamber and the exhaust port is cut off, is also blown out through the intake cutoff valve, thereby forming a flow of the intake air, and This rotary piston engine is characterized by the fact that when the shutoff valve is closed, the intake air pressured from the pump is not drawn into the same working chamber after the intake shutoff valve is closed.
(3)機関に吸入される吸気を絞って出力を制御する内
燃機関の作動室へ通ずる吸気通路の所定位置に閉鎖弁を
備え、機関の低負荷域にはこの閉鎖弁を閉鎖しておく様
にし、更に前記閉鎖弁もバイパスして機関の作動室へ通
ずる副吸気通路の所定位置に、吸気行程の中途でこの副
吸気通路を閉鎖する吸気遮断弁を備える様にしたロータ
リピストン機関において、ある作動室の排気行程から吸
気行程No3 へ移り変る変換点の近傍でポンプから圧送されてくる吸
気を前記吸気遮断弁を介して噴出させて同作動室の残留
ガスも掃気すると共に、同作動室と排気ポートとの連通
が遮断された後もポンプから圧送されてくる吸気も一定
期間前期吸気遮断弁を介して噴出させる事によって吸気
の流動を形成する様にし、かつ前記閉鎖弁が閉じている
時には吸気遮断弁の閉鎖後はポンプから圧送されてくる
吸気を新たに同作動室へ吸入させない様にした事を特徴
とするロータリピストン機関。
(3) A closing valve is provided at a predetermined position in the intake passage leading to the working chamber of the internal combustion engine, which controls the output by throttling the intake air drawn into the engine, and this closing valve is kept closed during low load areas of the engine. In a rotary piston engine, furthermore, an intake cutoff valve is provided at a predetermined position of a sub-intake passage that bypasses the closing valve and leads to the working chamber of the engine, and closes the sub-intake passage in the middle of the intake stroke. In the vicinity of the conversion point where the working chamber changes from the exhaust stroke to the intake stroke No. 3, the intake air that is force-fed from the pump is blown out through the intake cutoff valve to scavenge the residual gas in the working chamber, and also to remove the remaining gas from the working chamber. Even after the communication with the exhaust port is cut off, the intake air that is force-fed from the pump is also blown out through the early intake cutoff valve for a certain period of time to form a flow of intake air, and when the closing valve is closed, A rotary piston engine characterized in that, after the intake shutoff valve is closed, the intake air that is force-fed from the pump is not sucked into the same working chamber.
(4)ある作動室の排気行程から吸気行程へ移り変る変
換点の近傍から同作動室と排気ポートとの連通が遮断さ
れる時期の後の一定期間までの間に、ポンプから圧送さ
れてくる吸気の噴出を一時停止させる様にした特許請求
の範囲第3項記載のロータリピストン機関。
(4) Air is pumped from the pump during a certain period of time from near the conversion point where the exhaust stroke of a certain working chamber changes to the intake stroke until a certain period after the time when the communication between the working chamber and the exhaust port is cut off. The rotary piston engine according to claim 3, wherein the blowout of intake air is temporarily stopped.
(5)ある作動室の排気行程から吸気行程へ移り変る変
換点の近傍から同作動室と排気ポートとの連通が遮断さ
れる時期の後の一定期間まで、ポンプから圧送されてく
る吸気を連続的に噴出させる様にした特許請求の範囲第
3項記載のロータリピストン機関。
(5) Continuously feed the intake air under pressure from the pump from the vicinity of the conversion point where the exhaust stroke of a certain working chamber changes to the intake stroke until a certain period after the time when the communication between the working chamber and the exhaust port is cut off. 4. The rotary piston engine according to claim 3, wherein the rotary piston engine is configured to emit water at a high temperature.
(6)機関に吸入される吸気を絞って出力を制御する内
燃機関の作動室へ通ずる吸気通路の所定位置に閉鎖弁を
備え、機関の低負荷域にはこの閉鎖弁を閉鎖しておく様
にし、更に前記閉鎖弁もバイパスして機関の作動室へ通
ずる副吸気通路の所定位置に、吸気行程の中途でこの副
吸気通路を閉鎖する吸気遮断弁を備える様にしたロータ
リピストン機関において、ある作動室の排気行程から吸
気行程へ移り変る交換点の近傍から同作動室と排気ポー
トとの連通が遮断される時期の近傍までに一定期間ポン
プから圧送されてくる吸気を前記吸気遮断弁を介して噴
出させて、同作動室の残留ガスを掃気する様にし、更に
前記ポンプから圧送されてくる吸気の高速気流を燃料供
給装置によって供給された燃料に衝突させて微粒化する
様にした事を特徴とするロータリピストン機関。
(6) A closing valve is provided at a predetermined position in the intake passage leading to the working chamber of the internal combustion engine, which controls the output by throttling the intake air taken into the engine, and this closing valve is kept closed during the low load range of the engine. In a rotary piston engine, furthermore, an intake cutoff valve is provided at a predetermined position of a sub-intake passage that bypasses the closing valve and leads to the working chamber of the engine, and closes the sub-intake passage in the middle of the intake stroke. The intake air that is force-fed from the pump is passed through the intake cutoff valve for a certain period of time from the vicinity of the exchange point where the working chamber changes from the exhaust stroke to the intake stroke until the time when communication between the working chamber and the exhaust port is cut off. The fuel is ejected to scavenge the residual gas in the working chamber, and the high-speed airflow of the intake air forced from the pump collides with the fuel supplied by the fuel supply device to atomize it. Features a rotary piston engine.
JP56142962A 1981-09-10 1981-09-10 Rotary piston engine Pending JPS5844224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56142962A JPS5844224A (en) 1981-09-10 1981-09-10 Rotary piston engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56142962A JPS5844224A (en) 1981-09-10 1981-09-10 Rotary piston engine

Publications (1)

Publication Number Publication Date
JPS5844224A true JPS5844224A (en) 1983-03-15

Family

ID=15327702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56142962A Pending JPS5844224A (en) 1981-09-10 1981-09-10 Rotary piston engine

Country Status (1)

Country Link
JP (1) JPS5844224A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082874A (en) * 1983-10-13 1985-05-11 Tech Res & Dev Inst Of Japan Def Agency Direction finder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082874A (en) * 1983-10-13 1985-05-11 Tech Res & Dev Inst Of Japan Def Agency Direction finder
JPH0315991B2 (en) * 1983-10-13 1991-03-04 Boeicho Gijutsu Kenkyu Honbucho

Similar Documents

Publication Publication Date Title
US5765524A (en) Intake system for internal combustion engine
JPS60204918A (en) Suction device for internal-combustion engine
EP1302658A1 (en) Intake pipe injection type engine
JPS5844224A (en) Rotary piston engine
JPS5844218A (en) Internal-combustion engine
JP2900805B2 (en) Diesel engine intake system
JPS58195018A (en) Internal-combustion engine
JPS6113109B2 (en)
JPH0544598A (en) Fuel injection device of engine
JPS603942Y2 (en) Diesel engine air supply system
JPS585425A (en) Intake device of internal combustion engine equipped with supercharger
RU2059860C1 (en) Accelerator pump for carburetor of internal combustion engine
JPS5818515A (en) Internal-combustion engine
JPS5830460A (en) Carburetter
JPH0118838Y2 (en)
JPS5818517A (en) Intake device for internal-combustion engine
JPS5987259A (en) Carburettor of internal-combustion engine
SU1302002A1 (en) Carburettor for internal combustion engine
JPS63192912A (en) Direct injection type internal combustion engine
SU1537871A1 (en) Fuel feed system for gas-fuel ic-engine
JPS57179332A (en) Intake device for internal combustion engine equipped with fuel injection means
JPH07180638A (en) In-cylinder fuel-air injection type internal combustion engine
JPH0374555A (en) Carbureter
JPH07293259A (en) Fuel injection type engine
JPH03199668A (en) Fuel supply device of internal combustion engine