JPS6113109B2 - - Google Patents

Info

Publication number
JPS6113109B2
JPS6113109B2 JP53085224A JP8522478A JPS6113109B2 JP S6113109 B2 JPS6113109 B2 JP S6113109B2 JP 53085224 A JP53085224 A JP 53085224A JP 8522478 A JP8522478 A JP 8522478A JP S6113109 B2 JPS6113109 B2 JP S6113109B2
Authority
JP
Japan
Prior art keywords
intake
fuel
intake passage
air
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53085224A
Other languages
Japanese (ja)
Other versions
JPS5512262A (en
Inventor
Hiromitsu Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP8522478A priority Critical patent/JPS5512262A/en
Publication of JPS5512262A publication Critical patent/JPS5512262A/en
Publication of JPS6113109B2 publication Critical patent/JPS6113109B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Fuel-Injection Apparatus (AREA)

Description

【発明の詳細な説明】 この発明は吸気マニホルドの集合部に燃料噴射
ノズルを設けた燃料噴射式多気筒内燃機関に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel injection type multi-cylinder internal combustion engine in which a fuel injection nozzle is provided in an intake manifold gathering part.

多気筒内燃機関において燃料噴射により燃料を
供給する場合には、各気筒に吸気を分配する吸気
マニホルドの集合部に燃料噴射ノズルを設けるこ
とによつて、燃料噴射ノズルの使用数を減らし、
構造を簡単にすると共にコストの低減を図ること
が考えられる。しかしながら、このような構成を
採用する場合においては燃料の噴射量や吸気流量
の変化がある時に燃料と吸入空気の混合が不均一
になり易く、その結果各気筒への燃料の分配が不
均一になり空燃比が各気筒間で不揃いになるとい
う問題がある。また、特に低速域では流速が遅い
ために混合気が霧化され難く適正な燃焼が得られ
ないという問題もあつた。
When fuel is supplied by fuel injection in a multi-cylinder internal combustion engine, the number of fuel injection nozzles used can be reduced by providing the fuel injection nozzles at the gathering part of the intake manifold that distributes intake air to each cylinder.
It is possible to simplify the structure and reduce costs. However, when adopting such a configuration, the mixture of fuel and intake air tends to become uneven when there are changes in the fuel injection amount or intake flow rate, and as a result, the distribution of fuel to each cylinder becomes uneven. Therefore, there is a problem that the air-fuel ratio becomes uneven among the cylinders. In addition, there was also the problem that the air-fuel mixture was difficult to atomize and proper combustion could not be achieved because the flow velocity was slow, especially in the low speed range.

この発明はこのような問題点に鑑みなされたも
ので、吸気マニホルドの集合部にベンチユリを形
成し、このベンチユリ内を指向して燃料を噴射す
るように燃料噴射ノズルを設けると共に、集合部
におけるベンチユリの下流側吸気通路に絞り弁と
低負荷時にのみこの吸気通路を閉じる制御弁とを
設け、これら両弁間と吸気口近傍とを副吸気通路
で接続することにより、燃料の微粒化と混合気の
均一化を促進させ、空燃比の各気筒間でのばらつ
きを減少させると共に、低速域でも適正な燃焼が
期待できる燃料噴射式多気筒内燃機関を提供する
ものである。以下図面に基づいてこの発明を詳細
に説明する。
This invention has been made in view of the above problems, and includes forming a bench lily in the gathering part of the intake manifold, providing a fuel injection nozzle to inject fuel toward the inside of the vent lily, and also forming a vent lily in the gathering part of the intake manifold. A throttle valve and a control valve that closes this intake passage only at low load are installed in the intake passage on the downstream side of the engine, and by connecting these two valves and the vicinity of the intake port with an auxiliary intake passage, the atomization of the fuel and the air-fuel mixture are improved. To provide a fuel injection multi-cylinder internal combustion engine that promotes uniformity of the air-fuel ratio, reduces variations in air-fuel ratio between cylinders, and can be expected to achieve proper combustion even in a low speed range. The present invention will be explained in detail below based on the drawings.

第1図はこの発明を4気筒機関に適用した一実
施例をシリンダブロツクを取外して示す底面図、
第2図は同じく−線断面図である。これらの
図において、符号1は4気筒シリンダブロツクを
示し、2はピストン、3はシリンダヘツド、4は
これらにより形成された燃焼室である。シリンダ
ヘツド3には吸気弁5および排気弁6が設けら
れ、それぞれ吸気通路7および排気通路8と前記
燃焼室4との間を連通・遮断するように、公知の
動弁機構によつて駆動される。前記シリンダヘツ
ド3には各燃焼室4に吸気を導く吸気マニホルド
9が接続されている。この吸気マニホルド9は主
吸気通路10と副吸気通路11とを備えている。
主吸気通路10は各気筒の前記吸気通路7にそれ
ぞれ接続された分配部12,12………と、この
分配部12,12………の上流側を集合する集合
部13とから成る。この集合部13は下端が前記
分配部12に接続されかつ略垂直に吸気を導びく
垂直部13aと、この垂直部13aの上端に接続
されかつ吸気を水平方向に導びく水平部13bと
を有する。すなわち集合部13はここで略直角に
屈曲されている。垂直部13aの上端近傍にはベ
ンチユリ14が形成され、このベンチユリ14の
下流側吸気通路には絞り弁15と制御弁16とが
順次配設されている。絞り弁15は図示してない
アクセル機構により回動制御される。制御弁16
は負圧応動式の駆動部17により回動制御され
る。すなわち、この駆動部17は前記制御弁16
と一体のレバーに連結棒18を介して連結された
ダイヤフラム19を備え、このダイヤフラム19
にはばね20により制御弁16を開く方向への復
帰習性が付与されると共に、制御弁16を閉塞す
る方向へダイヤフラム19を吸引する負圧室21
が形成されており、この負圧室21は前記絞り弁
15と制御弁16との間に開口する負圧検出孔2
2に接続されている。したがつて絞り弁15と制
御弁16の間の負圧が大きい低負荷(大気圧から
遠ざかる。)時には制御弁16が閉塞され、反対
に負圧が小さい(大気圧に近ずく)時にはばね2
0によつて制御弁16が開放される。
FIG. 1 is a bottom view showing an embodiment of the present invention applied to a four-cylinder engine with the cylinder block removed;
FIG. 2 is also a sectional view taken along the - line. In these figures, reference numeral 1 indicates a four-cylinder cylinder block, 2 a piston, 3 a cylinder head, and 4 a combustion chamber formed by these. The cylinder head 3 is provided with an intake valve 5 and an exhaust valve 6, which are driven by a known valve mechanism so as to communicate and cut off communication between the intake passage 7 and the exhaust passage 8 and the combustion chamber 4, respectively. Ru. An intake manifold 9 for guiding intake air into each combustion chamber 4 is connected to the cylinder head 3 . The intake manifold 9 includes a main intake passage 10 and a sub-intake passage 11.
The main intake passage 10 is composed of distribution parts 12, 12, . This gathering part 13 has a vertical part 13a whose lower end is connected to the distribution part 12 and guides the intake air substantially vertically, and a horizontal part 13b which is connected to the upper end of the vertical part 13a and guides the intake air horizontally. . That is, the gathering portion 13 is bent at a substantially right angle here. A bench lily 14 is formed near the upper end of the vertical portion 13a, and a throttle valve 15 and a control valve 16 are sequentially arranged in the intake passage on the downstream side of this bench lily 14. The throttle valve 15 is rotationally controlled by an accelerator mechanism (not shown). control valve 16
is rotationally controlled by a negative pressure responsive drive section 17. That is, this drive section 17 is connected to the control valve 16.
A diaphragm 19 is connected via a connecting rod 18 to a lever integrated with the diaphragm 19.
A negative pressure chamber 21 is provided with a spring 20 to return the control valve 16 in the direction of opening, and a negative pressure chamber 21 that sucks the diaphragm 19 in the direction of closing the control valve 16.
is formed, and this negative pressure chamber 21 has a negative pressure detection hole 2 opened between the throttle valve 15 and the control valve 16.
Connected to 2. Therefore, when the negative pressure between the throttle valve 15 and the control valve 16 is large (moving away from atmospheric pressure) at low load, the control valve 16 is closed, and on the other hand, when the negative pressure is small (approaching atmospheric pressure), the spring 2 closes.
0 opens the control valve 16.

副吸気通路11の上流側の開口23は、前記絞
り弁15と制御弁16の間に位置付けられてい
る。この副吸気通路11は前記主吸気通路10よ
り小径の集合部24とその下流側の分配部25,
25………とを備え、集合部24の前記開口23
から吸気を分配部25,25………に導き、この
分配部25はこの吸気を各燃焼室4内に渦流を生
成させるように導びかれている。すなわち、この
各分配部25,25………は前記シリンダヘツド
3を通り、各気筒の吸気口近傍に開口した副吸気
ポート26に接続されている。この副吸気ポート
26は吸気通路7内に吸気弁5の裏側から燃焼室
4を斜めに指向するように開口されている。な
お、この副吸気通路11の上流側には前記絞り弁
15を迂回して主吸気通路10の上流側へ連通さ
れたバイパス路27が設けられ、このバイパス路
27にはここを通る吸気の流量を調整するための
調整ねじ28が装着されている。
The upstream opening 23 of the sub-intake passage 11 is positioned between the throttle valve 15 and the control valve 16. This auxiliary intake passage 11 includes a gathering part 24 having a diameter smaller than that of the main intake passage 10, a distribution part 25 on the downstream side thereof,
25......, the opening 23 of the gathering part 24
The intake air is guided to distribution parts 25, 25, . That is, each of the distribution parts 25, 25, . . . passes through the cylinder head 3 and is connected to an auxiliary intake port 26 that opens near the intake port of each cylinder. The auxiliary intake port 26 is opened in the intake passage 7 from the back side of the intake valve 5 so as to face the combustion chamber 4 obliquely. A bypass passage 27 is provided on the upstream side of the auxiliary intake passage 11, which bypasses the throttle valve 15 and communicates with the upstream side of the main intake passage 10. An adjustment screw 28 is attached for adjusting.

吸気マニホルド9にはウオータジヤケツト29
が設けられている。このウオータジヤケツト29
には冷却水が循環され、副吸気通路11を加熱す
ることによつて燃料の霧化を促進する作用を持
つ。
A water jacket 29 is attached to the intake manifold 9.
is provided. This water jacket 29
Cooling water is circulated through the sub-intake passage 11, which has the effect of promoting fuel atomization by heating the sub-intake passage 11.

吸気マニホルド9の上流側の前記水平部13b
には、エアフローメータ30が可撓性のパイプ3
1を介して接続されている。このエアフローメー
タ30は、吸気流量に応じて回動角度が変化する
フラツプ32を備えている。このフラツプ32の
回転角度は図示してないポテンシヨメータにより
電気的に読み取られ、電気回路装置により燃料流
量等が制御される。
The horizontal portion 13b on the upstream side of the intake manifold 9
The air flow meter 30 is connected to a flexible pipe 3.
1. This air flow meter 30 includes a flap 32 whose rotation angle changes depending on the intake air flow rate. The rotation angle of the flap 32 is electrically read by a potentiometer (not shown), and the fuel flow rate etc. are controlled by an electric circuit device.

33は燃料噴射ノズルであり、このノズルは前
記ベンチユリ14内を指向して燃料を噴射するよ
うに、前記水平部13bに取付けられている。す
なわちこの燃料噴射ノズル33は、水平部13b
と垂直部13aとからなる屈曲部分において、ベ
ンチユリ14の略中央からベンチユリ14の軸芯
に沿つて燃料を噴射するように水平部13bに固
定されている。
33 is a fuel injection nozzle, and this nozzle is attached to the horizontal portion 13b so as to inject fuel toward the inside of the bench lily 14. That is, this fuel injection nozzle 33 is located at the horizontal portion 13b.
It is fixed to the horizontal part 13b so that fuel is injected from approximately the center of the bench lily 14 along the axis of the bench lily 14 at the bent part consisting of the vertical part 13a and the vertical part 13a.

次にこの実施例の動作を説明する。先ず機関の
始動前においては、絞り弁15は第2図に示す全
閉位置にあり、制御弁16は駆動部17のばね2
0の付勢により全開位置にくる。この状態から機
関を始動させると絞り弁15の下流側の負圧が大
きくなる(大気圧から遠ざかる)ため、駆動部1
7のダイヤフラム19は負圧室21側に引かれ制
御弁16は閉塞される。したがつて吸気は副吸気
通路11を通り燃焼室4内に供給される。絞り弁
15が開放されてゆくと負圧検出孔22の負圧も
小さくなる(大気圧に近づく)から、制御弁16
も次第に開かれてゆく。したがつて吸気は副吸気
通路11と主吸気通路10,7から供給される。
この結果、不整燃焼を起こし易い低負荷運転時に
おいても、副吸気通路11を通る吸気の割合が増
加し、この副吸気通路を通る吸気は副吸気ポート
26から高速で燃焼室4内に一定の方向を指向し
て噴射されるので、燃焼室4内に激しい渦流が生
成される。このため燃焼が安定し、機関の滑らか
な運転が可能になり、加速性能が向上するのであ
る。
Next, the operation of this embodiment will be explained. First, before starting the engine, the throttle valve 15 is in the fully closed position shown in FIG.
It comes to the fully open position with a bias of 0. When the engine is started in this state, the negative pressure on the downstream side of the throttle valve 15 increases (moves away from atmospheric pressure), so the drive unit 1
The diaphragm 19 of No. 7 is drawn toward the negative pressure chamber 21, and the control valve 16 is closed. Therefore, intake air is supplied into the combustion chamber 4 through the sub-intake passage 11. As the throttle valve 15 opens, the negative pressure in the negative pressure detection hole 22 also decreases (approaches atmospheric pressure), so the control valve 16
will gradually open up. Therefore, intake air is supplied from the sub-intake passage 11 and the main intake passages 10 and 7.
As a result, even during low-load operation where irregular combustion is likely to occur, the proportion of intake air passing through the auxiliary intake passage 11 increases, and the intake air passing through this auxiliary intake passage flows from the auxiliary intake port 26 at high speed into the combustion chamber 4 at a constant rate. Since the fuel is oriented and injected, a strong vortex is generated within the combustion chamber 4. This stabilizes combustion, enables smooth engine operation, and improves acceleration performance.

燃料は、燃料噴射ノズル33から運転状態に対
応するようにその噴射量を制御されながら、ベン
チユリ14内に供給される。このベンチユリ14
において内径が絞られているので吸気流速は増大
する。従つてこのベンチユリ14内に噴射された
燃料の微粒化は促進される。またベンチユリ14
では吸気が通る流路断面積が小さいので、燃料噴
射ノズル33から噴射される燃料がこの断面積内
に隈無く行き渡り、燃料は均一に混合される。こ
の混合気は副吸気通路11および主吸気通路10
のそれぞれの分配部25,12において各気筒に
分配されて、各燃焼室4に供給される。この時混
合気の霧化と均一性が良好なので、各気筒間の混
合比のばらつきは減少する。
Fuel is supplied from the fuel injection nozzle 33 into the bench lily 14 while its injection amount is controlled in accordance with the operating state. This bench lily 14
Since the inner diameter is narrowed at , the intake flow rate increases. Therefore, atomization of the fuel injected into the bench lily 14 is promoted. Also bench lily 14
Since the cross-sectional area of the flow path through which the intake air passes is small, the fuel injected from the fuel injection nozzle 33 is spread throughout this cross-sectional area, and the fuel is mixed uniformly. This air-fuel mixture flows through the sub-intake passage 11 and the main intake passage 10.
The fuel is distributed to each cylinder in the respective distribution parts 25 and 12 and supplied to each combustion chamber 4. At this time, the atomization and uniformity of the air-fuel mixture are good, so variations in the mixture ratio between cylinders are reduced.

この実施例においては、燃料噴射ノズル33は
ベンチユリ14の略中央からベンチユリ14の軸
芯に沿つて燃料を噴射するように設けたので、吸
気流速の最も高い位置に燃料は噴射されることに
なり、燃料の霧化が一層促進される。さらに燃料
は吸気の流動方向に沿つて噴射されるから燃料が
吸気通路壁面に付着しにくくなる。この結果、混
合気の均一性はさらに向上し、各気筒間での空燃
比のばらつきは一層小さくなる。なお、燃料噴射
ノズル33はその噴射口がベンチユリ14に臨め
ばよく、ノズル33の大部分は水平部13b内に
あるので、比較的大型のノズル33を使用しても
吸気の流動の妨げとなることはない。
In this embodiment, the fuel injection nozzle 33 is provided to inject fuel from approximately the center of the bench lily 14 along the axis of the bench lily 14, so that the fuel is injected at the position where the intake flow velocity is highest. , fuel atomization is further promoted. Furthermore, since the fuel is injected along the flow direction of the intake air, the fuel is less likely to adhere to the wall surface of the intake passage. As a result, the uniformity of the air-fuel mixture is further improved, and the variation in air-fuel ratio between cylinders is further reduced. Note that the injection port of the fuel injection nozzle 33 only needs to face the bench lily 14, and most of the nozzle 33 is located within the horizontal portion 13b, so even if a relatively large nozzle 33 is used, the flow of intake air will be obstructed. Never.

この発明は以上説明したように吸気マニホルド
の集合部にベンチユリを形成し、このベンチユリ
内を指向して燃料を噴射するように燃料噴射ポン
プを設けたので、燃料は吸気流速の高い部分に噴
射され燃料の微粒化が促進される。またベンチユ
リ部分の断面積は小さく噴射された燃料はこの断
面積内に隈無く行き渡るので混合気の均一性が向
上する。従つて各気筒の分配される混合気の空燃
比が、各気筒間で均一化され、各気筒の燃焼が揃
う結果、排気ガス対策の見地からも有利になる。
また、前記ベンチユリの下端側吸気通路に絞り弁
と低負荷時にのみ通路を閉じる制御弁を設け、こ
れら両弁間と各気筒の吸気口近傍とを副吸気通路
で接続したから、不整燃焼を起こしやすい低負荷
運転時においても安定した燃焼が行なわれ、円滑
な運転が行なえるという利点がある。
As explained above, in this invention, a bench lily is formed in the gathering part of the intake manifold, and a fuel injection pump is provided to inject fuel toward the inside of this bench lily, so that the fuel is injected into the part where the intake flow velocity is high. Atomization of fuel is promoted. Further, the cross-sectional area of the bench lily portion is small, and the injected fuel is thoroughly distributed within this cross-sectional area, thereby improving the uniformity of the air-fuel mixture. Therefore, the air-fuel ratio of the air-fuel mixture distributed to each cylinder is made uniform among the cylinders, and combustion in each cylinder is uniform, which is advantageous from the viewpoint of exhaust gas countermeasures.
In addition, a throttle valve and a control valve that closes the passage only at low load are installed in the intake passage at the lower end of the bench lily, and a sub-intake passage is connected between these two valves and the vicinity of the intake port of each cylinder, causing irregular combustion. It has the advantage of stable combustion and smooth operation even during easy low-load operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例をシリンダブロツ
クを取外して示す底面図、第2図は同じく−
線断面図である。 7……吸気通路、9……吸気マニホルド、11
……副吸気通路、13……集合部、14……ベン
チユリ、15……絞り弁、16……制御弁、26
……副吸気ポート、33……燃料噴射ノズル。
Fig. 1 is a bottom view showing an embodiment of the present invention with the cylinder block removed, and Fig. 2 is a bottom view showing an embodiment of the present invention with the cylinder block removed.
FIG. 7...Intake passage, 9...Intake manifold, 11
... Sub-intake passage, 13 ... Gathering part, 14 ... Bench lily, 15 ... Throttle valve, 16 ... Control valve, 26
...Sub-intake port, 33...Fuel injection nozzle.

Claims (1)

【特許請求の範囲】[Claims] 1 吸気マニホルド9の集合部13の吸気通路に
ベンチユリ14を形成し、このベンチユリ14内
を指向して燃料を噴射する燃料噴射ノズル33を
設けると共に、前記集合部13におけるベンチユ
リ14の下流側吸気通路に絞り弁15と低負荷時
にのみこの吸気通路を閉じる制御弁16とを設
け、これら両弁15,16間と、各気筒における
吸気口近傍の吸気通路7に燃焼室方向を指向して
開口した副吸気ポート26とを副吸気通路11で
接続してなる燃料噴射式多気筒内燃機関。
1. A bench lily 14 is formed in the intake passage of the collecting part 13 of the intake manifold 9, and a fuel injection nozzle 33 for injecting fuel directed into the bench lily 14 is provided. A throttle valve 15 and a control valve 16 that closes this intake passage only at low load are provided, and an opening is provided between these two valves 15 and 16 and into the intake passage 7 near the intake port of each cylinder, oriented toward the combustion chamber. A fuel injection multi-cylinder internal combustion engine in which a sub-intake port 26 is connected to a sub-intake passage 11.
JP8522478A 1978-07-14 1978-07-14 Fuel injection type multi-cylinder internal-combustion engine Granted JPS5512262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8522478A JPS5512262A (en) 1978-07-14 1978-07-14 Fuel injection type multi-cylinder internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8522478A JPS5512262A (en) 1978-07-14 1978-07-14 Fuel injection type multi-cylinder internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS5512262A JPS5512262A (en) 1980-01-28
JPS6113109B2 true JPS6113109B2 (en) 1986-04-11

Family

ID=13852586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8522478A Granted JPS5512262A (en) 1978-07-14 1978-07-14 Fuel injection type multi-cylinder internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS5512262A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3019544A1 (en) * 1980-05-22 1981-11-26 Robert Bosch Gmbh, 7000 Stuttgart FUEL SUPPLY SYSTEM
JPS5716853U (en) * 1980-06-25 1982-01-28
JPS59155538A (en) * 1983-02-24 1984-09-04 Mazda Motor Corp Fuel injection apparatus for engine
JP4077266B2 (en) * 2002-07-30 2008-04-16 ヤマハ発動機株式会社 Fuel supply device for motorcycle engine

Also Published As

Publication number Publication date
JPS5512262A (en) 1980-01-28

Similar Documents

Publication Publication Date Title
US4256062A (en) Internal combustion diesel engine
US3943904A (en) Single injector throttle body
US4232640A (en) Induction system for an internal combustion engine
US4276862A (en) Internal combustion engine of fuel injection type
JPS581654Y2 (en) Intake system for fuel-injected internal combustion engines
US4323041A (en) Multi-cylinder internal combustion engine of fuel injection type
US4318380A (en) Intake system for multi-cylinder internal combustion engine
US4303046A (en) Intake system of a multi-cylinder internal combustion engine
JPS5845574B2 (en) Internal combustion engine intake passage device
US4470391A (en) Air-fuel mixture intake construction for internal combustion engines
JPS5845573B2 (en) Internal combustion engine intake passage device
JPS6113109B2 (en)
US2649290A (en) Carburetor
JPS6045751B2 (en) Intake system for fuel-injected spark ignition engines
US4382047A (en) Carburetor for internal combustion engine
US4153650A (en) Idling fuel supplying system of a carburetor
US4449505A (en) Internal combustion engine
US4257374A (en) Method of controlling internal combustion
CA1100834A (en) Carburetor for internal combustion engine
JPS6126603Y2 (en)
US4063541A (en) Carburetor providing a uniformly atomized fuel-air mixture
JP2976601B2 (en) Intake system for fuel injection type internal combustion engine
JPS5849385Y2 (en) Intake system for multi-cylinder internal combustion engine
JPS628627B2 (en)
JP2519563Y2 (en) Internal combustion engine intake system