JPS63192912A - Direct injection type internal combustion engine - Google Patents

Direct injection type internal combustion engine

Info

Publication number
JPS63192912A
JPS63192912A JP2350187A JP2350187A JPS63192912A JP S63192912 A JPS63192912 A JP S63192912A JP 2350187 A JP2350187 A JP 2350187A JP 2350187 A JP2350187 A JP 2350187A JP S63192912 A JPS63192912 A JP S63192912A
Authority
JP
Japan
Prior art keywords
fuel
chamber
air
combustion chamber
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2350187A
Other languages
Japanese (ja)
Inventor
Satoru Watabe
哲 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2350187A priority Critical patent/JPS63192912A/en
Publication of JPS63192912A publication Critical patent/JPS63192912A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To make high pressure fuel injection system unnecessary by introducing pressure in a combustion chamber at the time of compression stroke into an auxiliary cylinder through a check valve, and by introducing it to a mixture chamber with fuel after the pressure is raised by action of an auxiliary piston so as to inject fuel having made into minute particle in the combustion chamber. CONSTITUTION:When a piston 2 is lifted and pressure in a combustion chamber 21 is raised in a compression stroke, high pressure in the combustion chamber 21 flows into a high pressure air chamber 41 of an auxiliary cylinder 4 through a check valve 43. The air in the high pressure air chamber 41 is moreover raised accompanied with closure of the check valve 43 when an auxiliary piston 5 is lowered by a cam device 6 at the point a little before the piston 2 reaches the compression top dead center. And when the piston 2 reaches in the neighborhood of the top dead center, if an opening/closing valve 11 is raised by an electromagnetic solenoid 12, a fuel injection hole 101 is opened and compressed air in the combustion chamber 21 flows in the mixture chamber 10. Next, an air introducing hole 9 and a fuel introducing hole 13 are opened simultaneously and high pressure air and fuel are mixed with each other, and it is injected from the fuel injection hole 101.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関、特に燃焼室に直接燃料を噴射する形
式の直接噴射式内燃機関に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an internal combustion engine, and particularly to a direct injection internal combustion engine of the type in which fuel is injected directly into a combustion chamber.

〔従来の技術〕[Conventional technology]

直接噴射式エンジンでは短時間に混合気を効率的に生成
する必要があり、混合気の生成効率がエンジンの燃焼性
に大きな影響がある。直接噴射式ディーゼルエンジンの
燃焼を改善する方法として、燃焼室を有するピストンと
は別の補助ピストンを、シリンダヘッドに形成した補助
シリンダに挿入し、この補助ピストンにより圧縮された
空気を燃料噴射の末期に燃焼室内に押し込んで空気流動
を生成し、混合を促進する方法が既に提案されている(
特開昭59−110829号)。
In a direct injection engine, it is necessary to efficiently generate an air-fuel mixture in a short period of time, and the efficiency of air-fuel mixture generation has a large effect on the combustibility of the engine. As a method to improve combustion in direct injection diesel engines, an auxiliary piston separate from the piston with a combustion chamber is inserted into an auxiliary cylinder formed in the cylinder head, and the air compressed by this auxiliary piston is used at the end of fuel injection. A method has already been proposed in which air is forced into the combustion chamber to generate air flow and promote mixing (
JP 59-110829).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この圧縮空気は補助ピストンのみによっ
て生成されるものであるが、補助ピストンのスピードに
限界があることから高圧噴射は望めない。このため、こ
の圧縮空気のみによって、燃焼室内空気と燃料噴射ノズ
ルから噴射された燃料噴霧との間の混合を十分促進する
ことはできず、燃料改善に結びつかないという問題点が
あった。
However, this compressed air is generated only by the auxiliary piston, and high-pressure injection cannot be expected because the speed of the auxiliary piston is limited. Therefore, this compressed air alone cannot sufficiently promote the mixing between the air in the combustion chamber and the fuel spray injected from the fuel injection nozzle, resulting in a problem that the fuel cannot be improved.

〔問題点を解決するための手段〕[Means for solving problems]

このような問題点を解決するために、本発明によれば、
補助シリンダ内に補助ピストンを往復摺動可能に設け、
該補助シリンダの高圧空気室を、該高圧空気室側へのみ
空気を流通させる逆止弁を有する第1連通路にて燃焼室
に連結する一方、燃焼室に燃料噴射孔を介して連通ずる
混合室を設け、該混合室を第2連通路にて前記高圧空気
室に連結すると共に、燃料通路を介して燃料圧送手段に
連結し、該燃料通路及び前記第2連通路を開閉弁により
開閉制御するようになした直接噴射式内燃機関が提供さ
れる。
In order to solve such problems, according to the present invention,
An auxiliary piston is installed in the auxiliary cylinder so that it can slide back and forth,
The high-pressure air chamber of the auxiliary cylinder is connected to the combustion chamber through a first communication passage having a check valve that allows air to flow only to the high-pressure air chamber side, and the mixture is connected to the combustion chamber through a fuel injection hole. A chamber is provided, the mixing chamber is connected to the high pressure air chamber through a second communication passage, and is connected to a fuel pressure feeding means through a fuel passage, and the opening and closing of the fuel passage and the second communication passage are controlled by an on-off valve. A direct injection internal combustion engine is provided.

〔作 用〕[For production]

圧縮行程で燃焼室の圧縮空気は第1連通路を介して補助
シリンダの高圧空気室へ流入し、圧縮行程末期に補助ピ
ストンの下降により高圧空気室を圧縮し、燃焼室の最高
圧力より高い圧力を生成する。開閉弁が開くと、燃料通
路からの燃料と第2連通路からの高圧空気とが混合室で
混合され、微粒化された燃料噴霧が燃焼室へ噴射される
During the compression stroke, the compressed air in the combustion chamber flows into the high-pressure air chamber of the auxiliary cylinder through the first communication passage, and at the end of the compression stroke, the auxiliary piston descends to compress the high-pressure air chamber, increasing the pressure to a level higher than the highest pressure in the combustion chamber. generate. When the on-off valve opens, the fuel from the fuel passage and the high pressure air from the second communication passage are mixed in the mixing chamber, and atomized fuel spray is injected into the combustion chamber.

〔実施例〕〔Example〕

以下、添付図面を参照して本発明の実施例について詳細
に説明する。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第1図において、ディーゼルエンジンのシリンダヘッド
1、ピストン2、シリンダ3で燃焼室21が形成される
。なお、第1図では、新気を燃焼室21内へ吸引する吸
気ポートや吸気弁、あるいは燃焼ガスを排出する排気ボ
ートや排気弁の図示を省略している。
In FIG. 1, a combustion chamber 21 is formed by a cylinder head 1, a piston 2, and a cylinder 3 of a diesel engine. Note that, in FIG. 1, illustrations of an intake port and an intake valve for sucking fresh air into the combustion chamber 21, and an exhaust boat and an exhaust valve for discharging combustion gas are omitted.

本発明では、シリンダヘッド1の内部に補助シリンダ4
が形成され、この補助シリンダ4内に補助ピストン5が
往復移動可能に挿入されている。
In the present invention, an auxiliary cylinder 4 is provided inside the cylinder head 1.
is formed, and an auxiliary piston 5 is inserted into this auxiliary cylinder 4 so as to be able to reciprocate.

補助ピストン5の上側はピストンロッド7に結合され、
このピストンロッド7はスプリング8により上方へ付勢
されてその上端が常にカム装置6に当接するようにされ
る。補助ピストン5の下側の補助シリンダ4は高圧空気
室41として規定され、この高圧空気室41は連通孔4
2を介して燃焼室21に連結されている。連通孔42に
は燃焼室21の側から高圧空気室41の側へのみ空気を
流通させる逆止弁、即ちチェックボール43とこのチェ
ックボール43を付勢するスプリング44とが設けられ
る。
The upper side of the auxiliary piston 5 is connected to the piston rod 7,
This piston rod 7 is urged upward by a spring 8 so that its upper end always comes into contact with the cam device 6. The auxiliary cylinder 4 below the auxiliary piston 5 is defined as a high pressure air chamber 41, and this high pressure air chamber 41 is connected to the communication hole 4.
2 to the combustion chamber 21. The communication hole 42 is provided with a check valve that allows air to flow only from the combustion chamber 21 side to the high pressure air chamber 41 side, that is, a check ball 43 and a spring 44 that biases the check ball 43.

また、シリンダヘッド1内には燃焼室21に近接してシ
リンダ状の混合室lOが形成される。この混合室10は
燃料噴射孔101を介して燃焼室21に連結されている
と共に、空気導入孔9を介して補助シリンダ4の高圧空
気室41へ、また燃料導入孔13及び燃料パイプ14を
介して燃料ポンプ15に接続されている。なお、燃料導
入孔13には燃料ポンプ15側への燃料の逆流を防止す
る逆止弁131が設けられる。混合室10の内部には、
燃料噴射孔101、空気導入孔9及び燃料導入孔13を
開閉するプランジャ状の開閉弁11が挿入される。この
開閉弁11は電磁ソレノイド12により開閉駆動される
と共に、スプリング111により燃料噴射孔101(及
び空気導入孔9と燃料導入孔13)を閉じる方向に付勢
されている。
Further, a cylindrical mixing chamber IO is formed in the cylinder head 1 adjacent to the combustion chamber 21 . This mixing chamber 10 is connected to a combustion chamber 21 through a fuel injection hole 101, and is connected to a high-pressure air chamber 41 of the auxiliary cylinder 4 through an air introduction hole 9, and through a fuel introduction hole 13 and a fuel pipe 14. and is connected to the fuel pump 15. Note that the fuel introduction hole 13 is provided with a check valve 131 that prevents backflow of fuel toward the fuel pump 15 side. Inside the mixing chamber 10,
A plunger-shaped on-off valve 11 that opens and closes the fuel injection hole 101, the air introduction hole 9, and the fuel introduction hole 13 is inserted. The on-off valve 11 is driven to open and close by an electromagnetic solenoid 12, and is urged by a spring 111 in a direction to close the fuel injection hole 101 (and the air introduction hole 9 and the fuel introduction hole 13).

次に、本発明の作用について述べる。エンジンの当該気
筒が圧縮行程に入り、ピストンが上昇してくると1.燃
焼室21内の圧力が上昇する。この燃焼室21内の圧力
は、例えばこのディーゼルエンジンの圧縮比を18とす
れば最高45kg/ca1前後になる。この高圧空気は
連通孔42に流入し、スプリング44に抗してチェック
ボール43を押し上げて開放し、補助シリンダ4の高圧
空気室41へ流れ込む。ピストン2が圧縮上死点へ至る
少し前の、燃焼室21内圧力が例えば30kg/co!
前後になった時点で、駆動装置(第1図の実施例では、
頭上カム装ff6)により補助ピストン5を下方へ移動
させる。このため補助シリンダ4の高圧空気室4工内の
圧力は急上昇し、チェックボール43はスプリング44
により閉じられ、補助シリンダ4の高圧空気室41と燃
焼室21との連通が断たれる。補助ピストン5にはピス
トンリング51が装着されており、一方、空気導入孔9
は開閉弁11により閉じられているため、補助シリンダ
4の高圧空気室41及び空気導入孔9は高圧に保たれる
Next, the operation of the present invention will be described. When the relevant cylinder of the engine enters the compression stroke and the piston rises, 1. The pressure within the combustion chamber 21 increases. For example, if the compression ratio of this diesel engine is 18, the pressure within this combustion chamber 21 will be around 45 kg/ca1 at maximum. This high pressure air flows into the communication hole 42, pushes up the check ball 43 against the spring 44 to open it, and flows into the high pressure air chamber 41 of the auxiliary cylinder 4. The pressure inside the combustion chamber 21 just before the piston 2 reaches compression top dead center is, for example, 30 kg/co!
At the point when the front and back are reached, the drive device (in the embodiment shown in FIG. 1,
The auxiliary piston 5 is moved downward by the overhead cam device ff6). For this reason, the pressure inside the high pressure air chamber 4 of the auxiliary cylinder 4 rises rapidly, and the check ball 43 is moved by the spring 44.
, and the communication between the high pressure air chamber 41 of the auxiliary cylinder 4 and the combustion chamber 21 is cut off. A piston ring 51 is attached to the auxiliary piston 5, while an air introduction hole 9
is closed by the on-off valve 11, so the high pressure air chamber 41 and the air introduction hole 9 of the auxiliary cylinder 4 are maintained at high pressure.

この圧力は、例えば補助シリンダ4の圧縮比を3とする
と、130kg/cfi程度になる。
For example, if the compression ratio of the auxiliary cylinder 4 is 3, this pressure will be about 130 kg/cfi.

一方、燃料ポンプ15はエンジン自体あるいはパンテリ
電源によるモータ(図示せず)等で駆動され、燃料パイ
プ14を通して燃料導入孔13に常時はぼ一定の圧力、
例えば100kg/cdで燃料を充たしている。この燃
料の圧力は、通常の直接噴射式ディーゼルエンジンの燃
料噴射装置においては数100 kg/、fflにする
ことが要求されるが、本発明の場合は前記補助シリンダ
高圧空気室41の空気圧力と大差ない程度の圧力で良い
On the other hand, the fuel pump 15 is driven by the engine itself or a motor (not shown) powered by a panteri power source, and maintains a constant pressure at all times in the fuel introduction hole 13 through the fuel pipe 14.
For example, the fuel is filled at 100 kg/cd. The pressure of this fuel is required to be several 100 kg/ffl in the fuel injection system of a normal direct injection diesel engine, but in the case of the present invention, the pressure of the fuel is equal to the air pressure in the auxiliary cylinder high pressure air chamber 41. It's okay to use a pressure that doesn't make much of a difference.

このような状態において、ピストンが上死点近傍に至っ
たとき、駆動装置である電磁ソレノイド12によって開
閉弁11が上昇される。開閉弁11の上昇によりまず燃
料噴射孔101が開き、燃焼室21の圧縮空気が混合室
10に流入する。その直後、空気導入孔9と燃料導入孔
13とがほぼ同時に開き、更に強い圧力で高圧空気と燃
料が混合室10内へ流入し、この混合室10を満たす。
In such a state, when the piston reaches near the top dead center, the on-off valve 11 is raised by the electromagnetic solenoid 12 which is a driving device. As the on-off valve 11 rises, the fuel injection hole 101 first opens, and the compressed air in the combustion chamber 21 flows into the mixing chamber 10. Immediately after that, the air introduction hole 9 and the fuel introduction hole 13 open almost simultaneously, and high-pressure air and fuel flow into the mixing chamber 10 with even stronger pressure, filling the mixing chamber 10.

この圧力は燃焼室21内の最高圧縮圧力よりもかなり高
いので、高圧空気と燃料が互いに混合しあいながら燃料
を微粒化し、燃料噴射孔101を通して燃焼室21内へ
噴射される。
Since this pressure is considerably higher than the maximum compression pressure in the combustion chamber 21, the high-pressure air and fuel mix with each other, atomize the fuel, and inject it into the combustion chamber 21 through the fuel injection hole 101.

この場合において、燃料の噴射率は燃料噴射孔101と
開閉弁11との相互形状によって変えることが可能であ
る。例えば、燃料噴射孔101に対向する開閉弁11の
先端テーパ部の角度を変えること、あるいは燃料噴射孔
101に適切なスロットルを設けること等により最適な
燃料噴射率を得られるように設定することができる。
In this case, the fuel injection rate can be changed by changing the mutual shapes of the fuel injection hole 101 and the on-off valve 11. For example, the optimal fuel injection rate can be set by changing the angle of the tapered end of the on-off valve 11 facing the fuel injection hole 101, or by providing an appropriate throttle on the fuel injection hole 101. can.

また、燃料噴射量は上述の燃料噴射率との関連にもよる
が、電磁ソレノイド12で制御される開閉弁11の開弁
時間によって決定される。即ち、燃料噴射量は図示しな
いエアフローメータで測定した新気の流入量に応じた適
切な燃料量となるように電磁ソレノイド12を制御する
ことにより得られる。
Further, the fuel injection amount is determined by the opening time of the on-off valve 11 controlled by the electromagnetic solenoid 12, although it depends on the relationship with the above-mentioned fuel injection rate. That is, the fuel injection amount is obtained by controlling the electromagnetic solenoid 12 so as to be an appropriate fuel amount according to the inflow amount of fresh air measured by an air flow meter (not shown).

燃焼室21内へ噴射された燃料は既に高圧空気によって
微粒化されかつよく混合しているのであるから、はとん
ど着火遅れがなく、上記した燃料噴射率によって燃焼が
確実にコントロールされることになる。従って、空気不
足によって混合不良が生ずることはなく、吐煙濃度の非
常に低い燃焼が行なわれる。なお、混合室10へ流入す
る燃料の圧力は空気導入孔9から流入する空気の圧力に
比べて高くはないので、燃料が補助シリンダ4側へ流入
することはない。また、これを防止するために、空気導
入孔9に適切な逆止弁を設けてもよい。
Since the fuel injected into the combustion chamber 21 has already been atomized and well mixed by the high-pressure air, there is almost no ignition delay, and combustion can be reliably controlled by the fuel injection rate described above. become. Therefore, poor mixing will not occur due to lack of air, and combustion will occur with extremely low smoke concentration. Note that, since the pressure of the fuel flowing into the mixing chamber 10 is not higher than the pressure of the air flowing in from the air introduction hole 9, the fuel does not flow into the auxiliary cylinder 4 side. Moreover, in order to prevent this, an appropriate check valve may be provided in the air introduction hole 9.

第2図は開閉弁11が上昇し、空気導入孔9を通って混
合室10内へ流入した高圧空気aと、燃料導入孔13を
通って流入した燃料fとが混合室IO内で衝突混合し、
燃料噴射孔101を通って燃料が微粒化され、空気と混
合した噴霧Sが燃焼室21内へ噴き出す様子を示してい
る。
FIG. 2 shows that when the on-off valve 11 is raised, the high-pressure air a that has flowed into the mixing chamber 10 through the air introduction hole 9 and the fuel f that has flowed through the fuel introduction hole 13 collide and mix in the mixing chamber IO. death,
The fuel is atomized through the fuel injection hole 101, and the spray S mixed with air is ejected into the combustion chamber 21.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来の直接噴射式ディーゼルエンジン
で必須であった高圧の燃料噴射系(噴射ポンプ、高圧管
、噴射ノズル)が不要となるのでコストを著しく低減す
ることができる。また、高圧の燃料噴射系が不要となる
ことにより、無理なく高速化、出力向上、運転フィーリ
ングの向上環を図ることができる。
According to the present invention, there is no need for a high-pressure fuel injection system (injection pump, high-pressure pipe, injection nozzle), which is essential in conventional direct-injection diesel engines, so costs can be significantly reduced. Furthermore, by eliminating the need for a high-pressure fuel injection system, it is possible to easily increase speed, increase output, and improve the driving feeling.

また、従来は、燃焼室内の空気流動は吸気スワール流に
依存していたが、本発明では燃焼室内への圧縮空気の噴
射によって空気流動を生じさせているので、スワール流
生成のための複雑な形状の吸気ボートは不要となり、吸
気ボートをより直線的で流入抵抗の小さい形状とするこ
とが可能である。このことにより、従来より吸入効率の
高い吸気系とすることができ、エンジン性能の向上が期
待できる。
Furthermore, conventionally, the air flow inside the combustion chamber depended on the intake swirl flow, but in the present invention, the air flow is generated by injecting compressed air into the combustion chamber, so a complex process is required to generate the swirl flow. This eliminates the need for a shaped intake boat, and it is possible to make the intake boat more linear and have a smaller inflow resistance. As a result, it is possible to create an intake system with higher intake efficiency than before, and an improvement in engine performance can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の直接噴射式内燃機関の燃焼室周囲の断
面図、第2図は混合室の作用を説明する図である。 1・・・シリンダヘッド、   2・・・ピストン、2
1・・・燃焼室、      3・・・シリンダ、4・
・・補助シリンダ、  41・・・高圧空気室、5・・
・補助ピストン、    6・・・カム装置、42・・
・連通孔(第1連通路)、 43・・・チェックボール(逆止弁)、9・・・空気導
入孔(第2連通路)、 10・・・混合室、     101・・・燃料噴射孔
、11・・・開閉弁、      12・・・電磁ソレ
ノイド、13・・・燃料導入孔、    15・・・燃
料ポンプ。
FIG. 1 is a cross-sectional view of the periphery of the combustion chamber of a direct injection internal combustion engine according to the present invention, and FIG. 2 is a diagram illustrating the function of the mixing chamber. 1... Cylinder head, 2... Piston, 2
1... Combustion chamber, 3... Cylinder, 4...
...Auxiliary cylinder, 41...High pressure air chamber, 5...
・Auxiliary piston, 6...Cam device, 42...
・Communication hole (first communication path), 43...Check ball (check valve), 9...Air introduction hole (second communication path), 10...Mixing chamber, 101...Fuel injection hole , 11... Opening/closing valve, 12... Electromagnetic solenoid, 13... Fuel introduction hole, 15... Fuel pump.

Claims (1)

【特許請求の範囲】[Claims] 1. 補助シリンダ内に補助ピストンを往復摺動可能に
設け、該補助シリンダの高圧空気室を、該高圧空気室側
へのみ空気を流通させる逆止弁を有する第1連通路にて
燃焼室に連結する一方、燃焼室に燃料噴射孔を介して連
通する混合室を設け、該混合室を第2連通路にて前記高
圧空気室に連結すると共に、燃料通路を介して燃料圧送
手段に連結し、該燃料通路及び前記第2連通路を開閉弁
により開閉制御するようになした直接噴射式内燃機関。
1. An auxiliary piston is provided in an auxiliary cylinder so as to be able to reciprocate and slide, and the high pressure air chamber of the auxiliary cylinder is connected to the combustion chamber through a first communication passage having a check valve that allows air to flow only to the high pressure air chamber side. On the other hand, a mixing chamber communicating with the combustion chamber through a fuel injection hole is provided, and the mixing chamber is connected to the high-pressure air chamber through a second communication passage, and is connected to a fuel pressure feeding means through a fuel passage. A direct injection internal combustion engine in which opening and closing of a fuel passage and the second communication passage are controlled by an on-off valve.
JP2350187A 1987-02-05 1987-02-05 Direct injection type internal combustion engine Pending JPS63192912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2350187A JPS63192912A (en) 1987-02-05 1987-02-05 Direct injection type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2350187A JPS63192912A (en) 1987-02-05 1987-02-05 Direct injection type internal combustion engine

Publications (1)

Publication Number Publication Date
JPS63192912A true JPS63192912A (en) 1988-08-10

Family

ID=12112223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2350187A Pending JPS63192912A (en) 1987-02-05 1987-02-05 Direct injection type internal combustion engine

Country Status (1)

Country Link
JP (1) JPS63192912A (en)

Similar Documents

Publication Publication Date Title
US4475524A (en) Device for admitting exhaust gases and fuel-air mixtures into the cylinders of an internal combustion engine
KR940001928B1 (en) Timing of fuel injected engines
US6612282B2 (en) Combustion chamber for DISI engine
JPH0264243A (en) Device for controlling fuel injection of two cycle direct injection engine
JPS6041206B2 (en) Combustion chamber of internal combustion engine
EP0249286A1 (en) Combustion engine
EP0289675B1 (en) A method, and a valving arrangement, for improving air-fuel mixing
US4688532A (en) Intake system for direct fuel injection diesel engine
JP2653226B2 (en) 2-stroke diesel engine
US4708100A (en) Two-stroke engine with injected fuel gasifying chamber in piston
US5664541A (en) Diesel engine having auxiliary combustion chamber
JPS63192912A (en) Direct injection type internal combustion engine
US4793306A (en) Air flow management in an internal combustion engine through the use of electronically controlled air jets
JPH03100318A (en) Two-stroke internal combustion engine
JP2501710Y2 (en) Fuel injection device for internal combustion engine
JPH06248953A (en) Piston for reciprocating internal combustion engine
JP3254086B2 (en) Combustion device for two-cycle gasoline engine
JPS6111422A (en) Suction system device for internal-combustion engine
JP3055629B2 (en) Air fuel injection device for in-cylinder injection engine
JPH04252866A (en) Air-fuel injection engine
CN115898726A (en) Air-entrainment injection supply system for hydrogen fuel internal combustion engine
JPS5844224A (en) Rotary piston engine
JPH066191Y2 (en) Direct injection internal combustion engine
JPS58206815A (en) Controlling of opening and closing of intake ports for double-intake type internal-combustion engine
JPH0313572Y2 (en)