JPS58195018A - Internal-combustion engine - Google Patents

Internal-combustion engine

Info

Publication number
JPS58195018A
JPS58195018A JP57078968A JP7896882A JPS58195018A JP S58195018 A JPS58195018 A JP S58195018A JP 57078968 A JP57078968 A JP 57078968A JP 7896882 A JP7896882 A JP 7896882A JP S58195018 A JPS58195018 A JP S58195018A
Authority
JP
Japan
Prior art keywords
intake
valve
working chamber
pump
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57078968A
Other languages
Japanese (ja)
Inventor
Shuichi Kitamura
修一 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57078968A priority Critical patent/JPS58195018A/en
Publication of JPS58195018A publication Critical patent/JPS58195018A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • F02B31/08Movable means, e.g. butterfly valves having multiple air inlets, i.e. having main and auxiliary intake passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B2031/003Modifying induction systems for imparting a rotation to the charge in the cylinder with an auxiliary intake conduit starting upstream of personally controlled throttle valve and ending upstream of and close to the intake valve, or with an auxiliary intake conduit being an independent passage, e.g. having its own carburettor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To prevent any reflux starting from a working chamber into a suction passage by ejecting a high speed stream during an interval from proximity of a time at which capacity of the working chamber in a suction stroke is maximum, to proximity of a time at which communication between the working chamber and the suction passage is shut off. CONSTITUTION:In a high load range, a pump throttle valve 12 and closing valve 16 are fully opened, while a pump passage 11 is opened by a suction cut-off valve 13 for a certain duration within an interval from proximity of the time when the capacity of a working chamber 3 in a suction stroke is maximum, namely, when a piston reaches a bottom dead center, to proximity of the time when communication between the working chamber 3 and the suction passage 6 is shut off, namely, when a suction valve 4 is closed. The suction air fed under pressure from a pump 10 is thus ejected at a high velocity from a nozzle 15.

Description

【発明の詳細な説明】 本発明は内燃機関に係わり、更に詳しくは吸気行程にお
ける機関作動室の容積が最大となる時期の近傍からこの
作動室と吸気通路との連通が遮断される時期の近傍まで
の期間に一定期間ポンプからの高速気流を噴出させ、こ
れにより機関作動室から吸気通路への逆流を防止せしめ
、体積効率を高める様にした内燃機関において、機関の
吸気抵抗損失を大幅に低減させて燃費を改善する様にし
たものに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an internal combustion engine, and more specifically, from the vicinity of the time when the volume of the engine working chamber reaches its maximum during the intake stroke to the time when communication between the working chamber and the intake passage is cut off. In internal combustion engines, high-speed airflow is ejected from the pump for a certain period of time during the period of time, thereby preventing backflow from the engine working chamber to the intake passage and increasing volumetric efficiency, greatly reducing engine intake resistance loss. It relates to something that improves fuel efficiency.

本発明を理解する為に、先ず体積効率を高める様にした
前記内燃機関について説明する。
In order to understand the present invention, first, the above-mentioned internal combustion engine designed to increase volumetric efficiency will be explained.

第1図は本発明による内燃機関の一実施例を示し、機関
出力軸等により駆動されるポンプ10を備えている。
FIG. 1 shows an embodiment of an internal combustion engine according to the present invention, which is equipped with a pump 10 driven by an engine output shaft or the like.

図は燃料供給装置として電子制御式燃料噴射装置を使用
しており、エアフローメーター8により検出された情報
、更には機関回転速度及び吸入吸気温度等の情報を受け
たコンピューター(図示せず)が燃料噴射弁9の開弁時
間を制御して、燃料を供給する様になっている。
The figure uses an electronically controlled fuel injection device as the fuel supply device, and a computer (not shown) that receives information detected by the air flow meter 8, engine speed, intake air temperature, etc. Fuel is supplied by controlling the opening time of the injection valve 9.

7は吸入吸気を絞って(密度を変えて)機関出力を制御
する絞弁、13は機関出力軸の回転の例えば1/2に減
速して駆動される吸気遮断弁を示す。
Reference numeral 7 indicates a throttle valve that throttles the intake air (by changing the density) to control the engine output, and 13 indicates an intake cutoff valve that is driven by decelerating the engine output shaft to, for example, 1/2 of the rotation.

今、絞弁7が十分に開いた機関の高負荷域を考えると、
ポンプ絞弁12及び閉鎖弁16は共に全開又はほぼ全開
となっており、吸気行程における作動室3(吸気の吸入
・圧縮・燃料の燃焼・燃焼ガスの膨張及び排出が行われ
る空間を言う)の容積が最大となる時期(ピストン1の
下死点位置)の近傍から作動室3と吸気通路6との連通
が遮断される時期(吸気弁4が閉じる時期)の近傍まで
の期間に吸気遮断弁13により一定期間ポンプ通路11
(吐出側のポンプ通路)が開かれ、ポンプ10から圧送
されてくる吸気が噴出部15から極めて高速度で噴出す
る様になっている(即ち、吸気遮断弁13に形成された
連通部14がポンプ通路11に連通すると、圧縮された
吸気が噴出部15から噴出する様になっている‐図面を
わかり易くする為に、吸気遮断弁13の近傍のポンプ通
路11の断面を第2図に描いてある)。
Now, considering the high load range of the engine where throttle valve 7 is fully open,
Both the pump throttle valve 12 and the closing valve 16 are fully open or almost fully open, and the working chamber 3 (the space where intake air is sucked and compressed, fuel is combusted, and combustion gas is expanded and discharged) during the intake stroke. The intake cutoff valve is activated during the period from near the time when the volume reaches its maximum (bottom dead center position of the piston 1) to near the time when communication between the working chamber 3 and the intake passage 6 is cut off (when the intake valve 4 closes). 13 for a certain period of time pump passage 11
(the pump passage on the discharge side) is opened, and the intake air pressure-fed from the pump 10 is jetted out from the jetting part 15 at an extremely high speed (that is, the communication part 14 formed in the intake cutoff valve 13 is opened). When it communicates with the pump passage 11, compressed intake air is blown out from the spout part 15. - To make the drawing easier to understand, a cross section of the pump passage 11 near the intake cutoff valve 13 is drawn in Fig. 2. be).

これにより、作動室3に一旦吸入された吸気がピストン
1が上昇する圧縮行程の初期に吸気通路6へ押し出され
る逆流現象(吸気通路6を流れる吸気の流速が十分に大
きくない高負荷低速域には特に起り易い)を防止する事
ができ、かくして機関の体積効率が高まる。
This causes a backflow phenomenon in which the intake air that is once drawn into the working chamber 3 is pushed out to the intake passage 6 at the beginning of the compression stroke when the piston 1 rises (in the high load and low speed range where the flow velocity of the intake air flowing through the intake passage 6 is not large enough). (which is particularly likely to occur), thus increasing the volumetric efficiency of the engine.

即ち、機関の高負荷高速域において最大体積効率が得ら
れる様に吸気弁4の閉弁時期を設定しても、機関の高負
荷低(中)速域における体積効率を低下させる事がない
That is, even if the closing timing of the intake valve 4 is set so as to obtain the maximum volumetric efficiency in the high-load, high-speed range of the engine, the volumetric efficiency in the high-load, low (medium) speed range of the engine will not be reduced.

噴出部15から圧縮された吸気が噴出する期間は機関出
力軸角度にすると僅かな期間であり、従ってポンプ10
は小容量のもので良く、又噴出部15からの高速気流に
より作動室3内には強力な乱れが形成され、機関にノッ
キングを発生させる事なく高圧縮比を採用する事ができ
るから、これによるトルク・出力の増加分はポンプ10
の駆動馬力損失をかなり補うものである。
The period during which compressed intake air is ejected from the ejection part 15 is a short period in terms of the engine output shaft angle, and therefore the pump 10
can be of small capacity, and strong turbulence is formed in the working chamber 3 by the high-speed airflow from the jetting part 15, making it possible to adopt a high compression ratio without causing knocking in the engine. The increase in torque and output due to pump 10
This considerably compensates for the loss in drive horsepower.

ここで、噴出部15は作動室3と吸気通路6との接続部
(吸気弁座部がこれに相当するであろう)からあまり離
れていない位置に配置するものとする。
Here, the ejection part 15 is arranged at a position not far from the connection part between the working chamber 3 and the intake passage 6 (which corresponds to the intake valve seat part).

以上述べた内燃機関においては、ポンプ10の駆動馬力
損失の為に(吸気の圧縮仕事及びポンプの内部摩擦損失
の為に)機関の燃費は悪化する事が考えられる。
In the internal combustion engine described above, the fuel efficiency of the engine may deteriorate due to the drive horsepower loss of the pump 10 (due to the compression work of the intake air and the internal friction loss of the pump).

従って、絞弁7が十分に閉じた機関の低(中)負荷域に
おいて吸入吸気を絞って(密度を変えて)機関出力を制
御する事に起因する吸気抵抗損失を低減させる事ができ
れば、機関の低(中)負荷域においては燃費は大幅に改
善されるから、ポンプ10の駆動馬力損失にもかかわら
ず(即ち、高負荷域では燃費が悪化するにもかかわらず
)、全体としては機関の燃費が向上する(特に、低負荷
域を多用する頻度の高い自動車用内燃機関の場合には効
果が大である)。
Therefore, if it is possible to reduce the intake resistance loss caused by controlling the engine output by throttling the intake air (by changing the density) in the low (medium) load range of the engine when the throttle valve 7 is sufficiently closed, the engine Since fuel efficiency is greatly improved in the low (medium) load range of Fuel efficiency improves (especially in the case of internal combustion engines for automobiles that frequently use low load ranges).

本発明は絞弁による吸入吸気の絞りの度合を小さくして
、機関の低(中)負荷域における吸気抵抗損失を低減さ
せ、機関の高負荷域を使用する事があっても全体として
は機関の燃費が改善される様にしたもので、以下図面に
従って説明する。
The present invention reduces the degree of throttling of intake air by the throttle valve, reduces intake resistance loss in the low (medium) load range of the engine, and even if the engine is used in the high load range, the engine as a whole This will improve the fuel efficiency of the engine, and will be explained below with reference to the drawings.

分岐部17において吸気通路6から分岐してくる副吸気
通路18は閉鎖弁16をバイパスして機関の作動室3へ
通じており、吸気遮断弁13によって(吸気遮断弁13
に形成された閉鎖部19によって)吸気行程の中途(例
えば、機関出力軸角度でピストン1の上死点後80°の
時点)閉鎖される様になっている。
The auxiliary intake passage 18 that branches off from the intake passage 6 at the branching part 17 bypasses the closing valve 16 and communicates with the working chamber 3 of the engine.
The piston 1 is closed in the middle of the intake stroke (for example, at a point at which the engine output shaft angle is 80 degrees after the top dead center of the piston 1).

機関の低(中)負荷域、即ち少なくとも機関の低負荷域
においては閉鎖弁16は閉鎖しており、従って吸気遮断
弁13が副吸気通路18を閉鎖した後は作動室3へ吸気
は吸入されない。
In the low (medium) load range of the engine, that is, at least in the low load range of the engine, the closing valve 16 is closed, and therefore, after the intake cutoff valve 13 closes the auxiliary intake passage 18, intake air is not drawn into the working chamber 3. .

ここで、吸気行程において吸気遮断弁13が副吸気通路
18を閉鎖した後は作動室3へ吸気は吸入されないから
、この時点から作動室3の容積が最大となる時点(ピス
トン1の下死点位置)までの期間に費やされた負の仕事
はピストン1が再び上昇する圧縮行程中に正の仕事とし
て大部分戻ってくる為(ピストン1が大気圧によりクラ
ンク室側から押され)、殆ど損失とはならない。
Here, after the intake air cutoff valve 13 closes the auxiliary intake passage 18 during the intake stroke, no intake air is drawn into the working chamber 3, so from this point onwards the volume of the working chamber 3 reaches its maximum (the bottom dead center of the piston 1). Most of the negative work expended during the period up to (position) returns as positive work during the compression stroke when piston 1 rises again (piston 1 is pushed from the crank chamber side by atmospheric pressure), so most of it It is not a loss.

然るに、吸気行程において吸気遮断弁13が副吸気通路
18を閉鎖するまでの期間は吸気が絞弁7により絞られ
ながら吸入される為、吸気抵抗損失は免れる事ができな
いが、吸気行程の中途で作動室3への吸気の吸入が遮断
されるから、吸気行程は事実上短期間となり、作動室3
に同一吸気重量を吸入する場合には絞弁7による吸気の
絞りの度合は小さくて良い。
However, during the intake stroke, until the intake cutoff valve 13 closes the auxiliary intake passage 18, the intake air is drawn in while being throttled by the throttle valve 7, so intake resistance loss cannot be avoided. Since the intake of air into the working chamber 3 is cut off, the intake stroke is effectively short-term, and the intake stroke into the working chamber 3 is cut off.
When the same weight of intake air is taken in, the degree of throttling of the intake air by the throttle valve 7 may be small.

即ち、機関の低(中)負荷域における吸気抵抗損失は大
幅に低減され、かくしてポンプ10の駆動馬力損失にも
かかわらず、全体としては機関の燃費は改善される。
That is, the intake resistance loss in the low (medium) load range of the engine is significantly reduced, and thus, despite the drive horsepower loss of the pump 10, the fuel efficiency of the engine as a whole is improved.

第3図に本発明におけるP‐V線図(圧力‐容積線図)
を示すが、吸気遮断弁13が副吸気通路18をVc点で
閉鎖する事によって、機関の低(中)負荷域における吸
気抵抗損失を大幅に低減させている事が理解されよう。
Figure 3 shows a PV diagram (pressure-volume diagram) in the present invention.
It will be understood that the intake cutoff valve 13 closes the auxiliary intake passage 18 at the Vc point, thereby significantly reducing the intake resistance loss in the low (medium) load range of the engine.

閉鎖弁16が閉鎖した機関の低(中)負荷域においては
、吸気遮断弁13が副吸気通路18を閉鎖した後に作動
室3へ吸気が吸入されない様に、ポンプ通路11(吸入
側のポンプ通路)をポンプ絞弁12により閉鎖(全開)
しておく事は言うまでもない。
In the low (medium) load range of the engine when the shutoff valve 16 is closed, the pump passage 11 (the pump passage on the suction side) is ) is closed (fully opened) by the pump throttle valve 12.
It goes without saying that you should do it.

続いて、絞弁7を更に開いて機関の負荷を増してゆくと
、閉鎖弁16が開き始め、吸気行程の全域にわたって吸
気が吸入される。
Subsequently, when the throttle valve 7 is further opened to increase the load on the engine, the closing valve 16 begins to open and intake air is taken in throughout the entire intake stroke.

(この場合、ポンプ絞弁12は閉鎖弁16が開き始めた
後に開き始める様にする) 即ち、従来通りとなる。
(In this case, the pump throttle valve 12 starts opening after the closing valve 16 starts opening.) In other words, it is the same as before.

閉鎖弁16は機関の低(中)負荷域においては閉鎖して
おく様にするが、これを開閉する為には絞弁7と機械的
に連動させる様にする事が望ましい(ポンプ絞弁12も
同様である)。
The closing valve 16 is kept closed in the low (medium) load range of the engine, but in order to open and close it, it is desirable to mechanically link it with the throttle valve 7 (pump throttle valve 12 The same is true).

尚、噴出部15が単一方向の場合には、吸気弁座部の全
周にわたって作動室3からの吸気の逆流を防止できない
場合も起り得る。
Note that if the ejection part 15 is unidirectional, it may not be possible to prevent the intake air from flowing back from the working chamber 3 over the entire circumference of the intake valve seat.

これは噴出部15からの高速気流が十分に流れない部分
がある為で、対策としては第4図の如く角度αに相当す
る分だけ吸気弁座部近傍壁面を盛り上げ、吸気弁4が閉
じ終る少し手前の時期におけるこの部分の漏れ断面積を
極力小さくする様にするか、又は角度αに相当する部分
にも圧縮吸気を噴出させる為に、第5図に示す如く圧縮
吸気を二方向へ噴出する噴出部15′を備える様にすれ
ば良い。
This is because there are parts where the high-speed airflow from the jetting part 15 does not flow sufficiently.As a countermeasure, as shown in Fig. 4, the wall surface near the intake valve seat is raised by an amount corresponding to the angle α, and the intake valve 4 is completely closed. In order to minimize the leakage cross-sectional area of this part at a slightly earlier stage, or to eject compressed intake air also to the part corresponding to angle α, compressed intake air is ejected in two directions as shown in Fig. 5. What is necessary is to provide a spouting part 15' that does this.

第6図に示す実施例は副吸気通路18に絞弁7を配置し
たものである(ポンプ、ポンプ通路、ポンプ絞弁等は省
略してある)。
The embodiment shown in FIG. 6 has a throttle valve 7 disposed in the sub-intake passage 18 (the pump, pump passage, pump throttle valve, etc. are omitted).

この場合、閉鎖弁16は絞弁7と機械的に連動させる様
にするのが良く、吸気通路6には絞弁を備えていないか
ら閉鎖弁16がこの代用となる。
In this case, it is preferable that the closing valve 16 is mechanically interlocked with the throttle valve 7, and since the intake passage 6 is not provided with a throttle valve, the closing valve 16 serves as a substitute for this valve.

次に、ポンプ10に吸入される吸気流量(ポンプ10が
吐出する吸気流量)を制御する方法としては、ポンプ通
路11(吸入側)に備えられたポンプ絞弁12を開閉す
る他に、第7図に示す如くポンプ通路11(吐出側)に
ポンプ絞弁12を備え、これを開閉させる方法がある。
Next, as a method of controlling the intake flow rate sucked into the pump 10 (the intake flow rate discharged by the pump 10), in addition to opening and closing the pump throttle valve 12 provided in the pump passage 11 (suction side), As shown in the figure, there is a method in which a pump throttle valve 12 is provided in the pump passage 11 (discharge side) and the valve is opened and closed.

即ち、閉鎖弁(図示せず)が閉鎖した機関の低(中)負
荷域においてはポンプ絞弁12を閉鎖(全開)すると共
に、ポンプ循環通路20に備えられたポンプ循環弁21
を全開させる様にしているのである。
That is, in the low (medium) load range of the engine when the shutoff valve (not shown) is closed, the pump throttle valve 12 is closed (fully opened), and the pump circulation valve 21 provided in the pump circulation passage 20 is closed.
This is done in such a way that it is fully opened.

これにより、ポンプ10の吸入吸気流量(吐出吸気流量
)は0となり、ポンプ10の駆動馬力損失もほぼ0とな
る。
As a result, the intake flow rate (discharge intake flow rate) of the pump 10 becomes 0, and the drive horsepower loss of the pump 10 also becomes almost 0.

この場合、絞弁と機械的に連動する閉鎖弁(共に図示せ
ず)が開き始めた後に、ポンプ絞弁12を開き始める様
にし、ポンプ循環弁21に関してはポンプ絞弁12が規
定開度まで開いた後に、全開状態から急速に閉鎖させる
様にするのが良い。
In this case, the pump throttle valve 12 starts to open after the shutoff valve (both not shown) mechanically interlocked with the throttle valve starts to open, and the pump throttle valve 12 starts to open until the pump circulation valve 21 reaches the specified opening. After opening, it is preferable to quickly close it from the fully open state.

そしてポンプ循環弁21は、例えば絞弁(図示せず)の
下流側の負圧を感知して作動するダイアフラム装置22
により開閉させる様にするのである。
The pump circulation valve 21 includes a diaphragm device 22 that operates by sensing negative pressure downstream of a throttle valve (not shown), for example.
It is made to open and close by.

第7図においては、吐出側のポンプ通路11の圧力は大
気圧か又は正圧であるから、これを絞弁下流側に導いて
燃料の微粒化を促進する事ができる。
In FIG. 7, since the pressure in the pump passage 11 on the discharge side is atmospheric pressure or positive pressure, this can be guided to the downstream side of the throttle valve to promote atomization of the fuel.

これを第8,9図に示す。This is shown in Figures 8 and 9.

先ず第8図において、23は第7図におけるポンプ通路
11(吐出側)から導びかれてくる吸気が噴出するノズ
ルで、ノズル23から噴出する高速気流によって燃料噴
射弁9から噴射された燃料が微粒化される様になってい
る。
First, in FIG. 8, 23 is a nozzle from which the intake air guided from the pump passage 11 (discharge side) in FIG. It appears to be atomized.

この場合、作動室を4個有する内燃機関では図示の如く
燃料噴射弁9を2個備えれば、各作動室に燃料を均等に
分配する事ができる(通常は燃料噴射弁9を4個必要と
する)。
In this case, in an internal combustion engine having four working chambers, if two fuel injection valves 9 are provided as shown in the figure, fuel can be evenly distributed to each working chamber (normally, four fuel injection valves 9 are required). ).

次に第9図は、燃料供給装置として気化器も使用した実
施例において、第7図におけるポンプ通路11(吐出側
)から導びかれてくる吸気をノズル23から高速度で噴
出させる事によって、気化器直下部壁面に付着した液状
燃料を再び微粒化しようとしたものである。
Next, FIG. 9 shows an embodiment in which a carburetor is also used as the fuel supply device, and by jetting the intake air led from the pump passage 11 (discharge side) in FIG. 7 at a high speed from the nozzle 23, This is an attempt to re-atomize the liquid fuel adhering to the wall directly below the carburetor.

ノズル23から吸気が高速度で噴出すると、先ず周囲の
圧力まで減圧され、続いてそれ自身のもつ速度エネルギ
ーによって周囲の圧力よりも低くなって燃料ノズル24
から燃料を吸い上げ、これを微粒化する事ができるので
ある。
When the intake air is ejected from the nozzle 23 at a high velocity, it is first reduced to the ambient pressure, and then the pressure becomes lower than the ambient pressure due to its own velocity energy, and the fuel nozzle 24
It is possible to suck up fuel from the air and atomize it.

26は気化器フロート室からの燃料が噴出する墳口で、
機関の要求混合比を適正にしている。
26 is the mound from which the fuel from the float chamber of the carburetor is spouted;
The engine's required mixture ratio is appropriate.

尚、ポンプ通路11(吸入側)を二点鎖線示の如く絞弁
7とベンチョリ部25との間に接続する様にすれば、墳
口26を省略する事ができる。
Incidentally, if the pump passage 11 (suction side) is connected between the throttle valve 7 and the ventori part 25 as shown by the two-dot chain line, the mound 26 can be omitted.

本発明は以上の如く構成されているので、機関の低(中
)負荷域における吸気抵抗損失を大幅に低減させる事が
でき、ポンプの駆動馬力損失によって高負荷域では燃費
が悪化するにもかかわらず、全体としては機関の燃費は
改善される。
Since the present invention is configured as described above, it is possible to significantly reduce the intake resistance loss in the low (medium) load range of the engine, and even though the fuel consumption deteriorates in the high load range due to the drive horsepower loss of the pump. Overall, the fuel efficiency of the engine is improved.

尚、本発明はロータリピストン機関にも同様に適用され
るものである。
Note that the present invention is similarly applicable to rotary piston engines.

【図面の簡単な説明】[Brief explanation of the drawing]

第1・6図は本発明による内燃機関の断面図,第2図は
吸気遮断弁近傍のポンプ通路の断面図,第3図はP‐V
線図,第4・5・8図は本発明による内燃機関の図(略
図的に描いた平面図),第7図はポンプの断面図,第9
図は気化器の断面図、1はピストン,2はシリンダー,
3は作動室,4は吸気弁,5は排気弁,6は吸気通路,
7は絞弁,8はエアフローメーター,9は燃料噴射弁,
10はポンプ,11はポンプ通路,12はポンプ絞弁,
13は吸気遮断弁,14は連通部,15・15′は噴出
部,16は閉鎖弁,17は分岐部,18は副吸気通路,
19は閉鎖部,20はポンプ循環通路,21はポンプ循
環弁,22はダイアフラム装置,23はノズル,24は
燃料ノズル,25はベンチュリ部,26は墳口である。 特許出願人 北村修■
Figures 1 and 6 are cross-sectional views of the internal combustion engine according to the present invention, Figure 2 is a cross-sectional view of the pump passage near the intake shutoff valve, and Figure 3 is the P-V
Figures 4, 5 and 8 are diagrams (schematically drawn plan views) of the internal combustion engine according to the invention, Figure 7 is a sectional view of the pump, Figure 9 is
The figure is a cross-sectional view of the carburetor, 1 is the piston, 2 is the cylinder,
3 is a working chamber, 4 is an intake valve, 5 is an exhaust valve, 6 is an intake passage,
7 is a throttle valve, 8 is an air flow meter, 9 is a fuel injection valve,
10 is a pump, 11 is a pump passage, 12 is a pump throttle valve,
13 is an intake cutoff valve, 14 is a communication part, 15 and 15' are jet parts, 16 is a closing valve, 17 is a branch part, 18 is a sub-intake passage,
19 is a closing part, 20 is a pump circulation passage, 21 is a pump circulation valve, 22 is a diaphragm device, 23 is a nozzle, 24 is a fuel nozzle, 25 is a venturi part, and 26 is a burial mound. Patent applicant Osamu Kitamura■

Claims (1)

【特許請求の範囲】[Claims] (1)機関の作動室との接続部を有する吸気通路と,こ
の接続部からあまり離れていない上流側の位置に形成さ
れた噴出部とを備え、かつ機関に吸入される吸気を絞っ
て出力を制御する内燃機関であり、吸気工程における機
関の作動室の容積が最大となる時期の近傍からこの作動
室と前記吸気通路との連通が遮断される時期の近傍まで
の期間に一定期間ポンプから圧送されてくる吸気を吸気
遮断弁を介して前記噴出部から噴出させる様にした内燃
機関において、前記吸気通路の所定位置に閉鎖弁を備え
、少なくとも機関の低負荷域にはこの閉鎖弁を閉鎖して
おく様にし、更にこの閉鎖弁をバイパスして前記作動室
へ通ずる副吸気通路を前記吸気遮断弁によって吸気行程
の中途で閉鎖せしめる様にし、かつ前記閉鎖弁が閉鎖し
ている時には吸気遮断弁の副吸気通路の閉鎖後はポンプ
からの吸気を前記作動室へ吸入させない様にした事を特
徴とする内燃機関。
(1) Equipped with an intake passage that has a connection to the working chamber of the engine, and a jetting part formed at a position not too far upstream from this connection, and which throttles the intake air taken into the engine and outputs it. It is an internal combustion engine that controls the pump for a certain period of time from around the time when the volume of the working chamber of the engine reaches its maximum during the intake stroke to around the time when communication between this working chamber and the intake passage is cut off. In an internal combustion engine, the intake air is forced to be ejected from the ejection portion via an intake cutoff valve, and the intake passage is provided with a closing valve at a predetermined position, and the closing valve is closed at least in a low load region of the engine. Further, this closing valve is bypassed and the auxiliary intake passage leading to the working chamber is closed in the middle of the intake stroke by the intake shutoff valve, and when the closing valve is closed, the intake is shut off. An internal combustion engine characterized in that after the sub-intake passage of the valve is closed, intake air from the pump is not drawn into the working chamber.
JP57078968A 1982-05-11 1982-05-11 Internal-combustion engine Pending JPS58195018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57078968A JPS58195018A (en) 1982-05-11 1982-05-11 Internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57078968A JPS58195018A (en) 1982-05-11 1982-05-11 Internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS58195018A true JPS58195018A (en) 1983-11-14

Family

ID=13676696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57078968A Pending JPS58195018A (en) 1982-05-11 1982-05-11 Internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58195018A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3515043A1 (en) * 1984-04-27 1985-11-07 Mazda Motor Corp., Hiroshima INTERNAL COMBUSTION ENGINE WITH FUEL INJECTION
DE3631474A1 (en) * 1985-09-17 1987-03-26 Mazda Motor INTAKE SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
US4700676A (en) * 1985-01-07 1987-10-20 Nissan Motor Co., Ltd. Intake control device
DE3713628A1 (en) * 1986-04-25 1987-11-05 Mazda Motor INTAKE SYSTEM FOR COMBUSTION ENGINES
FR2690713A1 (en) * 1992-04-30 1993-11-05 Renault IC engine fuel and air inlet system - includes inlet duct connected by main duct to inlet manifold chamber, with auxiliary duct between main duct and inlet port

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3515043A1 (en) * 1984-04-27 1985-11-07 Mazda Motor Corp., Hiroshima INTERNAL COMBUSTION ENGINE WITH FUEL INJECTION
US4700676A (en) * 1985-01-07 1987-10-20 Nissan Motor Co., Ltd. Intake control device
DE3631474A1 (en) * 1985-09-17 1987-03-26 Mazda Motor INTAKE SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
DE3713628A1 (en) * 1986-04-25 1987-11-05 Mazda Motor INTAKE SYSTEM FOR COMBUSTION ENGINES
FR2690713A1 (en) * 1992-04-30 1993-11-05 Renault IC engine fuel and air inlet system - includes inlet duct connected by main duct to inlet manifold chamber, with auxiliary duct between main duct and inlet port

Similar Documents

Publication Publication Date Title
US7174883B2 (en) Intake-negative-pressure-increasing apparatus for engine
US4677826A (en) Outboard motor with turbo-charger
US5488933A (en) Fuel supply system for miniature engines
JPS6223544A (en) Method and device for injecting fuel of two-cycle engine
US4484549A (en) 4-Cycle internal combustion engine
JP2000097130A (en) Fuel and air feeding device for fuel injection engine
ITRM940666A1 (en) EMISSION CONTROL SYSTEM FOR SMALL ENGINES
JPH04101018A (en) Diesel engine with direct injection
JPS58195018A (en) Internal-combustion engine
JPS5916519Y2 (en) Fuel supply stop device for gasoline internal combustion engines
CN101205828A (en) Intake manifold assembly
JPH0118838Y2 (en)
JPS6218645Y2 (en)
JPS5830096Y2 (en) Mixture stirring device for internal combustion engine combustion chamber
JPS593111A (en) Internal combustion engine
JPS58152122A (en) Suction device for internal-combustion engine
JPS603340Y2 (en) Fuel injection engine intake system
JPS6218646Y2 (en)
JPS595768B2 (en) Forced scavenging internal combustion engine
JP2788484B2 (en) Apparatus and method for pressurizing and introducing mixed fuel into engine cylinder
KR840001790Y1 (en) Suction device for engine
JPH0118839Y2 (en)
JPS5987230A (en) 2-cycle engine
JPS6361495B2 (en)
JPH0968046A (en) Suction device of internal combustion engine