JPS595768B2 - Forced scavenging internal combustion engine - Google Patents

Forced scavenging internal combustion engine

Info

Publication number
JPS595768B2
JPS595768B2 JP51133856A JP13385676A JPS595768B2 JP S595768 B2 JPS595768 B2 JP S595768B2 JP 51133856 A JP51133856 A JP 51133856A JP 13385676 A JP13385676 A JP 13385676A JP S595768 B2 JPS595768 B2 JP S595768B2
Authority
JP
Japan
Prior art keywords
air
internal combustion
valve
auxiliary intake
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51133856A
Other languages
Japanese (ja)
Other versions
JPS5359123A (en
Inventor
泰夫 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP51133856A priority Critical patent/JPS595768B2/en
Priority to CA290,288A priority patent/CA1098390A/en
Priority to US05/849,509 priority patent/US4217866A/en
Priority to DE19772749730 priority patent/DE2749730A1/en
Priority to AU30470/77A priority patent/AU504113B1/en
Publication of JPS5359123A publication Critical patent/JPS5359123A/en
Publication of JPS595768B2 publication Critical patent/JPS595768B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は内燃機関の吸気系を2系統に分け、排気行程か
ら吸入行程にかけて第2吸気系から加圧空気を導入し、
シリンダ内の残留ガスを掃気すると共に、吸気にスワー
ルを与えつつこの加圧空気を含めた混合気の空燃比を出
力空燃比にすることによりエンジン重量当りの出力、特
に低速出力の向上、燃料経済性及び排気性能の向上を図
るようにした強制掃気内燃機関に関する。
Detailed Description of the Invention The present invention divides the intake system of an internal combustion engine into two systems, introduces pressurized air from the second intake system from the exhaust stroke to the intake stroke,
By scavenging the residual gas in the cylinder and giving a swirl to the intake air, the air-fuel ratio of the air-fuel mixture including this pressurized air becomes the output air-fuel ratio, which improves the output per engine weight, especially low-speed output, and improves fuel economy. The present invention relates to a forced scavenging internal combustion engine designed to improve performance and exhaust performance.

従来、内燃機関の吸気系を2系統に分け、主吸気弁と第
2の補助吸気弁とを設け、主吸気弁からは通常の混合気
を吸入すると共に、補助吸気弁からは大気または混合気
を、機関吸入行程で吸入し、燃焼室内に部分的に濃い混
合気と薄い混合気とを存在させ、とくに点火栓の近辺は
濃い混合気となるように弁配置を考慮し、全体として平
均すると希薄混合気を効率的に燃焼させ、機関の排気対
策の改善をはかるようにした出願は既に数多く提出され
ている。
Conventionally, the intake system of an internal combustion engine is divided into two systems, with a main intake valve and a second auxiliary intake valve.The main intake valve takes in normal air-fuel mixture, and the auxiliary intake valve takes in atmospheric air or air-fuel mixture. is inhaled during the engine intake stroke, and the valve arrangement is considered so that there is a partially rich mixture and a lean mixture in the combustion chamber, and the mixture is particularly rich near the ignition plug, and on average as a whole. A number of applications have already been submitted to efficiently burn lean air-fuel mixtures and improve engine exhaust measures.

また、同じような構造のもとで機関の膨張行程で燃焼室
内に補助弁を介して二次空気を導入し、排気ポートに排
気が排出される前に有害なhe、c。
In addition, with a similar structure, secondary air is introduced into the combustion chamber through an auxiliary valve during the engine's expansion stroke, and harmful he, c is generated before the exhaust gas is discharged to the exhaust port.

を燃焼させるようにした機関もある。There are also engines that burn .

これらのうち、前者は部分負荷時、とくに大気圧下より
補助混合気を吸入しているので、低負荷、低回転域で稀
薄混合気運転の効果は認められるが、シリンダ内に残留
ガスが大量に残っている1こめアイドリンク、減速域の
燃焼不安定が充分解決されていない。
Of these, in the former case, the auxiliary mixture is taken in at partial load, especially under atmospheric pressure, so the effect of lean mixture operation is recognized in the low load and low rotation range, but a large amount of residual gas remains in the cylinder. The remaining idle link and combustion instability in the deceleration region have not been sufficiently resolved.

また後者は、十分に吟味された実験の結果、排気ポート
に二次空気を導入する効果とほとんど変らないことが分
かった。
Further, as a result of thorough experiments, it was found that the latter has almost the same effect as introducing secondary air into the exhaust port.

そして両者共高負荷時の出力燃費の改善は全く考慮され
ていない。
In both cases, improvement in output fuel efficiency under high loads is not considered at all.

また残留ガスの掃気のみを目的として、排気行程に単に
加圧空気を燃焼室に供給するものがあるがこのものでは
掃気は可能とするも稀薄混合気の燃焼を可能とすること
はできない。
There is also a system that simply supplies pressurized air to the combustion chamber during the exhaust stroke for the sole purpose of scavenging residual gas, but although this allows scavenging, it cannot burn a lean air-fuel mixture.

そこで本発明は、これらと同じく吸気系を2系統に分け
るのだが、一方の補助吸気系からは、加圧空気を排気行
程から吸気行程にかけてスワールを生ずるように噴射導
入し、シリンダ内の残留ガスを確実に追い出し、部分負
荷時、及びアイドル、減速時の燃焼の効率化による燃費
、排気性能の改善をはかると共に、全開出力時は加圧空
気の追加による出力向上をはかるようにした強制掃気内
燃機関を提供するものである。
Therefore, in the present invention, the intake system is divided into two systems like these, but pressurized air is injected from one auxiliary intake system so as to create a swirl from the exhaust stroke to the intake stroke, and the residual gas in the cylinder is Forced scavenging internal combustion improves fuel efficiency and exhaust performance by making combustion more efficient during partial loads, idling, and deceleration, and improves output by adding pressurized air at full throttle output. It provides institutions.

以下実施例をあげて本発明を説明する。The present invention will be explained below with reference to Examples.

第1図及び第2図において、1は燃焼室、2は通常の混
合気が供給される主吸気ボート、3はこの主吸気ボート
2を開閉する主吸気弁、4は点火栓、5は排気ポートで
6は排気ポート5を開閉する排気弁、7は前記吸気ボー
ト2とは別系統に設けた補助吸気ボート、8はこの補助
吸気ボート7を開閉する補助吸気弁で、後述する加圧空
気供給装置からの空気を、機関排気行程から吸気行程に
かけて燃焼室1内に噴射供給して燃焼室1内の残留排気
カスな排気ポート5から排出する。
In Figures 1 and 2, 1 is a combustion chamber, 2 is a main intake boat to which normal air-fuel mixture is supplied, 3 is a main intake valve that opens and closes this main intake boat 2, 4 is a spark plug, and 5 is an exhaust gas. In the ports, 6 is an exhaust valve that opens and closes the exhaust port 5, 7 is an auxiliary intake boat provided in a separate system from the intake boat 2, and 8 is an auxiliary intake valve that opens and closes this auxiliary intake boat 7, which will be described later. Air from the supply device is injected and supplied into the combustion chamber 1 from the engine exhaust stroke to the intake stroke, and residual exhaust residue in the combustion chamber 1 is discharged from the exhaust port 5.

第1図において、9は排気管、10は補助吸気管であり
、ま1こ11はピストン、12はシリンダーベッドな示
す。
In FIG. 1, 9 is an exhaust pipe, 10 is an auxiliary intake pipe, 11 is a piston, and 12 is a cylinder bed.

そして加圧空気の供給装置として、機関のクランク軸に
同期して駆動されるエアーポンプ13が設けられ、エア
ークリーナ14を介して吸い込んだ空気をチェック弁1
5を経てサージタンク16に送り込み、さらに空気流量
制御装置17から前記補助吸気管10に、すくなくとも
大気圧以上に加圧され1こ空気(実験によると、1.2
〜2.0ky/i程度に加圧した場合が機関出力損失を
も考慮し1こ5えから効果的であった)を圧送する。
As a pressurized air supply device, an air pump 13 driven in synchronization with the crankshaft of the engine is provided, and air sucked in via an air cleaner 14 is supplied to the check valve 1.
5 to the surge tank 16, and then from the air flow control device 17 to the auxiliary intake pipe 10, the air is pressurized to at least atmospheric pressure or higher (according to experiments, 1.2
When pressurized to about 2.0 ky/i, it was effective from 1 to 5 considering engine output loss).

空気流量制御装置17は機関回転数、吸入負圧、ベンチ
ュリ負圧、排圧、スロットル開度、ま1こは吸入空気量
測定装置(例えば電子燃料噴射装置におけるエアフロー
メータの出力ま1こは燃料噴射出力)などの信号(また
はこれらのいずれかの組合せ、例えば機関回転数と吸入
負圧の組合せ信号)にもとづいて、補助吸気弁8から導
入する空気量をコントロールする。
The air flow control device 17 measures engine speed, suction negative pressure, venturi negative pressure, exhaust pressure, throttle opening, and an intake air amount measuring device (for example, the output of an air flow meter in an electronic fuel injection device). The amount of air introduced from the auxiliary intake valve 8 is controlled based on signals such as (injection output) (or any combination of these, for example, a combined signal of engine speed and suction negative pressure).

そしてこの空気量は、シリンダ内残留ガスを好ましくは
完全に追い出せるに十分な量、従ってその必要最小量は
残留ガスに等しい量となる。
The amount of air is preferably sufficient to completely expel the residual gas in the cylinder, and therefore the minimum required amount is equal to the residual gas.

吸入空気量に対するシリンダ内残留ガスの割合は機関の
負荷によって変化し、一般にはバルブオーバーラツプの
ためアイドルでは15〜30%、減速時では30係以上
と吸排気系にも残留することにより多いものになり、高
速高負荷時には吸排気の慣性により3〜8受程度と少な
いものになるから、後述する吸、排気弁のバルブタイミ
ングなども考慮した上で、前記空気量を適正な範囲にコ
ントロールするように決定する。
The ratio of residual gas in the cylinder to the amount of intake air changes depending on the engine load, and is generally 15-30% at idle due to valve overlap, and 30% or more during deceleration, due to residual gas remaining in the intake and exhaust system. At high speeds and high loads, the amount of air is as low as 3 to 8 due to the inertia of the intake and exhaust valves, so the amount of air should be controlled within an appropriate range by considering the valve timing of the intake and exhaust valves, which will be described later. Decide to do so.

したがって、具体的には吸入空気量を間接的に表わす前
記信号にもとづいて、空気流量制御装置17の加圧空気
通路面積を制御する。
Therefore, specifically, the pressurized air passage area of the air flow rate control device 17 is controlled based on the signal indirectly representing the amount of intake air.

そのようにすることによって同じ吸入空気量でも残留ガ
スの多い低負荷域に加圧空気が多く導入され、精密に残
留ガスに置換できる分の加圧空気の導入が可能となる。
By doing so, even if the amount of intake air is the same, a large amount of pressurized air is introduced into the low load area where there is a lot of residual gas, and it becomes possible to introduce enough pressurized air to accurately replace the residual gas.

次に、第2図イ50、ハに示すように、主吸気弁3、排
気弁6及び補助吸気弁8の配置は、シリンダ列中心線を
境にして、主吸気弁3と補助吸気弁8を同一サイド〔第
2図イ及びハ〕または異つ1こサイド〔第2図口〕に配
してもよい。
Next, as shown in FIG. They may be placed on the same side (Fig. 2 A and C) or on different sides (Fig. 2 Opening).

そして、補助吸気弁8からの加圧空気が、燃焼室1内で
渦流(スワール)を生じるヨウに、案内手段18を補助
吸気弁8もしくは補助吸気ボート7に形成する〔第2図
イ及びハ〕。
Then, as the pressurized air from the auxiliary intake valve 8 generates a swirl within the combustion chamber 1, a guide means 18 is formed on the auxiliary intake valve 8 or the auxiliary intake boat 7 [Fig. ].

第2図イは、案内手段18(シュラウド18a)を補助
吸気弁7に設け、矢印で示すように渦流(スワール)を
起こさせ、シリンダ内残留ガスの追い出しを殆ど全部に
わたって効率よく行い、同時に主吸気弁3からの混合気
流にも渦流を生じさせ、乱れを起こして燃焼速度な速く
し燃焼効率の向上を図る。
In Fig. 2A, a guide means 18 (shroud 18a) is provided on the auxiliary intake valve 7 to generate a swirl as shown by the arrow, efficiently expelling residual gas from almost the entire cylinder, and at the same time the main intake valve 7. A vortex is also generated in the air-fuel mixture flowing from the intake valve 3, causing turbulence and increasing the combustion speed to improve combustion efficiency.

第2図ハは、補助吸気ボート7を平面的にみて湾曲させ
ると共に、垂直面における燃焼室1への流入角を可及的
に小さくして、渦流発生用の案内手段18bとする。
In FIG. 2C, the auxiliary intake boat 7 is curved in plan view, and the angle of inflow into the combustion chamber 1 in the vertical plane is made as small as possible to form a guide means 18b for generating a vortex flow.

第2図口は図のように吸排気弁3,5及び補助吸気弁8
を配置したから、特にスワール手段を設けなくとも、自
然にスワールを生じ前述の目的を達するものである。
Figure 2 The ports are intake and exhaust valves 3, 5 and auxiliary intake valve 8 as shown in the figure.
Because of this arrangement, a swirl is generated naturally and the above-mentioned purpose can be achieved without the need for any special swirl means.

補助吸気弁8からの吸入効率は直接的に機関出力に及ぼ
す影響が少ないので、これらの渦流発生案内手段18の
取付けによりその吸入効率が下っても、出力の低下はほ
とんどみられず、したがって、主吸気弁3側からの吸入
混合気に対しては、もっばら吸入効率を上げるように努
め、補助加圧空気によって上記のように混合気流にスワ
ールを生起させれば、燃焼効率が著しく改善できる。
The suction efficiency from the auxiliary intake valve 8 has little direct effect on the engine output, so even if the suction efficiency decreases due to the installation of these vortex generation guide means 18, there is almost no decrease in the output, and therefore, Combustion efficiency can be significantly improved by making every effort to increase the intake efficiency of the air-fuel mixture taken in from the main intake valve 3 side, and by creating a swirl in the air-fuel mixture flow as described above using auxiliary pressurized air. .

第3図、第4図に示すように、補助吸気弁8は排気行程
の後半から開き始め、排気弁6の閉じるまでの間に残留
ガスを燃焼室1内から追い出し、吸気行程の前半にて閉
弁する。
As shown in FIGS. 3 and 4, the auxiliary intake valve 8 begins to open in the latter half of the exhaust stroke, expelling residual gas from the combustion chamber 1 until the exhaust valve 6 closes, and in the first half of the intake stroke. Close the valve.

上記のようにほぼ吸入空気量および吸入負圧の関数であ
る残留ガス量を精密に加圧空気で置換できる1こめ加圧
空気量の変化による空燃比の変化や残留ガス量の変化が
なくなり、特にそれらの変化がエンジンの性能におよぼ
す影響の大きくあられれるリーン域での運転が可能とな
る。
As mentioned above, the residual gas amount, which is approximately a function of the intake air amount and suction negative pressure, can be precisely replaced with pressurized air.1 This eliminates changes in the air-fuel ratio and residual gas amount due to changes in the pressurized air amount. In particular, it becomes possible to operate in a lean region where these changes have a large effect on engine performance.

なお、機関の出力向上をはかるには、この補助吸気弁8
の閉弁時期を遅らせ、後述するように燃焼室1内の空気
量ン増大させるとよい。
In addition, in order to improve the output of the engine, this auxiliary intake valve 8
It is preferable to delay the valve closing timing and increase the amount of air in the combustion chamber 1 as described later.

ま1こ、主吸気弁3の開弁時期は通常の機関とほぼ同一
か僅かに遅らせる。
First, the opening timing of the main intake valve 3 is approximately the same as in a normal engine or slightly delayed.

とくに掃気の悪い型式の機関では、排気弁6の閉弁時期
を遅らせると良い結果が得られる。
Especially for engines with poor scavenging, good results can be obtained by delaying the closing timing of the exhaust valve 6.

好ましくは、第8図に示すように、補助吸気弁8の開閉
時期(あるいは主吸気弁3、排気弁6の相対的バルブタ
イミング)を可変として、全開出力時は部分負荷時に比
較して排気弁6とのオーバラップ時間を長く、かつ開弁
期間も長く設定し、全開出力時の出力増大と、部分負荷
時の排気性能、燃費の改善ヲはかるとよい。
Preferably, as shown in FIG. 8, the opening/closing timing of the auxiliary intake valve 8 (or the relative valve timing of the main intake valve 3 and exhaust valve 6) is made variable, so that the exhaust valve is lower when fully open than when under partial load. It is preferable to set the overlap time with 6 and the valve opening period to be long to increase output at full open output and improve exhaust performance and fuel efficiency at partial load.

なお、このバルブタイミングの変化はカム軸を摺動可能
とし、かつカム面をこの摺動力向に傾斜させることなど
の公知の手段により実現できる。
Note that this change in valve timing can be realized by known means such as making the camshaft slidable and tilting the cam surface in the direction of the sliding force.

次に作用を含めてさらに詳しく説明する。Next, it will be explained in more detail, including its effect.

機関の排気行程から吸気行程にかけて補助吸気弁8が開
き、補助吸気管10からすくなくとも大気圧以上に加圧
された空気が燃焼室1内に供給される。
The auxiliary intake valve 8 opens from the exhaust stroke to the intake stroke of the engine, and air pressurized to at least atmospheric pressure is supplied into the combustion chamber 1 from the auxiliary intake pipe 10.

この1こめ、シリンダ内の燃焼ガスはこの加圧空気によ
って追い出され、排気弁6が閉じるときにはほとんど残
留ガスはなくなり新気に置換される。
At this moment, the combustion gas in the cylinder is expelled by this pressurized air, and when the exhaust valve 6 closes, almost no residual gas remains and is replaced with fresh air.

燃焼に関与しない残留ガスが減少すれば、それだけ燃焼
効率が向上し、以下に分設するような効果を生じる。
As the residual gas that does not participate in combustion decreases, the combustion efficiency improves accordingly, producing the effects described below.

まず、機関の全開出力時においては、一般にシリンダ内
残留ガスは、低速回転域に10係以上と多く低速トルク
の低下原因となる一方、高速回転域では3〜8係とそれ
ほど多くはない。
First, when the engine is at full throttle output, the residual gas in the cylinder is generally 10 or more in the low-speed rotation range, causing a reduction in low-speed torque, while it is not so large in the high-speed rotation range, at 3 to 8 ratio.

しかるに、主吸気ボート2から混合気が本格的に吸入さ
れる前に残留ガスをほとんど追い出し、残留ガスとして
残存する分の新気(空気)を含めて燃焼室1内での混合
気が出力空癲比(A/Fキ12〜14)となるように、
予め主混合気を全開出力時に過濃に設定しておくと、1
回の爆発によるエネルギはその分だけ増大するため、第
6図のように、従来に比べてそのトルクも増加する。
However, before the air-fuel mixture is fully taken in from the main intake boat 2, most of the residual gas is expelled, and the air-fuel mixture in the combustion chamber 1, including the fresh air that remains as residual gas, becomes the output air. So that the ratio is (A/F Ki 12-14),
If the main mixture is set in advance to be too rich at full throttle output, 1
Since the energy generated by the explosion increases accordingly, the torque also increases compared to the conventional one, as shown in FIG.

実験によれば、低速トルクが5〜15受、最大トルクも
5係程度増太し、このことはシリンダ行程容積を5〜1
5%増加し1こことに相当し、機関重量に比して出力の
大きい非常に実用的な使いやすい機関となる。
According to experiments, the low speed torque increases by 5 to 15 times, and the maximum torque increases by about 5 factors, which means that the cylinder stroke volume increases by 5 to 1 factor.
This corresponds to an increase of 5% by 1, making it a very practical and easy-to-use engine with a large output compared to the engine weight.

次に部分負荷時は、とくにNOxの低減をはかる意味で
、排気還流を併用することが好ましいのだが、シリンダ
内残留ガスがほとんど存在しないので、燃焼室1内での
実質的な排気還流率の制御が、排気還流通路の流量制御
にほとんど起因するようになり、したがって残留ガスに
もとづく変動が少なくなり、機関安定性を損わずに効果
的なNOx低減をはかれる。
Next, during partial load, it is preferable to use exhaust recirculation, especially in the sense of reducing NOx, but since there is almost no residual gas in the cylinder, the actual exhaust recirculation rate in the combustion chamber 1 is reduced. The control is now largely due to flow control in the exhaust recirculation passage, thus reducing fluctuations due to residual gas and providing effective NOx reduction without compromising engine stability.

そして、部分負荷時は後述のように加圧空気流によるス
ワールの発生があるため稀薄混合気燃焼による燃費の改
善とnc 、coの低減をねらいとする。
Since swirl occurs due to pressurized air flow during partial load as will be described later, the aim is to improve fuel efficiency and reduce nc and co through lean mixture combustion.

このため、主吸気ボート2から吸入される混合気は、前
述の全開出力運転時のように濃くはせず、残留ガスと置
換される空気を含めて、燃焼室1内において理論空燃比
よりも薄い混合気が得られるように設定しておく。
Therefore, the air-fuel mixture taken in from the main intake boat 2 is not as rich as in the case of full-open power operation described above, and the air-fuel ratio in the combustion chamber 1, including the air replaced with residual gas, is higher than the stoichiometric air-fuel ratio. Set it so that you get a lean mixture.

稀薄混合気の燃焼は、第2図イ20及びハのように、補
助吸気弁8から流入する加圧空気にスワール及び乱れを
与えることにより、燃焼速度が速くなり安定して行われ
る。
Combustion of the lean air-fuel mixture is performed stably by giving swirl and turbulence to the pressurized air flowing in from the auxiliary intake valve 8, as shown in FIG.

また、理論空燃比よりも薄くするので、排気系に二次空
気を導入しなくてもRe、Coの酸化作用を生じる。
Furthermore, since the air-fuel ratio is made thinner than the stoichiometric air-fuel ratio, the oxidation effect of Re and Co occurs without introducing secondary air into the exhaust system.

残留ガスのない分だけ燃焼が速(なり、し1こがって燃
費率は向上する。
Since there is no residual gas, combustion is faster, which improves fuel efficiency.

NOxの低減効果に関して、比較的高温の残留ガスをほ
ぼ常温の外気に置換するので、混合気温度の上昇分が小
さくなり、同じ燃焼速度ならば燃焼最高温度が低下する
ため、NOxの発生がその分だけ抑制される。
Regarding the effect of reducing NOx, since the relatively high temperature residual gas is replaced with outside air at almost room temperature, the increase in the mixture temperature becomes smaller, and if the combustion speed remains the same, the maximum combustion temperature decreases, so the generation of NOx is reduced. will be suppressed by that amount.

なお、全開出力時と部分負荷時で主混合気の空燃比を変
えるのは、通常の内燃機関と同じようなパワーパルプ装
置等の制御により行うことができ、1こだ、残留ガスに
置換される新気に対応しての空燃比制御(従来は吸入混
合気のみの空燃比を制御)の点が若干具っていると言え
る。
In addition, changing the air-fuel ratio of the main air-fuel mixture between full throttle output and partial load can be done by controlling a power pulp device, etc., similar to a normal internal combustion engine, and one echo is replaced by residual gas. It can be said that there are some improvements in air-fuel ratio control (conventionally, the air-fuel ratio of only the intake air-fuel mixture was controlled) in response to fresh air.

機関アイドリンク時や減速時のように、吸入負圧が大き
くてシリンダ残留ガスが約15〜30%と増大すると燃
焼室1内に占める可燃混合気の割合が減少し、機関は安
定性を失いがちで失火しやすくなる。
When the suction negative pressure is large and the residual gas in the cylinder increases to about 15-30%, such as when the engine is idling or decelerating, the proportion of combustible air-fuel mixture in the combustion chamber 1 decreases, and the engine loses stability. This makes it easy to misfire.

このため従来の機関では混合気を薄くすることは困難で
、通常の実用的空燃比限界は、理論空燃比程度である。
For this reason, it is difficult to make the air-fuel mixture lean in conventional engines, and the practical air-fuel ratio limit is usually around the stoichiometric air-fuel ratio.

しかるに、本発明によればこのように急増する残留ガス
をすっかり新気と置換できるので、前述した部分負荷時
と同じ理由により、燃焼を安定させ燃費も第7図のよう
に従来に比べて数段と向上する。
However, according to the present invention, this rapidly increasing residual gas can be completely replaced with fresh air, so for the same reason as in the case of partial load mentioned above, combustion is stabilized and fuel consumption is reduced by several times compared to the conventional method as shown in Figure 7. Improve step by step.

なお、部分負荷時を含めてとくにアイドリンク時や減速
時は、燃焼の安定性を高める目的で、主吸気ボート2か
ら吸入する混合気の吸入時期を、主吸気弁3が上死点も
しくはそれよりも遅く開き始めるように設定することに
より、残留ガスが確実に追い出されるのをまって、シリ
ンダ内で残留カスと混合するのを可及的に減じ、また、
補助吸気弁8の開き終わりも、全開出力時に比較して遅
らせることにより、吸入行程の終了附近まで加圧空気を
吹き、混合気流にスワール、乱れを起こしやすく、燃焼
を速めてやる。
In addition, in order to improve combustion stability, especially during idling and deceleration, including during partial load, the main intake valve 3 adjusts the intake timing of the air-fuel mixture taken in from the main intake boat 2 to or from top dead center. By setting the cylinder to start opening later than the cylinder, it is possible to wait for the residual gas to be expelled and reduce mixing with residual gas in the cylinder as much as possible.
By delaying the end of opening of the auxiliary intake valve 8 compared to when the output is fully open, pressurized air is blown until near the end of the intake stroke, which tends to cause swirl and turbulence in the air mixture flow, and accelerates combustion.

なお、バルブタイミングの可変制御は、吸入負圧、機関
回転速度、べ/テユリー負圧、スロットル開度排圧スロ
ットル開度又は吸入空気量測定装置などの各種信号又は
これらの適切な組合せ信号にもとづいて、前述したカム
軸を油圧アクチュエータで摺動させるなどにより行う。
The variable valve timing control is based on various signals such as suction negative pressure, engine rotational speed, exhaust pressure, throttle opening, exhaust pressure throttle opening, or intake air amount measuring device, or an appropriate combination of these signals. This is done by, for example, sliding the aforementioned camshaft using a hydraulic actuator.

ところで、本発明の要旨であるところの、加圧空気の供
給による残留ガスの掃気を最も効果的とするには、排気
行程から吸気行程にかげて、ピストンが上死点に到達す
るまでに、すくなくとも補助空気全量の約50係以上を
導入するように、補助吸気弁8のカムプロフィルまたは
バルブタイミングを設定するとよい。
By the way, in order to make the scavenging of residual gas by supplying pressurized air most effective, which is the gist of the present invention, from the exhaust stroke to the intake stroke, by the time the piston reaches the top dead center, It is preferable to set the cam profile or valve timing of the auxiliary intake valve 8 so as to introduce at least about 50 parts or more of the total amount of auxiliary air.

補助吸気弁8の開弁作動とともに排気弁6が閉じてくる
ので、排気弁6がほとんど閉じる上死点に近づくにした
がい残留ガスの掃気が悪くなる。
Since the exhaust valve 6 closes together with the opening operation of the auxiliary intake valve 8, scavenging of residual gas becomes worse as the exhaust valve 6 approaches the top dead center where it is almost closed.

また、主吸気弁3が開けば残留ガスは吸気マニホールド
内の負圧により吸気系に逆流するので、同じく残留ガス
の掃気が悪くなる。
Further, when the main intake valve 3 is opened, the residual gas flows back into the intake system due to the negative pressure in the intake manifold, so that scavenging of the residual gas is similarly impaired.

したがって残留ガスの掃気効率を艮くするためには、補
助吸気弁8の開き始めに導入空気量が多くなるようにし
、主吸気弁3の開く前にできるだけ残留ガスを追い出す
ようにするとよい。
Therefore, in order to improve the scavenging efficiency of residual gas, it is preferable to increase the amount of air introduced when the auxiliary intake valve 8 begins to open, and to expel as much residual gas as possible before the main intake valve 3 opens.

また、前にも述べたように、主吸気弁3から流入する混
合気流に、この加圧空気によりスワール乱れを与えるべ
く、主吸気弁3の開弁作動時には。
Furthermore, as described above, when the main intake valve 3 is opened, the pressurized air creates a swirl turbulence in the air mixture flowing in from the main intake valve 3.

補助吸気弁8の開度を絞り流速を増大させると、前記ス
ワール発生用の案内手段18と相まって燃焼速度を効果
的に速められる。
When the opening degree of the auxiliary intake valve 8 is throttled to increase the flow velocity, the combustion velocity can be effectively increased in conjunction with the guide means 18 for generating swirl.

したがって、補助吸気弁8の開弁特性は、第5図イに示
すように、最も好ましくは、開弁初期の流量が大きく、
上死点前に全流量の約50係以上が導入され、開弁後期
は絞りにより高速流が得られるようにリフト線図を設定
することである。
Therefore, as shown in FIG. 5A, the opening characteristics of the auxiliary intake valve 8 are most preferably such that the flow rate is large at the initial stage of opening.
The lift diagram is set so that approximately 50% or more of the total flow rate is introduced before the top dead center, and a high-speed flow is obtained by the throttle in the latter half of the valve opening.

ただし、全体の50%以上を上死点に達するまでに導入
できるならば、第5図口に示すように、全開弁期間でほ
ぼ均一的な小弁リフト量で補助空気を導入してもよい。
However, if more than 50% of the total air can be introduced before reaching top dead center, the auxiliary air may be introduced with a substantially uniform small valve lift amount during the full valve opening period, as shown in Figure 5. .

この補助吸気系に加圧空気を供給する手段として、エア
ーポンプ13v含む加圧空気供給装置を示し1こが、排
気系に排気圧で作動する排圧ターボを設け、この排圧タ
ーボで駆動される空気圧縮機による圧縮空気を補助吸気
管10に供給することもできる。
As a means for supplying pressurized air to this auxiliary intake system, a pressurized air supply device including an air pump 13v is shown.1 This is equipped with an exhaust pressure turbo operated by exhaust pressure in the exhaust system, and is driven by this exhaust pressure turbo. It is also possible to supply compressed air from an air compressor to the auxiliary intake pipe 10.

なお、上記エアーポンプ13としては、一般的に使用さ
れているベーン型エアーポンプの他、各種機械的エアー
ポンプを用いることが可能である。
Note that as the air pump 13, it is possible to use various mechanical air pumps in addition to the commonly used vane type air pump.

ま1こ、導入空気量の制御は、サージタンク16により
定圧化して機関の運転状態量にもとづく信号に応動する
空気流量制御装置17により、すぐなくとも運転状態に
よって変動する残留ガスに置換しうるだけの空気を圧送
するのだが、機関回転速度に応じて導入圧を高めて流量
を制御してもよい。
First, the amount of introduced air is controlled by a surge tank 16 to maintain a constant pressure, and an air flow rate control device 17 that responds to a signal based on the operating state of the engine allows the air to be replaced at least immediately with residual gas that varies depending on the operating state. However, the flow rate may be controlled by increasing the introduction pressure according to the engine rotation speed.

そして、この加圧空気の導入量を制御する補助吸気弁8
の有効径は、主吸気弁3の有効径よりも小さく設定する
が、その範囲内でも低速出力を重視するときは比較的大
きく、逆に部分負荷時の機関安定性を重視するときは小
さくするとよい。
An auxiliary intake valve 8 controls the amount of pressurized air introduced.
The effective diameter of the main intake valve 3 is set to be smaller than that of the main intake valve 3, but even within this range, it is relatively large when emphasis is placed on low-speed output, and conversely, it is set small when emphasis is placed on engine stability under partial load. good.

上記実施例では気化器付機関を前提として説明したが、
燃料噴射装置付機関に適用することも勿論可能で、また
燃料の種類としてはガソリンのような液体燃料の他、プ
ロパン、ブタンなど液化ガスを燃料とする機関について
も適用できる。
The above embodiment was explained assuming that the engine is equipped with a carburetor.
It is of course possible to apply the present invention to an engine equipped with a fuel injection device, and the present invention can also be applied to an engine which uses liquid fuel such as gasoline as well as liquefied gas such as propane or butane as fuel.

以上説明したように本発明は、主吸気系とは別に設けた
補助吸気系から機関の排気行程から吸入行程にかけて、
燃焼室内に加圧空気を導入して残留ガスを排気ポートへ
と追いだすようにし1こので、シリンダ容積に対し可燃
混合気の占める割合を、残留ガスを新気に置換した分だ
け増加させることができ、全開出力時のパワーアップを
はかる一方、部分負荷時、アイドリンク時、減速時など
の残留ガスの急増にもとづく燃焼の不安定性を解消し、
燃費率の改善をもたらし、ま1こ同時に混合気を稀薄化
したもとでの安定燃焼の確保により、HC。
As explained above, the present invention provides air flow from the auxiliary intake system provided separately from the main intake system, from the exhaust stroke to the intake stroke of the engine.
Pressurized air is introduced into the combustion chamber to expel the residual gas to the exhaust port.1 This increases the ratio of the combustible mixture to the cylinder volume by the amount that the residual gas is replaced with fresh air. While increasing the power at full throttle output, it also eliminates combustion instability caused by a sudden increase in residual gas during partial load, idle link, and deceleration.
HC improves fuel efficiency and ensures stable combustion even when the air-fuel mixture is diluted at the same time.

COなと排気有害成分の低減も達成できる。It is also possible to reduce harmful exhaust gas components such as CO.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の縦断面図、第2図イ20、ハはそれぞ
れ燃焼室の底面図、第3図はパルプタイミングを示す説
明図、第4図も同じくバルブタイミングを示す説明図、
第5図イ20は補助吸気弁の開弁特性を示す説明図、第
6図は本発明の全開出力特性を従来と比較して示す説明
図、第7図は本発明のアイドル時の燃費を従来と比較し
て示す説明図、第8図は補助吸気弁のバルブタイミング
ケ可変とした一例の説明図である。 1・・・・・・燃焼室、2・・・・・・主吸気ボート、
3・・・・・・主吸気弁、4・・・・・・点火栓、5・
・・・・・排気ポート、6・・・・・・排気弁、7・・
・・・・補助吸気ボート、8・・・・・・補助吸気弁、
10・・・・・・補助吸気管、13・・・・・・エアー
ポンプ、16・・・・・・サージタンク、17・・・・
・・空気流量制御装置、18・・・・・・渦流発生用案
内手段。
FIG. 1 is a longitudinal cross-sectional view of the present invention, FIG. 2A and C are bottom views of the combustion chamber, FIG. 3 is an explanatory diagram showing pulp timing, and FIG.
Fig. 5 A 20 is an explanatory diagram showing the opening characteristics of the auxiliary intake valve, Fig. 6 is an explanatory diagram showing the fully open output characteristics of the present invention in comparison with the conventional one, and Fig. 7 is an explanatory diagram showing the fuel consumption at idling of the present invention. FIG. 8 is an explanatory diagram showing an example in which the valve timing of the auxiliary intake valve is variable. 1... Combustion chamber, 2... Main intake boat,
3... Main intake valve, 4... Spark plug, 5...
...Exhaust port, 6...Exhaust valve, 7...
...Auxiliary intake boat, 8...Auxiliary intake valve,
10... Auxiliary intake pipe, 13... Air pump, 16... Surge tank, 17...
...Air flow rate control device, 18...Guiding means for generating eddies.

Claims (1)

【特許請求の範囲】 1 往復動型の内燃機関において、混合気を燃焼室に供
給する主吸気系に加えて、燃焼室内で混合気流に渦流を
生起させる案内手段ヲ有する補助吸気系を設け、この補
助吸気系に加圧空気供給装置を接続し、機関の排気行程
から吸入行程にかけての上死点近傍で、前記補助吸気系
に設けた補助吸気弁を開いて加圧空気を導入すると共に
、機関吸入空気量に応じて変化する信号を入力し、吸入
空気量の増加に応じて加圧空気導入量を増加する空気流
量制御装置を前記補助吸気系に設けたことを特徴とする
強制掃気内燃機関。 2 排気行程終了附近の上死点到達時までに、補助吸気
系からの加圧空気導入量が、この全導入量の少なくとも
50%以上となるように設定しrs%許請求の範囲第1
項記載の強制掃気内燃機関。 3 補助吸気弁と主吸気弁及び又は排気弁との相対的バ
ルブタイミングを可変的に構成した特許請求の範囲第1
項または第2項に記載の強制掃気内燃機関。 4 機関全開出力時は補助吸気弁と排気弁との、また部
分負荷時は補助吸気弁と主吸気弁とのそれぞれオーバラ
ップを増大させるようにした特許請求の範囲第3項に記
載の強制掃気内燃機関。 5 補助吸気弁または補助吸気ポートに、燃焼室内で混
合気流に、排気弁に対して遠い方向から排気弁に指向す
るような渦流を生起させる案内手段を設けた特許請求の
範囲第1項〜第4項のいずれか一つに記載の強制掃気内
燃機関。 6 機関の全開出力時の燃焼室内の混合気が理論空燃比
エリ濃くなるように設定した特許請求の範囲第1項〜第
5項のいずれか一つに記載の強制掃気内燃機関。 7 機関部分負荷時の燃焼室内の混合気が、理論空燃比
よりも薄くなるように設定され1こ特許請求の範囲第1
項〜第6項のいずれか一つに記載の強制掃気内燃機関。 8 加圧空気供給装置として、エアーポンプを備える特
許請求の範囲第1項〜第7項のいずれか一つに記載の強
制掃気内燃機関。 9 加圧空気供給装置として、排気ターボ駆動の空気圧
縮機を備える特許請求の範囲第1項〜第7項のいずれか
一つに記載の強制掃気内燃機関。
[Scope of Claims] 1. In a reciprocating internal combustion engine, in addition to the main intake system that supplies the air-fuel mixture to the combustion chamber, an auxiliary intake system is provided that has a guide means for creating a vortex in the air-fuel mixture within the combustion chamber, A pressurized air supply device is connected to this auxiliary intake system, and the auxiliary intake valve provided in the auxiliary intake system is opened near the top dead center of the engine from the exhaust stroke to the intake stroke, and pressurized air is introduced. The forced scavenging internal combustion system is characterized in that the auxiliary intake system is provided with an air flow rate control device that inputs a signal that changes according to the engine intake air amount and increases the pressurized air introduction amount according to the increase in the intake air amount. institution. 2 The amount of pressurized air introduced from the auxiliary intake system is set to be at least 50% or more of the total amount introduced by the time the top dead center is reached near the end of the exhaust stroke.
Forced scavenging internal combustion engine as described in . 3. Claim 1 in which the relative valve timing between the auxiliary intake valve and the main intake valve and/or exhaust valve is configured to be variable.
The forced scavenging internal combustion engine according to item 1 or 2. 4. Forced scavenging according to claim 3, in which the overlap between the auxiliary intake valve and the exhaust valve is increased when the engine is fully open, and the overlap between the auxiliary intake valve and the main intake valve is increased when the engine is at partial load. Internal combustion engine. 5. The auxiliary intake valve or the auxiliary intake port is provided with a guide means for creating a vortex in the mixture flow in the combustion chamber that is directed toward the exhaust valve from a direction far from the exhaust valve. Forced scavenging internal combustion engine according to any one of Item 4. 6. The forced scavenging internal combustion engine according to any one of claims 1 to 5, wherein the air-fuel mixture in the combustion chamber is set to be richer than the stoichiometric air-fuel ratio when the engine is fully open. 7. The air-fuel mixture in the combustion chamber when the engine is partially loaded is set to be thinner than the stoichiometric air-fuel ratio.
The forced scavenging internal combustion engine according to any one of items 6 to 6. 8. A forced scavenging internal combustion engine according to any one of claims 1 to 7, comprising an air pump as a pressurized air supply device. 9. The forced scavenging internal combustion engine according to any one of claims 1 to 7, comprising an exhaust turbo-driven air compressor as the pressurized air supply device.
JP51133856A 1976-11-08 1976-11-08 Forced scavenging internal combustion engine Expired JPS595768B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP51133856A JPS595768B2 (en) 1976-11-08 1976-11-08 Forced scavenging internal combustion engine
CA290,288A CA1098390A (en) 1976-11-08 1977-11-07 Four-stroke reciprocatory internal combustion engine and method of operating such an engine
US05/849,509 US4217866A (en) 1976-11-08 1977-11-07 Four-stroke reciprocatory internal combustion engine and method of operating such an engine
DE19772749730 DE2749730A1 (en) 1976-11-08 1977-11-07 FOUR-STROKE PISTON INTERNAL COMBUSTION ENGINE AND PROCEDURE FOR ITS OPERATION
AU30470/77A AU504113B1 (en) 1976-11-08 1977-11-08 Internal combustion engine scavenging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51133856A JPS595768B2 (en) 1976-11-08 1976-11-08 Forced scavenging internal combustion engine

Publications (2)

Publication Number Publication Date
JPS5359123A JPS5359123A (en) 1978-05-27
JPS595768B2 true JPS595768B2 (en) 1984-02-07

Family

ID=15114624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51133856A Expired JPS595768B2 (en) 1976-11-08 1976-11-08 Forced scavenging internal combustion engine

Country Status (1)

Country Link
JP (1) JPS595768B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0687667U (en) * 1992-04-23 1994-12-22 株式会社ヨシムラジャパン Injector device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132320U (en) * 1979-03-14 1980-09-19
JPS59147822A (en) * 1983-02-10 1984-08-24 Suzuki Motor Co Ltd Valve device in internal-combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078516U (en) * 1993-06-25 1995-02-07 三恵工業株式会社 Resonant submuffler

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078516U (en) * 1993-06-25 1995-02-07 三恵工業株式会社 Resonant submuffler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0687667U (en) * 1992-04-23 1994-12-22 株式会社ヨシムラジャパン Injector device

Also Published As

Publication number Publication date
JPS5359123A (en) 1978-05-27

Similar Documents

Publication Publication Date Title
US4703734A (en) Multi-valve internal combustion engine
US7032381B2 (en) Direct-injection engine with turbocharger and method of controlling the same
US7357103B2 (en) Internal combustion engine and method for performing a mode switch in said engine
US4217866A (en) Four-stroke reciprocatory internal combustion engine and method of operating such an engine
US4228772A (en) Low throttled volume engine
JPH11107820A (en) Combustion controller of diesel engine
JPS6041206B2 (en) Combustion chamber of internal combustion engine
US11898448B2 (en) Hydrogen-powered opposed-piston engine
US4185598A (en) Internal combustion engine
US6332447B1 (en) Diesel engine
JP2001263173A (en) Four cycle engine
CA1106765A (en) Internal combustion engine
JPS595768B2 (en) Forced scavenging internal combustion engine
JP2923123B2 (en) Spark ignition gas internal combustion engine
JP4007181B2 (en) Premixed compression self-ignition internal combustion engine
JPS5941293Y2 (en) Internal combustion engine with supercharger
JPH06200771A (en) Gas fuel engine with supercharger
JPH0633803A (en) Fuel supply device of engine
JPH0634581Y2 (en) Double intake valve engine
JP3365681B2 (en) Engine intake system
JP2020128746A (en) Large engine with auxiliary blower and method of operation
JPS5941294Y2 (en) Internal combustion engine with supercharger
JPH0771321A (en) Fuel feed controller of gas engine
JPH0647955B2 (en) Double intake valve engine
JPS6263135A (en) Four-cycle internal combustion engine