JPS5839749A - Operating method for dl sintering machine - Google Patents

Operating method for dl sintering machine

Info

Publication number
JPS5839749A
JPS5839749A JP13605581A JP13605581A JPS5839749A JP S5839749 A JPS5839749 A JP S5839749A JP 13605581 A JP13605581 A JP 13605581A JP 13605581 A JP13605581 A JP 13605581A JP S5839749 A JPS5839749 A JP S5839749A
Authority
JP
Japan
Prior art keywords
layer
distribution
air
amount
red
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13605581A
Other languages
Japanese (ja)
Other versions
JPS5934216B2 (en
Inventor
Kazuma Nakajima
中島一磨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13605581A priority Critical patent/JPS5934216B2/en
Publication of JPS5839749A publication Critical patent/JPS5839749A/en
Publication of JPS5934216B2 publication Critical patent/JPS5934216B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To effectively control the operation of a DL sintering machine by measuring the amount of air passed through a layer during sintering on the pallet in the longitudinal direction with a measuring device installed movably over the layer and by estimating the distribution of a red-hot zone in accordance with the measured amount of air. CONSTITUTION:A measuring device 12 for the amount of passed air supports a wind box 14 by means of a carriage 13 which moves in the moving direction of a pallet 7 and can be lifted up and down. While moving the carriage 13, the amount of air sucked in a layer 15 during sintering, that is, the amount of air passed through the layer is obtd. from the speed of sucked air flowing through the wind box 14. The distribution of a red-hot zone in the layer can be estimated from the distribution of the amount of passed air obtd. by the measurement. The average high temp. holding time is calculated according to the distribution of the red-hot zone, and the sintering machine is controlled so as to regulate the holding time to a set proper value range obtd. from the quality of a product.

Description

【発明の詳細な説明】 この発明は、DL式焼結機の操業方法に関するもので、
とくに焼結過程を敏感に反映する焼結−通過の風量を測
定することによって、該測定風量をもとに赤熱帯分布を
推定し、それKもとづいて安定した焼結鉱品質を確保す
るための制御を行うようKした点に特色のある焼結機の
操業方法についての提案である。
[Detailed description of the invention] This invention relates to a method of operating a DL type sintering machine,
In particular, by measuring the air volume during sintering and passing through, which sensitively reflects the sintering process, we can estimate the red tropical distribution based on the measured air volume, and based on this estimate, we can ensure stable sintered ore quality. This is a proposal for a method of operating a sintering machine that is distinctive in that it is controlled.

一般の焼結設備は、原料装入装置によりコークス粉、鉱
石粉をパレット上に装入した後、その装入原料1−の表
面に点火し、焼結が上層から下層へと進行するなかで、
パレットを排鉱部へ向わせ、一方点火と同時にパレット
下方からはウィンドボックス、主排風機弁して原料層を
通過する空気を吸引することにより、排鉱部に至るまで
の間に配合されたコークスの燃焼によって乾燥、燃焼、
焼結、冷却の過程を経て、塊成化焼結鉱を生成させるO #c1図を用いてこの過程を説明すると、配合槽11〜
Inから切り出された粉鉱石、コークス、石灰石等の原
料!は、メリック2を経て、ミキサー3で注入混合され
たのち、給鉱ホツパ−l内に貯蔵され、その後フィーダ
6でパレット7上へ装入される。パレット7上に装入さ
れた原料l−中のコークスが点火炉lによる点火で燃焼
して粉鉱石を焼成する@一方で、パレット7下には各ウ
ィンドボックスlO1〜10nがあり、それはメインプ
ロワ−//に接続されてbる。このメインプaワ〜l/
を通して前記原料層の下方へは空気が吸引されることか
ら、赤熱帯域(FFP) %1i%mなるものが順次美
原料層の上層から下層へと進行し、排鉱部付近に1令す
ると焼成が完了するようになっている。
In general sintering equipment, after charging coke powder and ore powder onto a pallet using a raw material charging device, the surface of the charged raw material 1- is ignited, and as sintering progresses from the upper layer to the lower layer. ,
The pallet is directed toward the ore discharge section, and at the same time as the pallet is ignited, a wind box and main exhaust fan valve are used from below the pallet to suck the air passing through the raw material layer. Drying, combustion, and combustion of coke
After the process of sintering and cooling, agglomerated sintered ore is produced. This process will be explained using diagram #c1.
Raw materials such as fine ore, coke, and limestone cut from In! After passing through the merrick 2 and being injected and mixed by the mixer 3, the ore is stored in the feed hopper 1, and then charged onto the pallet 7 by the feeder 6. The coke in the raw material l- charged on the pallet 7 is ignited by the ignition furnace l to burn it and burn the fine ore. On the other hand, there are wind boxes lO1 to 10n under the pallet 7, which are connected to the main blower. // is connected to b. This main pool a~l/
Since air is sucked downward through the raw material layer, red-hot zone (FFP) %1i%m progresses sequentially from the upper layer to the lower layer of the fine raw material layer, and when it reaches the ore discharge area for 1 year, it is fired. is now complete.

通虐の焼結機の操業は、この焼成が完了する点BTPを
、ウィンドボックスに設けた熱電対で排ガス1Mf、の
測定もしく岐排ガス晟分値から検出して、上ndBTP
点が一定域に入るようにパレットスピード、焼結層厚、
メインブロワ−サクションダンパー開開を調整すること
により制御している。このような従来制御方法を採用す
ると、製造される焼結鉱の品質は、製造後の焼結鉱から
の試料採取からしか検知し得す、焼結の品質を制御する
上で、その時期的な遅れが大きな問題となっている。
The operation of the sintering machine is carried out by detecting the point BTP at which sintering is completed by measuring 1 Mf of exhaust gas with a thermocouple installed in the wind box or from the value of 1 Mf of exhaust gas, and then determining the point BTP at which sintering is completed.
Pallet speed, sintered layer thickness,
It is controlled by adjusting the opening and opening of the main blower suction damper. When such conventional control methods are adopted, the quality of the produced sintered ore can only be detected by sampling the sintered ore after production. Delays are a major problem.

以上説明したように焼結塊成化社、乾燥、燃焼、焼結、
冷却環の過程を得て行われるが、いまパレット7上の焼
結層を原料帯、赤熱帯、焼結完了帯に大きく区分すると
、これらの帯竣中の赤熱帯域での原料滞溜時間、すなわ
ちコークス燃焼に伴って高温に保持される時間が焼結鉱
成品品質に太きな影響を及ぼずことが知られている。そ
のため上記高温保持時間を調節すれば製造過程で焼結鉱
成品品質を制御することが可能となる。ただ、従来かか
る高温保持時間を直接制御する方法は行われていない。
As explained above, sintering agglomeration, drying, combustion, sintering,
The cooling ring process is carried out, and if the sintered layer on the pallet 7 is roughly divided into a raw material zone, a red zone, and a sintering completion zone, the residence time of the raw material in the red zone during the completion of these zones is as follows: That is, it is known that the time during which the coke is kept at a high temperature during coke combustion does not have a significant effect on the quality of the sintered mineral product. Therefore, by adjusting the above-mentioned high temperature holding time, it becomes possible to control the quality of the sintered ore product during the manufacturing process. However, conventional methods for directly controlling the high temperature holding time have not been used.

それは、実機においてかかる高温保持時間を測定するt
(は、焼結層内に直接熱電対を挿入して測定する以外に
適当な計測方法がなく、熱電対保守面の困難性もあって
不可能とされていたためである。
It is t that measures the high temperature holding time in the actual machine.
(This was because there was no other suitable measurement method other than inserting a thermocouple directly into the sintered layer, and it was considered impossible due to the difficulty of maintaining the thermocouple.

また、焼結層内のコークス焼結速度及び冷却速度はtd
層内通過風量律速され、焼結鉱の品質及び生産性に大き
な影響を及ぼすことも良く知られている事実である。こ
の意味において、逆に焼結過程の層内通過風量を検出で
きれば層内状況が検知可能となる。
In addition, the coke sintering rate and cooling rate in the sintered layer are td
It is also a well-known fact that the rate of air passing through the layer is limited and has a great effect on the quality and productivity of sintered ore. In this sense, if the amount of air passing through the layer during the sintering process can be detected, the situation within the layer can be detected.

この発明は、前述の従来技術の問題を軍人するために開
発した方法であり、焼結層のj−甲通過風量を測定する
ことによって、赤熱帯分布を推定し、各焼結原料がかか
る赤熱帯域へ滞留する時間を適宜に制御することによっ
て、所定の焼結鉱品質を得るように模業し、品質の安定
した焼結鉱を確保するようにしたのである。以下本発明
の構成を図面の説明にあわせて詳述する。
This invention is a method developed to solve the above-mentioned problem of the prior art, and by measuring the amount of air passing through the sintered layer, the red heat distribution is estimated, and each sintered raw material is exposed to red heat. By appropriately controlling the residence time in the zone, a predetermined quality of sintered ore was obtained, and sintered ore of stable quality was ensured. The configuration of the present invention will be described in detail below in conjunction with the explanation of the drawings.

図面の第2図は、焼結操業過程において、層内通過のI
L[を機長方向で連続的に@定する装置の概略を示すも
ので、この通過風量測定装置tlコ社、パレット7移動
方向に移送す゛る台車/Jに風箱l弘を支持したものに
よってなシ、この台車/Jti昇降するとともに、パレ
ット7の長手方向に往復動するもので、その動きの中で
焼結rd/!内に吸引される風量:即ち通過風量を前記
風箱/参内を流れる吸引流速から求めるように構成され
ているOこの装置lコによれば、焼結機機長方向の層内
通過風量(層中に吸引される空気量)が正確に測定でき
る〇 上記風量測定装置lコによって測定した測定例を第3図
−(a’)に示す0この第3図−(a)は、10秒毎の
測定値のプロットとそれの近似曲線を示している。
Figure 2 of the drawings shows the I passing through the layer during the sintering operation process.
This figure shows an outline of a device that continuously measures L in the machine length direction.This passing air flow measurement device is made by TL Co., Ltd., and is made by supporting a wind box L on a trolley/J that is transferred in the direction of pallet 7 movement. This trolley/Jti moves up and down as well as reciprocates in the longitudinal direction of the pallet 7, and during this movement, sintering rd/! According to this device, the amount of air passing through the layer in the longitudinal direction of the sintering machine (the amount of air passing through the layer in the longitudinal direction of the sintering machine) is Figure 3-(a') shows an example of measurement taken using the above-mentioned air volume measuring device. A plot of measured values and an approximate curve thereof are shown.

この測定通過風量値は、焼結層l!中の通気抵抗に従う
ものである。そこで、その測定によって得られた通過風
量分布から各焼結帯の通気抵抗指数、および通過風量の
指数とを便って、焼結機機長方向の層内の赤熱帯分布を
求めることができる。
This measured passing air volume value is the sintered layer l! It depends on the ventilation resistance inside. Therefore, from the passing air volume distribution obtained by the measurement, the red tropical distribution within the layer in the longitudinal direction of the sintering machine can be determined by using the ventilation resistance index of each sintered zone and the passing air volume index.

この発明は、まさにこの風量から赤熱帯分布を推定する
ところに特徴の第1点がある。
The first feature of this invention lies in estimating the distribution of the red tropics from this wind volume.

以下本発明で採用する通過風量からの赤熱帯分布の推定
方法を述べる〇 いま、焼結j−内を第6図に示すように、燃焼前線(R
FP) 5Fと焼結前m (HBP) # トノu ツ
ノ線1cよシ3分割し、それぞれ原料帯/j、 、赤熱
帯11b、及び焼結完了帯/jcとする0また、燃焼前
−RFPりがパレット表面と交わる点をRFP  とす
ると、(1)〜(5)式が成り立ち、Δλつ各帝の幅)
1.R2H3は、それぞれ(1)〜(5)式より次式(
4)、 (5)、 (6)で表わされる。
The method of estimating the red tropical distribution from the passing air volume adopted in the present invention will be described below. Now, as shown in Figure 6 inside the sintered j-, the combustion front (R
FP) 5F and m before sintering (HBP) If the point where the edge intersects with the pallet surface is RFP, then equations (1) to (5) hold true, and the width of each plane is Δλ)
1. R2H3 is calculated by the following formula (
4), (5), and (6).

すなわち、焼結層の圧損は通過風量の指数乗に比列し任
意の位置の圧損は次式で α ΔP = (R,H,+ R2H2+ R,H,) G
     mまた、ノー厚は次式で H#馬+H2+ Hs(2) RFPの高さけ次式で 示される。
In other words, the pressure loss of the sintered layer is proportional to the exponential power of the passing air volume, and the pressure loss at any position is expressed by the following formula: α ΔP = (R, H, + R2H2 + R, H,) G
Also, the no thickness is expressed by the following formula: H#+H2+Hs(2) RFP height.

上式(1)〜(5)より各焼結帯の高さH1〜H3け次
式で表わされる。
From the above formulas (1) to (5), the heights H1 to H3 of each sintered zone are expressed by the following formula.

F(、= H−Hl−)(2(d) H:層厚(rrL) ΔP:機長機長方向任意での吸引負圧(VWL2 )G
:機長方向任意の点での吸引風量(Iw/2.□1o)
θ:給鉱端からの経過時間(mini R1〜R5:そtぞt7原料帯、赤熱帯、瞬結完了帯の
圧損抵抗係数 以上よシ、風M()、風箱圧力ΔP%層厚l(、蛤焼前
線(HFP)がパレット表面と交わる点HFPo。
F(,=H-Hl-)(2(d) H: Layer thickness (rrL) ΔP: Suction negative pressure (VWL2) in the captain's direction
: Suction air volume at any point in the longitudinal direction (Iw/2.□1o)
θ: Elapsed time from the ore feed end (mini R1 to R5: more than the pressure loss resistance coefficient of the raw material zone, red tropical zone, and instant bonding completion zone), wind M(), wind box pressure ΔP% layer thickness l (, HFPo, the point where the clam ware front (HFP) intersects with the pallet surface.

各帯の通気抵抗係数孔、〜R5、および層中通過風4%
指数αがわかhば、焼結機機長方向の赤熱帯分布を推定
することができるのである。
Ventilation resistance coefficient hole in each zone, ~R5, and 4% wind passing through the layer
If the index α is determined, it is possible to estimate the red tropical distribution in the longitudinal direction of the sintering machine.

この点、前記RFPolfi各ウィンドボツウインドボ
ックス で測定している排ガスm1ff推移によって検
出IjT 能である。すなわち、各ウィンドボックス1
0.〜10nごとに設けられた熱電対によって排ガス温
度を測定すると、該H1’Pがパレット表面に到達する
までは排ガス温度はtlぼ一定に推移記の3分割し友各
帯琥関の境界温間を用いて補正を行うことでRめること
かできる。
In this respect, it is possible to detect IjT by the change in exhaust gas m1ff measured by each RFPolfi window box. That is, each wind box 1
0. When measuring the exhaust gas temperature with thermocouples installed every ~10n, the exhaust gas temperature remains approximately constant until H1'P reaches the pallet surface. By performing correction using , it is possible to reduce R.

この発明のHFPoはtlc41!図に示すように、ウ
ィンドボックスIO1〜1Otlて測定している排ガス
@度パターンから100℃になる点を検出し、給欽端か
らその点に達するまでの時間を求め、その値にある値を
加えた値をHFPoとした。ここで加えるべき値(θT
)は、赤熱帯の温度を稠度にするかで決まるものであり
焼結層II内に熱電対を挿入してと−トパターンを測定
し、その結果より予め求めておく。例えば、昇温過程で
の層内温度Figj図に示すように略直線的に上昇する
ことが確められているので、この図より前記境界温度を
1oo6℃としたときの0.rmln、をθ1として採
用した0次に、(4)〜(6)式を使って、通過風量分
布から赤熱帯izb分布を推算した本発明の具体例をI
IJ図偽1に示す。この図は第3図−(1)に対応した
通過風量分布の近似曲線を用いて計算した赤熱帯l九分
布である。なお、図中の斜線部分の囲みは同時測定した
シートパターンから求めた赤熱帯/jb分布を表わす0
両者社良く合致しておシ、本発明赤熱帯分布モデルの妥
当性が示されている@要するに、第3図−(b)を利用
すれば赤熱帯izbの領域を任意の焼結層高さで切断す
ることによって、その切断した線分がその高さにおける
鍋温保持時間である。即ち、平均高温保持時間は、瞬結
ストランド任意の位置での赤熱帯幅(H2)から次式に
より求めることができる。
HFPo of this invention is tlc41! As shown in the figure, the point at which the temperature reaches 100°C is detected from the exhaust gas @ temperature pattern measured by the wind box IO1~1Otl, the time from the feed end to reach that point is determined, and the value at that value is determined. The added value was defined as HFPo. The value to be added here (θT
) is determined by the consistency of the temperature in the red tropics, and is determined in advance from the results obtained by inserting a thermocouple into the sintered layer II and measuring the tort pattern. For example, it has been confirmed that the temperature in the layer during the heating process increases approximately linearly as shown in Fig. A specific example of the present invention in which the red tropical izb distribution is estimated from the passing air volume distribution using equations (4) to (6) in the 0th order where rmln is adopted as θ1 is shown below.
It is shown in IJ diagram false 1. This figure shows the red tropical l9 distribution calculated using the approximate curve of the passing air volume distribution corresponding to Fig. 3-(1). The shaded box in the figure represents the Red Tropical/jb distribution obtained from the simultaneously measured sheet pattern.
The two companies agree well, demonstrating the validity of the Red Tropical distribution model of the present invention. In short, by using Figure 3-(b), the Red Tropical region izb can be adjusted to any sintered layer height. By cutting at , the cut line segment is the pot temperature retention time at that height. That is, the average high temperature retention time can be determined from the red zone width (H2) at any position of the flash setting strand using the following equation.

ここで、 HT:平均高温保持時間(pli n )H:焼結j−
厚071) H2:赤熱帯幅(fi) θ :ストランド給鉱端からの経過時間(mi nlこ
のHTと焼結鉱成品強度(8I)との間には、第7図に
示すような相関関係があり、かつパレットスピードコー
クス配置比との間にも第1図に示すような相関関係が認
められる〇 そこで、狙いとする焼結鉱成品強度(sr)を保障する
適正HT値を操業実績を示すW、7図から予め設定して
おき、前述のようにして得られる麹過【量分布から計算
して得られる平均高温保持時間HTをして、その設定値
の範囲に入るようにパレットスピード等を制御すわば、
所定の品質の郷給鉱が得られる。第り図はその制御フロ
ーの図である。
Here, HT: average high temperature holding time (plin) H: sintering j-
Thickness 071) H2: Red zone width (fi) θ: Elapsed time from the strand feeding end (minl) There is a correlation between this HT and the strength of the sintered ore product (8I) as shown in Figure 7. There is also a correlation between pallet speed and coke placement ratio as shown in Figure 1.Therefore, based on operational experience, an appropriate HT value that guarantees the target sintered ore product strength (sr) is observed. W shown in Fig. 7 is set in advance, and the average high temperature holding time HT obtained by calculating from the koji filtration amount distribution obtained as described above is calculated, and the pallet speed is adjusted so that it falls within the range of the set value. etc., if you control it,
Local supply ore of specified quality can be obtained. Figure 2 is a diagram of the control flow.

この制御法は第1図に示すように、風量測定装[/コか
ら得られるデータと、各ウィンドボックス10.〜lO
nの温度から赤熱帯分布を推定し、平均高温保持時間を
求める。求めた平均高温保持時間と、予め設足した適正
範囲の高温保持時間とを比較することにより、アクショ
ンをとるかどうかを判断し制御すれば良い。
As shown in FIG. 1, this control method uses data obtained from the air volume measuring device and each wind box 10. ~lO
The red tropical distribution is estimated from the temperature of n, and the average high temperature retention time is determined. By comparing the obtained average high-temperature retention time with a high-temperature retention time in an appropriate range set in advance, it is possible to determine whether or not to take an action and control the process.

なお、燃焼前線HFPは直線だけでなく、通過風量に応
じて曲線とすることもできる。また、各帯の通気抵抗指
数R1〜凡5通過風蓋の指数αけxmで求めてもよいし
、計算で求めてもよいが、本発明の実jlIlI例では
基礎式としてA P/H= ROを採用して機長方向の
数個所での圧損式から計算により求め念ものを用いた。
Note that the combustion front HFP can be not only a straight line but also a curved line depending on the amount of passing air. In addition, the ventilation resistance index R1 to approximately 5 of each zone may be determined by the index α x m of the passing wind cover, or it may be determined by calculation, but in the actual example of the present invention, the basic formula is A P/H = Using RO, we calculated the pressure loss formula at several points along the length of the aircraft.

実施例 通常の焼結原料(コークス含有鐘り、り俤、水分6優)
を用いて層厚!30 mm 、 バレット速用°ノ、7
m/minで焼結操業を開始した。この焼結操業中、点
火炉以降、排出方向に層中通過吸引)風社測ス装置を走
行させて通過、に量を測定した。
Example: Ordinary sintering raw material (coke-containing bell, rose, water content: 6%)
Use layer thickness! 30 mm, for bullet speed, 7
Sintering operation was started at m/min. During this sintering operation, after the ignition furnace, the amount of suction was measured by running a suction device that passed through the bed in the discharge direction.

この時のHFPoは、焼結機長中鷹l!ウィンドボック
ス位置配置の熱電対部分で排ガス@度上昇が検出さh九
ことから、赤熱帯境界温度を1000℃とし、て補正を
行いコθ、♂minとし念。
At this time, HFPo was the sintering machine manager Nakataka! Since an increase in exhaust gas @ temperature was detected at the thermocouple part located in the wind box, the red tropical boundary temperature was set to 1000°C, and correction was made to θ,♂min.

上記通過風量測定装置の測定時間に対応する風箱圧力Δ
Pは一一130mt′ILH20であり、その値と焼結
層の各通気度R4〜R5、ここでは鍋試験で求めた各1
.61.  Jダ、j6.3.0弘の値を用いてH2f
、痺出し、−ヒ8己パレット速度で求まる平均高温保持
時間HTはコ、!minでちった。焼結成品品質SIは
9/ 、%以上を目標としていたので第7図、第1図の
関係から、パレット速度を2.3m/minに変更して
、焼結操業を行つ念ところ、実際に得られた成品の品質
SIはり1.コ憾であり、目標通りであった。
Wind box pressure Δ corresponding to the measurement time of the above passing airflow measuring device
P is 11130mt'ILH20, and its value and each air permeability of the sintered layer R4 to R5, here each 1 determined by the pot test.
.. 61. H2f using the value of J da, j6.3.0 hiro
, Numbness, -8 Self The average high temperature holding time HT determined by the pallet speed is ko,! It was min. Since we were aiming for a sintered product quality SI of 9% or higher, we decided to change the pallet speed to 2.3 m/min and carry out the sintering operation based on the relationship between Figures 7 and 1. Quality of the product obtained in 1. I am very disappointed, and it was exactly as I expected.

以上のべたように本発明によりば、次のような効果が期
待できる。すなわち、オンラインで焼結鉱品質を推定し
、適正なアクションを迅速にと石ことができるので焼結
鉱品質のバラツキが小さくなり、良質の焼結鉱を得るこ
とができるO
As described above, according to the present invention, the following effects can be expected. In other words, the quality of sintered ore can be estimated online and appropriate actions can be taken quickly, reducing the variation in sintered ore quality and making it possible to obtain high-quality sintered ore.

【図面の簡単な説明】[Brief explanation of the drawing]

図面の第7図は、焼結設備の路線図、第一図は層中通過
風量測定装置の斜視図、第3図は焼結機機長方向の吸引
風量(通過風量)分布(、)とその分布から推定し念赤
熱帯分布(b)を示す線図、第v図は排ガス温度分布図
、第!図は各帯域境界温度と補正係数θ、との関係を示
す線図、84図は焼結層内分割モデルの線図、箇7図は
高温保持時間(HT)と成品強度8Iとの関係を示す線
図、第f図はパレット速度と平均高温保持時間との関係
を示す線図、第り図は本発明実施例の制御フロー図であ
る。
Figure 7 of the drawings is a route map of the sintering equipment, Figure 1 is a perspective view of the air flow measuring device passing through the layer, and Figure 3 is the distribution of suction air volume (passing air volume) in the longitudinal direction of the sintering machine (,) and its distribution. A line diagram showing the distribution of the red tropics (b) estimated from the distribution, Figure V is the exhaust gas temperature distribution diagram, Figure ! Figure 84 is a diagram showing the relationship between each zone boundary temperature and correction coefficient θ, Figure 84 is a diagram of the sintered layer division model, and Figure 7 is the relationship between high temperature holding time (HT) and product strength 8I. Figure F is a diagram showing the relationship between pallet speed and average high temperature holding time, and Figure F is a control flow diagram of an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、パレットの焼結層上に移動可能に設置した風量測定
装置を使って機長方向の焼結層中通過風量を測定し、そ
の層中通過風量測定値から焼結層内赤熱帯分布を推定し
、その推定赤熱帯分布をもとに平均高温保持時間を計算
し、その平均高温保持時間が成品品質から求められる予
め設定した適正値の範囲内になるように焼結機制御を行
うことを特徴とするDI、焼結機の操業方法。
1. Measure the airflow passing through the sintered layer in the longitudinal direction using an airflow measuring device movably installed on the sintered layer of the pallet, and estimate the Red Tropical distribution within the sintered layer from the measured airflow passing through the layer. Then, the average high temperature retention time is calculated based on the estimated red tropical distribution, and the sintering machine is controlled so that the average high temperature retention time is within a preset appropriate value range determined from the product quality. Characteristics of DI and sintering machine operating methods.
JP13605581A 1981-09-01 1981-09-01 How to operate DL sintering machine Expired JPS5934216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13605581A JPS5934216B2 (en) 1981-09-01 1981-09-01 How to operate DL sintering machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13605581A JPS5934216B2 (en) 1981-09-01 1981-09-01 How to operate DL sintering machine

Publications (2)

Publication Number Publication Date
JPS5839749A true JPS5839749A (en) 1983-03-08
JPS5934216B2 JPS5934216B2 (en) 1984-08-21

Family

ID=15166123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13605581A Expired JPS5934216B2 (en) 1981-09-01 1981-09-01 How to operate DL sintering machine

Country Status (1)

Country Link
JP (1) JPS5934216B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142359A (en) * 1983-12-22 1985-07-27 ゼロツクス コーポレーシヨン High-speed copying machine with finishing function
JPS60158463A (en) * 1983-12-22 1985-08-19 ゼロツクス コ−ポレ−シヨン High-speed copying machine with finishing function

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0345044Y2 (en) * 1986-03-19 1991-09-24
JPH01140401U (en) * 1988-03-18 1989-09-26

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142359A (en) * 1983-12-22 1985-07-27 ゼロツクス コーポレーシヨン High-speed copying machine with finishing function
JPS60158463A (en) * 1983-12-22 1985-08-19 ゼロツクス コ−ポレ−シヨン High-speed copying machine with finishing function

Also Published As

Publication number Publication date
JPS5934216B2 (en) 1984-08-21

Similar Documents

Publication Publication Date Title
JPS5839749A (en) Operating method for dl sintering machine
JP2019060588A (en) Method for controlling combustion air flow rate and continuous multiband-type heating furnace
JPS6035413B2 (en) Method for controlling belt movement speed in sintering equipment
KR100638449B1 (en) Steam producing method and device of a sintering waste heat recovery facilities
JPS59129379A (en) Method of operating dwight-lloyd sintering machine
CN1505687A (en) Method for enhancing the metallurgical quality of products treated in a furnace
JPS59232082A (en) Tobacco leaf drying method and apparatus
JPH0663047B2 (en) Operating method of sintering machine
JPH1180846A (en) Operation of sintering machine
JPS5457404A (en) D. l. sintering method
JP2001049356A (en) Method for controlling pallet velocity in sintering machine
SU857074A1 (en) Method of automatic control of ceramic article annealing process in slot furnace
JP6527306B2 (en) Calculation method of sintering temperature history
JPS5824493B2 (en) Sintering method using Dwight Lloyd sintering machine
JPH0931555A (en) Method for controlling sintering temperature pattern and device therefor
JP3411712B2 (en) Alloying furnace for hot-dip galvanized steel sheet and its operation method
JPS58144432A (en) Operation for sintering
SU857684A1 (en) Method of automatic controlling of heat condition in slot furnace
JPH06256862A (en) Method for controlling pallet velocity in sintering machine
JPS6333527A (en) Method for controlling surface ignition of sintering ore raw material
JPS5974243A (en) Sintering method by dwight-lloyd sintering machine
SU1211575A1 (en) Method of automatic control of clinker roasting process in rotating furnace
SU824625A1 (en) Method for automatically controlling roasting of raw mixture in rotary cement kiln with multistage heat exchanger and decarbonizer
Malygin et al. Batch roasting on a conveyer sintering machine
JPS586898B2 (en) Temperature detection method of sintered raw material layer