JPH0931555A - Method for controlling sintering temperature pattern and device therefor - Google Patents

Method for controlling sintering temperature pattern and device therefor

Info

Publication number
JPH0931555A
JPH0931555A JP20527595A JP20527595A JPH0931555A JP H0931555 A JPH0931555 A JP H0931555A JP 20527595 A JP20527595 A JP 20527595A JP 20527595 A JP20527595 A JP 20527595A JP H0931555 A JPH0931555 A JP H0931555A
Authority
JP
Japan
Prior art keywords
temperature
sintering
term
evaluation index
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20527595A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamamoto
博 山本
Masumi Maki
真澄 牧
Yosuke Iwatani
要助 岩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20527595A priority Critical patent/JPH0931555A/en
Publication of JPH0931555A publication Critical patent/JPH0931555A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control method of a sintering temp. pattern which can quickly and accurately return back to a prescribed temp. pattern even if the sintering temp. pattern varies by change of a sintering operational condition. SOLUTION: The adjusting quantity of the number of revolutions of an exhauster is obtd. from each average value and tendency value at a long period, short period and extremely short period of sintering exhaust gas in a wind box in any position in an interval from the position where the temp. of the sintering exhaust gas most quickly raises, to the position where becomes the highest temp., further an average value and a tendency value of returning ore producing quantity in a prescribed term and an evaluating index of the number of revolutions of the exhauster.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高炉用原料としての
焼結鉱を製造する焼結操業における焼結温度パターンの
制御方法とその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for controlling a sintering temperature pattern in a sintering operation for producing a sintered ore as a raw material for a blast furnace.

【0002】[0002]

【従来の技術】焼結機における焼結反応は、焼結原料上
層が点火炉で着火されることで燃焼部が形成され、該燃
焼部が時間と共に、即ちパレットの移動に伴って上層か
ら下層へと移行して、未焼結層がなくなることにより完
了する。一般に焼結操業時の焼結排ガスの温度分布は図
2(b)に示すようなパターンとなり、焼結鉱を良好な
熱効率の下で生産歩留良く得るためには、焼結温度パタ
ーンを状況に応じて適正に制御することが不可欠な条件
である。この焼結温度パターンの制御を行うために重要
な焼結完了点(BTP;Burn Through P
oint)は各風箱(ウィンドボックス:WB)を通過
する焼結排ガスの温度を測定して、その温度が最も高く
なる点の位置により把握される。
2. Description of the Related Art In a sintering reaction in a sintering machine, a combustion part is formed by igniting an upper layer of a sintering raw material in an ignition furnace, and the combustion part changes from the upper layer to the lower layer with time, that is, as the pallet moves. The process is completed by disappearing the unsintered layer. Generally, the temperature distribution of the sintering exhaust gas during the sintering operation has a pattern as shown in Fig. 2 (b), and in order to obtain the sintered ore with good thermal efficiency and high production yield, the sintering temperature pattern should be changed. It is an indispensable condition to control properly according to. An important sintering completion point (BTP; Burn Through P) for controlling this sintering temperature pattern.
oint) is measured by measuring the temperature of the sintering exhaust gas passing through each wind box (WB), and is grasped by the position of the point where the temperature becomes the highest.

【0003】そして、例えば特開昭54−48608号
公報には、上記BTPの位置を焼結機の機長方向におけ
るウィンドボックスの位置を一つの規準として、最高温
度を示したウィンドボックスの位置、及びその前後の位
置のウィンドボックス内の焼結排ガス温度の分布を上に
凸となる二次曲線と仮定し、その極大温度を示す位置を
算出して求め、この位置が目標位置となるように排風機
の回転数を調整し、焼結温度パターンを制御する技術が
記載されている。
For example, in Japanese Unexamined Patent Publication No. 54-48608, the position of the BTP is the position of the windbox in the machine length direction of the sintering machine as one criterion, and the position of the windbox showing the maximum temperature, and Assuming that the distribution of the sintering exhaust gas temperature in the wind box before and after that is a quadratic curve that is convex upward, calculate the position that shows the maximum temperature, and find it so that this position becomes the target position. A technique for adjusting the rotation speed of a blower and controlling the sintering temperature pattern is described.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、近年に
おいては排風機の電力コストを低減するため、前記BT
Pを極力排鉱部側に近付けて操業しているので、前記特
開昭54−48608号公報に記載の技術では、BTP
が排鉱部からの漏風の影響を受けて、真のBTPと測定
温度から求めた観測BTPの位置とで定常的にずれが生
じ、正確な制御が行えない。さらに、排鉱部からの漏風
量を減少させるために真のBTPが排鉱部を越えるよう
な位置で操業を行っている場合には、BTPの検知が不
可能となってしまうことがある等の問題を有するもので
あった。
However, in recent years, in order to reduce the power cost of the exhaust fan, the BT
Since P is operated as close as possible to the side of the mining section, in the technique described in JP-A-54-48608, BTP is used.
However, due to the influence of air leaks from the mine, the actual BTP and the position of the observed BTP obtained from the measured temperature constantly deviate, and accurate control cannot be performed. Furthermore, when operating at a position where the true BTP exceeds the mine ore in order to reduce the amount of air leakage from the mine, the BTP may not be detected. Had the problem of.

【0005】本発明はこのような事情に鑑みてなされた
もので、焼結操業条件が変化して焼結温度パターンが変
動しても、迅速に且つ精度良く所定の温度パターンに復
帰することができる焼結温度パターンの制御方法とその
装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and can quickly and accurately return to a predetermined temperature pattern even if the sintering operation pattern changes and the sintering temperature pattern changes. An object of the present invention is to provide a method of controlling a sintering temperature pattern and a device therefor.

【0006】[0006]

【課題を解決するための手段】前記目的に沿う請求項1
記載の焼結温度パターンの制御方法は、焼結原料を焼結
パレット上に装入した後、上方から点火すると共に該焼
結パレット下方から風箱、集塵機、排風機を順次介して
焼結排ガスを吸引しつつ焼結鉱を製造し、この焼結鉱を
冷却すると共に整粒し、この整粒中に発生した所定粒度
以下の焼結鉱を返鉱として回収しつつ操業するに際し
て、前記焼結排ガスを吸引する排風機の回転数を調整す
る焼結温度パターンの制御方法において、前記焼結排ガ
スの温度が最も急速に上昇する位置から最大温度となる
位置までの間のいずれかの位置に於ける風箱内の焼結排
ガス温度を測定し、この測定した所定期間内の経時的焼
結排ガス温度データを長期、短期、極短期に区分して、
その各区分期間の焼結排ガス温度の平均値と傾向値を求
め、この各区分期間の平均値と傾向値から長期温度評価
指数、短期温度評価指数、極短期温度評価指数を各々求
め、更に、前記返鉱の発生量を経時的に測定し、この測
定した所定期間内の経時的返鉱の発生量からその平均値
と傾向値を求め、この返鉱の発生量の平均値と傾向値か
ら返鉱発生量評価指数を求め、該返鉱発生量評価指数と
前記長期温度評価指数から焼結原料の長期焼成状態評価
指数を求め、該長期焼成状態評価指数と前記短期温度評
価指数及び前記極短期温度評価指数から焼結原料の焼成
状態総合評価指数を求め、一方、前記焼結排ガス吸引用
の排風機の回転数を測定し、所定期間内の回転数を評価
して得られる回転数評価指数と前記焼成状態総合評価指
数により該排風機の回転数の増減調整量を求め、この排
風機の回転数の増減調整量に基づいて排風機の回転数を
調整する。
According to the present invention, there is provided a semiconductor device comprising:
The method for controlling the sintering temperature pattern described is, after the sintering raw material is charged on the sintering pallet, it is ignited from above and the sintering exhaust gas is sequentially passed from below the sintering pallet through a wind box, a dust collector, and an exhaust fan. While producing a sinter, while cooling this sinter and sizing, sinter having a predetermined particle size or less generated during this sizing is recovered as a return ore and operating, In the method for controlling the sintering temperature pattern for adjusting the rotation speed of the exhaust fan that sucks the bound exhaust gas, the sintering exhaust gas temperature is set at any position between the position where the temperature of the exhaust gas rises most and the position where the temperature becomes the maximum. The sintering exhaust gas temperature in the wind box at the time is measured, and the time-dependent sintering exhaust gas temperature data within the measured predetermined period is divided into long-term, short-term, and ultra-short-term,
Obtain the average value and the trend value of the sintering exhaust gas temperature in each of the divided periods, and obtain the long-term temperature evaluation index, the short-term temperature evaluation index, and the ultra-short-term temperature evaluation index, respectively, from the average value and the trend value of each of the divided periods, and further, The amount of the returned ore is measured over time, and the average value and the tendency value are obtained from the amount of the returned ore generated over time in the measured predetermined period, and from the average value and the tendency value of the amount of the returned ore. The return ore generation amount evaluation index is obtained, the long-term firing state evaluation index of the sintering raw material is obtained from the return ore generation amount evaluation index and the long-term temperature evaluation index, and the long-term firing state evaluation index, the short-term temperature evaluation index and the pole The overall evaluation index of the sintering state of the sintering raw material is obtained from the short-term temperature evaluation index, while the rotation speed of the exhaust gas suction exhaust fan is measured, and the rotation speed obtained by evaluating the rotation speed within a predetermined period is evaluated. The blower according to the index and the firing state comprehensive evaluation index Determine the increase or decrease adjustment amount of the rotational speed, adjusting the rotational speed of the exhaust fan on the basis of the increase or decrease adjustment amount of the rotational speed of the exhauster.

【0007】請求項2記載の焼結温度パターンの制御方
法は、請求項1記載の焼結温度パターンの制御方法にお
いて、前記焼結排ガス温度を測定する場所を該焼結排ガ
ス温度の上昇が最も急速となる位置またはその近傍に設
定する。
In the method for controlling the sintering temperature pattern according to claim 2, in the method for controlling the sintering temperature pattern according to claim 1, the place where the temperature of the sintering exhaust gas is measured is the temperature at which the sintering exhaust gas temperature rises most. Set it at or near a position that will be rapid.

【0008】請求項3記載の焼結温度パターンの制御装
置は、焼結原料を焼結パレット上に装入した後、上方か
ら点火すると共に該焼結パレット下方から風箱、集塵
機、排風機を順次介して焼結排ガスを吸引しつつ焼結鉱
を製造し、この焼結鉱を冷却すると共に整粒し、この整
粒中に発生した所定粒度以下の焼結鉱を返鉱として回収
しつつ操業するに際して、前記焼結排ガスを吸引する排
風機の回転数を調整する焼結温度パターンの制御装置に
おいて、前記焼結排ガスの温度が急速に上昇する位置よ
り下流側にある風箱内の焼結排ガス温度、前記返鉱の発
生量、前記排風機の回転数を経時的に測定して記憶する
記憶部と、該記憶部からの所定期間内の経時的焼結排ガ
ス温度データを長期、短期、極短期に区分して、その各
区分期間の焼結排ガス温度の平均値と傾向値を求める温
度評価部と、該温度評価部で求めた各区分期間の平均値
と傾向値から長期温度評価指数、短期温度評価指数、極
短期温度評価指数を各々求める温度指数決定部と、前記
記憶した所定期間内の経時的返鉱の発生量からその平均
値と傾向値を求め、この返鉱の発生量の平均値と傾向値
から返鉱発生量評価指数を求める返鉱発生量評価指数決
定部と、該返鉱発生量評価指数決定部からの返鉱発生量
評価指数と前記温度指数決定部からの長期温度評価指数
により焼結原料の長期焼成状態評価指数を求める長期焼
成状態評価部と、該長期焼成状態評価部からの長期焼成
状態評価指数と前記温度指数決定部からの短期温度評価
指数及び前記極短期温度評価指数から焼結原料の焼成状
態総合評価指数を求める焼成状態総合評価部と、前記記
憶部に保持する排風機の回転数のデータを評価する回転
数評価部を有し、該回転数評価部から得られる回転数評
価指数と前記焼成状態総合評価指数により前記排風機の
回転数の増減調整量を求める排風機回転数調整量決定部
と、該排風機回転数調整量決定部からの排風機の回転数
の増減調整量に基づいて排風機の回転数を調整する制御
部を有する。
According to a third aspect of the present invention, there is provided a sintering temperature pattern control device in which a sintering raw material is charged on a sintering pallet and then ignited from above, and a wind box, a dust collector, and an exhauster are installed from below the sintering pallet. Sintering gas is sequentially sucked through to produce sinter, and the sinter is cooled and sized, and sinter having a predetermined particle size or less generated during sizing is recovered as return ore. In operation, in a sintering temperature pattern control device that adjusts the rotation speed of an exhaust fan that sucks in the sintering exhaust gas, the sintering in a wind box located downstream of the position where the temperature of the sintering exhaust gas rapidly increases. The storage exhaust gas temperature, the amount of the returned ore, and the rotational speed of the exhaust fan are measured and stored over time, and the sintering exhaust gas temperature data over a predetermined period from the storage unit is stored for a long term and a short term. , It is divided into extremely short periods, and the sintering exhaust gas of each divided period is A temperature evaluation unit that obtains the average value and the tendency value of the temperature, and a temperature that obtains the long-term temperature evaluation index, the short-term temperature evaluation index, and the ultra-short-term temperature evaluation index from the average value and the tendency value of each divided period obtained by the temperature evaluation unit. The index determination unit and the average value and the tendency value are calculated from the stored amount of the returned ore over time within the predetermined period, and the return ore generation evaluation index is calculated from the average value and the tendency value of the returned ore generation amount. The return ore generation amount evaluation index determination unit, the return ore generation amount evaluation index from the return ore generation amount evaluation index determination unit and the long-term firing state evaluation index of the sintering raw material by the long-term temperature evaluation index from the temperature index determination unit. From the long-term firing state evaluation unit to be sought, the long-term firing state evaluation index from the long-term firing state evaluation unit, the short-term temperature evaluation index from the temperature index determination unit, and the ultra-short-term temperature evaluation index, the firing state comprehensive evaluation index of the sintering raw material Comprehensive firing conditions And a rotation speed evaluation unit for evaluating the rotation speed data of the exhaust fan held in the storage unit, and the exhaust speed is evaluated by the rotation speed evaluation index and the firing state comprehensive evaluation index obtained from the rotation speed evaluation unit. An exhaust fan rotation speed adjustment amount determining unit that obtains an increase / decrease adjustment amount of the rotation speed of the wind blower, and the rotation speed of the exhaust fan is adjusted based on the increase / decrease adjustment amount of the exhaust fan rotation speed adjustment amount determining unit. It has a control unit to operate.

【0009】焼結排ガス温度データの長期、短期、極短
期の区分とは、焼結機の操業における時定数、返鉱等の
サイクルタイムあるいは経験的な実績評価の結果等を勘
案して設定される期間であり、最も適切かつ効率的に焼
結温度パターンの制御及び評価が行えるように区分され
た時間の範囲をいう。例えば、長期の区分は現時刻を遡
る8時間〜24時間分程度に設定して、同一割合の鉱石
配合の下での温度レベル(熱)の影響を判断する。ま
た、外乱の影響を避けるためには長期の区分は1〜2時
間程度では不明瞭であり、好ましくは12〜24時間分
程度の範囲とする。さらに、短期の区分は1時間〜4時
間分好ましくは1.5時間〜3時間分程度として、返鉱
が焼結機内を循環する周期(約3時間)に対応する変動
要因の影響を適切に評価することが望ましい。また、極
短期の区分は、排風機の回転数を調整する操作の結果が
実際の風箱の温度に反映されるまでの時間(約10〜2
0分)に対応して、1時間以内好ましくは10分〜20
分間程度に設定することが、焼結温度パターンに最も影
響を及ぼす焼結原料の燃焼部の変動を的確に捉えられる
ので好ましい。焼結排ガス温度の傾向値とは、長期、短
期、極短期の3つに区分される各期間での測定データを
さらに前半部と後半部とに2分して、その前半部と後半
部の平均値についてそれぞれの差を取ったものをいう。
前記焼結排ガスの温度が最も急速に上昇する位置とは、
例えば焼結排ガスの温度パターンを極小値と極大値とを
含む3次曲線の一部で近似したとき、その極小値と極大
値との間の変曲点に相当する位置、即ち、前記3次曲線
上の2次微分係数がゼロとなるような位置をいう。
The long-term, short-term, and ultra-short-term classifications of the sintering exhaust gas temperature data are set in consideration of the time constant in the operation of the sintering machine, the cycle time such as return ore, and the result of empirical performance evaluation. It is a period of time, and is a range of time divided so that the sintering temperature pattern can be controlled and evaluated most appropriately and efficiently. For example, the long-term classification is set to about 8 hours to 24 hours, which traces back the present time, and the influence of the temperature level (heat) under the same proportion of the ore mixture is determined. Further, in order to avoid the influence of disturbance, the long-term segment is unclear in about 1 to 2 hours, and preferably in the range of about 12 to 24 hours. Furthermore, the short-term classification is set to 1 hour to 4 hours, preferably 1.5 hours to 3 hours, and the influence of fluctuation factors corresponding to the cycle (about 3 hours) in which the return ore circulates in the sintering machine is appropriately set. It is desirable to evaluate. In addition, the very short term classification is the time (about 10 to 2) until the result of the operation of adjusting the rotation speed of the exhaust fan is reflected in the actual temperature of the wind box.
0 minutes), preferably within 1 hour, preferably 10 minutes to 20 minutes
It is preferable to set the time to about a minute since it is possible to accurately grasp the fluctuation of the burning portion of the sintering raw material that most affects the sintering temperature pattern. The tendency value of the sintering exhaust gas temperature is the measured data in each of the three periods of long-term, short-term, and ultra-short-term divided into the first half and the second half, and the first half and the second half. It means the difference between the average values.
The position where the temperature of the sintering exhaust gas rises most rapidly,
For example, when the temperature pattern of the sintering exhaust gas is approximated by a part of a cubic curve including a minimum value and a maximum value, a position corresponding to an inflection point between the minimum value and the maximum value, that is, the third order The position where the second derivative is zero on the curve.

【0010】[0010]

【作用】請求項1〜2記載の焼結温度パターンの制御方
法においては、焼結排ガスの温度が最も急速に上昇する
位置から最大温度となる位置までの間のいずれかの位置
に於ける風箱内の焼結排ガス温度の長期、短期、極短期
におけるそれぞれの平均値及び傾向値と、更に所定期間
内の返鉱の発生量の平均値及び傾向値、及び排風機の回
転数評価指数とにより該排風機の回転数の増減調整量を
求めるので、焼結排ガス温度、返鉱の発生量及び排風機
の回転数の経時変化を反映させて焼結温度パターンの制
御を行うことができる。また、長期の焼成状態の評価で
は、返鉱(成品規格外の細粒焼結鉱で、焼結原料として
再利用される)発生量を評価した返鉱発生量評価指数が
含まれているため、焼結鉱の品質や生産を安定させるこ
とが可能である。特に請求項2記載の焼結温度パターン
の制御方法は、焼結排ガス温度を測定する場所を焼結排
ガス温度の上昇が最も急速となる位置またはその近傍に
設定するので、焼結温度パターンの制御における応答性
を最大にできる。請求項3記載の焼結温度パターンの制
御装置は、焼結排ガスの温度が急速に上昇する位置より
下流側にある風箱内の焼結排ガス温度、返鉱の発生量、
排風機の回転数のデータを経時的に測定して記憶する記
憶部と、該データを評価し、各評価指数を決定する焼結
排ガス温度の温度評価部、返鉱発生評価指数決定部、排
風機の回転数評価部とにより排風機の回転数を調整する
制御部を有するので、各データの経時変化を正確に反映
させて焼結温度パターンの制御を行うことができる。
In the method for controlling the sintering temperature pattern according to any one of claims 1 and 2, the wind at any position between the position where the temperature of the sintering exhaust gas rises most rapidly and the position where it reaches the maximum temperature. Long-term, short-term, and extremely short-term average and trend values of the sintering exhaust gas temperature in the box, and the average value and trend value of the amount of return ore generated within a predetermined period, and the exhaust speed rotation speed evaluation index. Since the increase / decrease adjustment amount of the rotation speed of the exhaust fan is obtained by the above, the sintering temperature pattern can be controlled by reflecting the temperature of the sintering exhaust gas, the amount of returned ore and the rotation speed of the exhaust fan. In addition, since the evaluation of the long-term firing state includes the return ore generation amount evaluation index that evaluates the amount of return ore (which is a fine-grained sintered ore that does not meet product specifications and is reused as a sintering raw material). It is possible to stabilize the quality and production of sinter. In particular, in the method for controlling the sintering temperature pattern according to the second aspect of the present invention, since the location for measuring the sintering exhaust gas temperature is set at a position where the sintering exhaust gas temperature rises most rapidly or in the vicinity thereof, the sintering temperature pattern control is performed. The responsiveness in can be maximized. The sintering temperature pattern control device according to claim 3, wherein the sintering exhaust gas temperature in the wind box downstream of the position where the temperature of the sintering exhaust gas rapidly rises, the amount of returned ore,
A storage unit that measures and stores the data of the rotation speed of the exhaust fan with time, and a temperature evaluation unit for the sintering exhaust gas temperature that evaluates the data and determines each evaluation index, a return ore occurrence evaluation index determination unit, an exhaust gas Since there is a control unit that adjusts the rotation speed of the exhaust fan by the rotation speed evaluation unit of the air blower, it is possible to control the sintering temperature pattern by accurately reflecting the change with time of each data.

【0011】[0011]

【発明の効果】請求項1〜2記載の焼結温度パターンの
制御方法、及び請求項3記載の焼結温度パターンの制御
装置においては、所定の風箱内の焼結排ガス温度を所定
時間間隔で測定し、長期、短期、極短期の3段階に分け
てこれを評価して、この評価値を過去の焼結操業で蓄積
されたノウハウを基に作成された評価表と照合すること
により焼成の状態評価を行うことができ、焼結操業の変
動を的確に捉えて排風機の回転数の調整を行えるので、
焼結温度パターンの制御性を向上させて操業変動を抑制
できる。また、長期の焼成状態の評価では返鉱の発生量
を評価した返鉱発生量評価指数が含まれているため、焼
結鉱の品質や生産を安定させることが可能である。従っ
て、焼結操業条件が変化して焼結温度パターンが変動し
ても、迅速に且つ精度良く所定の温度パターンに復帰す
ることができ、焼結鉱の品質や生産の安定に寄与でき
る。特に、請求項2記載の焼結温度パターンの制御方法
においては、焼結温度パターンの制御における応答性を
最大に高めて、しかも焼結温度パターンの形を崩すこと
なく安定的に制御するのに適しており、焼結原料層の通
気性の変化及び熱レベルの変動の影響を敏感に反映させ
て、排風機の回転数の調整を行うことができる。
In the method for controlling the sintering temperature pattern according to claims 1 and 2 and the controller for the sintering temperature pattern according to claim 3, the sintering exhaust gas temperature in a predetermined air box is set at predetermined time intervals. Calculating in 3 steps, long-term, short-term, and ultra-short-term, evaluate this, and compare this evaluation value with the evaluation table created based on the know-how accumulated in the past sintering operation. Since it is possible to evaluate the state of, and accurately adjust the fluctuation of the sintering operation to adjust the rotation speed of the exhaust fan,
It is possible to improve the controllability of the sintering temperature pattern and suppress operational fluctuations. In addition, since the long-term firing state evaluation includes the return ore generation amount evaluation index that evaluates the return ore generation amount, it is possible to stabilize the quality and production of the sintered ore. Therefore, even if the sintering operation conditions change and the sintering temperature pattern fluctuates, it is possible to quickly and accurately return to the predetermined temperature pattern, which can contribute to the stability of the quality and production of the sintered ore. Particularly, in the method for controlling the sintering temperature pattern according to the second aspect, it is possible to maximize the responsiveness in controlling the sintering temperature pattern and to stably control the sintering temperature pattern without losing its shape. It is suitable, and the rotation speed of the exhaust fan can be adjusted by sensitively reflecting the influence of the change in the air permeability of the sintering raw material layer and the change in the heat level.

【0012】[0012]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。ここに図1は本発明の実施の形態に
係る焼結温度パターンの制御方法の説明図、図2
(a)、(b)はそれぞれ本発明の実施の形態に係る焼
結温度パターンの制御方法を適用する焼結機、及び各風
箱内の温度分布の説明図、図3は風箱における測定温度
の長期間の時間変化を説明する図、図4は風箱における
測定温度の短期間の時間変化を説明する図、図5は風箱
における測定温度の極短期間の時間変化を説明する図で
ある。
BEST MODE FOR CARRYING OUT THE INVENTION Next, referring to the attached drawings, an embodiment in which the present invention is embodied will be described to provide an understanding of the present invention. FIG. 1 is an explanatory view of a method for controlling a sintering temperature pattern according to the embodiment of the present invention, and FIG.
(A) and (b) are explanatory views of a sintering machine to which the method for controlling a sintering temperature pattern according to the embodiment of the present invention is applied, and a temperature distribution in each wind box, and FIG. 3 is a measurement in the wind box. FIG. 4 is a diagram for explaining a long-term time change of temperature, FIG. 4 is a diagram for explaining a short-term time change of the measured temperature in the wind box, and FIG. 5 is a diagram for explaining an extremely short-term time change of the measured temperature in the wind box. Is.

【0013】図2(a)に示すように焼結機10は、鉄
鉱石、副原料、及び粉コークス等からなる焼結原料11
を載置して移動するパレット12、該焼結原料11の表
面に着火させる点火炉13、パレット12の下方に固定
され、空気を吸引する風箱(WB:ウィンドボックス)
16〜21、風箱16〜21の燃焼排ガスを集塵機26
を介して排気する排風機(MB:メインブロワ)22、
及び制御装置25とで構成されている。焼結排ガス温度
は、焼結機10の排鉱部23から第4番目に配置された
風箱18内に温度計24を設け、所定時間間隔で、もし
くは連続的に測定して求められる。また、返鉱の発生量
を測定する方法としては、例えば、発生した返鉱を返鉱
ホッパー(図示せず)に搬送する途中の搬送コンベアー
に搬送量を測定するメリック(秤量器)を設けて測定す
る方法、前記返鉱ホッパーの切出量とレベルを測定し、
その差から発生量を演算する方法がある。
As shown in FIG. 2 (a), the sintering machine 10 includes a sintering raw material 11 composed of iron ore, an auxiliary raw material, powder coke and the like.
A pallet 12 on which is placed and moved, an ignition furnace 13 for igniting the surface of the sintering raw material 11, and a wind box (WB: wind box) fixed below the pallet 12 for sucking air
16 to 21, combustion chamber exhaust gas from the wind box 16 to 21
Exhaust system (MB: Main blower) 22, which exhausts through
And a control device 25. The sintering exhaust gas temperature is obtained by providing a thermometer 24 in the wind box 18 arranged at the fourth position from the exhausting section 23 of the sintering machine 10 and measuring at a predetermined time interval or continuously. In addition, as a method of measuring the amount of returned ore, for example, by providing a merick (measuring machine) for measuring the transferred amount on a transfer conveyor that is in the middle of transferring the generated returned ore to a returned ore hopper (not shown). Method of measuring, measuring the cutting amount and level of the return ore hopper,
There is a method of calculating the generated amount from the difference.

【0014】前記焼結機10は有効機長120m、有効
機幅5m、約18000t/日の生産能力を有するDL
(Dwight Lloyd)式焼結機である。パレッ
ト12上に、焼結原料が図示しないドラムフィーダー等
により焼結原料の層厚が約600mmとなるように装入
され、焼成温度約1360℃、パレット速度3.4〜
3.6m/分の焼結条件で前記焼結原料が処理される。
また、排風機22は風量27000Nm3 /分、負圧2
000mmH2 O、モーター容量11800kWの能力
を有し、その回転数を制御装置25を介して調整できる
ようになっている。
The sintering machine 10 is a DL having an effective machine length of 120 m, an effective machine width of 5 m, and a production capacity of about 18,000 t / day.
It is a (D weight Lloyd) type sintering machine. On the pallet 12, the sintering raw material is charged by a drum feeder or the like (not shown) so that the layer thickness of the sintering raw material is about 600 mm, the firing temperature is about 1360 ° C., and the pallet speed is 3.4 to.
The sintering raw material is processed under a sintering condition of 3.6 m / min.
In addition, the exhaust fan 22 has an air volume of 27,000 Nm 3 / min and a negative pressure of 2
It has a capacity of 000 mmH 2 O and a motor capacity of 11800 kW, and its rotation speed can be adjusted via the control device 25.

【0015】以下、排風機22の回転数を制御する制御
装置25について図1を参照して説明する。前記制御装
置25は記憶部100、温度評価部101、温度指数決
定部102、返鉱発生量評価指数決定部103、長期焼
成状態評価部104、焼成状態評価部105、焼成状態
総合評価部106、回転数評価部107、MB回転数調
整量決定部108、及び制御部109からなる。記憶部
100は温度記憶部100aと返鉱記憶部100b、M
B(排風機)回転数記憶部100cから構成されてい
る。そして、この温度記憶部100aは風箱18内に設
けた温度計24で測定した測定値を入力して焼結排ガス
温度の経時的な変化を記憶する。更に、返鉱記憶部10
0bは前記の様にして求めた返鉱の発生量を入力して経
時的に記憶する。又、MB回転数記憶部100cは回転
数計(図示せず)で測定された排風機22の回転数を逐
次入力して記憶している。
The control device 25 for controlling the rotation speed of the exhaust fan 22 will be described below with reference to FIG. The control device 25 includes a storage unit 100, a temperature evaluation unit 101, a temperature index determination unit 102, a return ore generation amount evaluation index determination unit 103, a long-term firing state evaluation unit 104, a firing state evaluation unit 105, a firing state comprehensive evaluation unit 106, It includes a rotation speed evaluation unit 107, an MB rotation speed adjustment amount determination unit 108, and a control unit 109. The storage unit 100 includes a temperature storage unit 100a and a return ore storage unit 100b, M
It is configured by a B (exhaust fan) rotation speed storage unit 100c. Then, the temperature storage unit 100a inputs the measurement value measured by the thermometer 24 provided in the wind box 18 and stores the change over time of the sintering exhaust gas temperature. Further, the returned ore storage unit 10
For 0b, the generation amount of the returned ore obtained as described above is input and stored over time. Further, the MB rotation speed storage unit 100c successively inputs and stores the rotation speed of the exhaust fan 22 measured by a rotation speed meter (not shown).

【0016】温度評価部101は、長期温度評価部10
1a、短期温度評価部101b、極短期温度評価部10
1cから構成されている。そして、前記長期温度評価部
101aにおいては前記温度記憶部100aから図3に
示すように、1時間間隔で24点測定された24時間分
の経時的な焼結排ガス温度情報を入力し、この焼結排ガ
ス温度の測定範囲を前半12時間(1〜12)、後半1
2時間(13〜24)の2つに区分する。そして、この
24時間の長期温度平均値T1 、前半12時間の平均値
Ta 、後半12時間の平均値Tb を求める。更に、前半
平均値Ta と後半平均値Tb との差(Ta −Tb )を求
め、これを長期温度傾向値ΔT1 とする。
The temperature evaluation unit 101 is a long-term temperature evaluation unit 10.
1a, short-term temperature evaluation unit 101b, ultra-short-term temperature evaluation unit 10
1c. Then, in the long-term temperature evaluation unit 101a, as shown in FIG. 3, from the temperature storage unit 100a, 24 hours of time-dependent sintering exhaust gas temperature information measured at 24 points at 1-hour intervals is input, and this firing is performed. 12 hours for the first half (1-12), 1 for the second half
It is divided into 2 hours (13 to 24). Then, the long-term temperature average value T 1 for 24 hours, the average value Ta for the first 12 hours, and the average value Tb for the last 12 hours are obtained. Further, the difference (Ta-Tb) between the first half average value Ta and the second half average value Tb is obtained, and this is set as the long-term temperature tendency value ΔT 1 .

【0017】短期温度評価部101bは前記温度記憶部
100aから図4に示すように、10分間隔で18点測
定した3時間分の経時的な焼結排ガス温度の情報を入力
する。そして、前半90分間(1〜9)と後半90分間
(10〜18)に2区分する。更に、3時間分の短期平
均値T2 を求めると共に、この両区間の前半平均値Tc
、後半平均値Td を求め、この前半90分間の平均値
Tc と後半90分間の平均値Td との差(Tc −Td )
を求め、これを短期温度傾向値ΔT2 とする。
As shown in FIG. 4, the short-term temperature evaluation unit 101b inputs information on the temperature of the sintering exhaust gas for 3 hours measured at 18 points at 10-minute intervals as shown in FIG. Then, the first half 90 minutes (1 to 9) and the second half 90 minutes (10 to 18) are divided into two. Furthermore, the short-term average value T 2 for 3 hours is calculated, and the first half average value Tc of both sections is calculated.
, The latter half average value Td is obtained, and the difference (Tc-Td) between the first half 90 minutes average value Tc and the latter half 90 minutes average value Td.
Is obtained, and this is taken as the short-term temperature tendency value ΔT 2 .

【0018】極短期温度評価部101cには前記温度記
憶部100aから20分間分の経時的焼結排ガス温度の
情報を入力して、図5に示すように前半10分間(1〜
7)と後半10分間(8〜14)とに区分する。そし
て、この20分間の極短期平均値T3 を求めると共に、
前半10分間の平均値Te と後半10分間の平均値Tf
を求め、この両平均値との差(Te −Tf )を極短期温
度傾向値ΔT3 とする。
Information on the temperature of the sintering exhaust gas for 20 minutes is input from the temperature storage section 100a to the extremely short-term temperature evaluation section 101c, and as shown in FIG.
7) and the latter half 10 minutes (8 to 14). Then, while obtaining the extremely short-term average value T 3 for these 20 minutes,
Average value Te in the first half 10 minutes and average value Tf in the second half 10 minutes
And the difference (Te-Tf) between these two average values is taken as the extremely short-term temperature tendency value ΔT 3 .

【0019】さらに、温度指数決定部102は長期温度
指数決定部102a、短期温度指数決定部102b、極
短期温度指数決定部102cから構成されている。以
下、前記温度指数決定部102における評価指数の決定
方法について、表1〜3の対照表を用いて詳述する。こ
れらの対照表は焼結操業において得られた過去の膨大な
データおよびそれらを解析して得られる知見等が集約さ
れた知識ベースに基づいて作成されたものであり、焼結
操業の状態をその時点での風箱18内の焼結排ガス温度
のデータから一意的に判断できるように表形式で構成さ
れているものである。
Further, the temperature index determining unit 102 comprises a long-term temperature index determining unit 102a, a short-term temperature index determining unit 102b, and an extremely short-term temperature index determining unit 102c. Hereinafter, a method of determining the evaluation index in the temperature index determining unit 102 will be described in detail with reference to Tables 1 to 3. These comparison tables were created based on a vast amount of past data obtained in the sintering operation and a knowledge base that summarizes the knowledge obtained by analyzing them. It is configured in a tabular form so that it can be uniquely determined from the data of the sintering exhaust gas temperature in the wind box 18 at that time.

【0020】前記長期温度指数決定部102a、短期温
度指数決定部102b、及び極短期温度指数決定部10
2cは、前記長期温度評価部〜極短期温度評価部(10
1a〜101c)からそれぞれの平均値と傾向値とを入
力し、これらの値と予め設定してある表1〜表3に示す
温度評価(長期温度評価、短期温度評価、極短期温度評
価)と照合することにより各温度評価指数(+2、+
1、0、−1、−2のいずれか)を求める。ここで表1
〜表3の横軸で示される各温度傾向値(ΔT1 、Δ
2 、ΔT3 )の評価レベルである“上昇大”、“上昇
小”、“横ばい”、“下降小”、及び“下降大”の状態
とは各温度傾向値(ΔT1 、ΔT2 、ΔT3 )がそれぞ
れ10℃以上、10〜5℃、5〜−5℃、−5〜−10
℃、及び−10℃以下の状態として定義されたものであ
る。また、表1〜表3の縦軸で示される各温度平均値の
評価レベルである“上限外れ大”、“上限外れ小”、
“正常”、“下限外れ小”、及び“下限外れ大”の状態
とは、各温度平均値(T1 、T2 、T3 )が目標上限
値より5℃以上高いとき、目標上限値から+5℃以内
のとき、目標上限値と目標下限値との間にあるとき、
目標下限値から−5℃以内にあるとき、目標下限値
より5℃以上低いときの状態としてそれぞれ定義された
ものである。なお、前記目標上限値及び目標下限値は長
期温度、短期温度、極短期温度によりそれぞれ異なる値
となる。従って、長期温度平均値T1 が目標上限値〜目
標下限値の範囲内、即ち“正常”であり、長期温度傾向
値ΔT1 が15℃、即ち“上昇大”である場合には表1
により、このときの長期温度評価指数は(0)として決
定されることになる。同様にして表2を用いて短期温度
平均値T2 、短期温度傾向値ΔT2 がそれぞれ“正常”
“横ばい”である場合の短期温度評価指数は(0)とな
り、表3を用いて極短期温度平均値T3 、極短期温度傾
向値ΔT3 がそれぞれ“上限外れ大”、“下降小”のと
きの極短期温度評価指数は(+1)となる。
The long-term temperature index determining unit 102a, the short-term temperature index determining unit 102b, and the extremely short-term temperature index determining unit 10
2c is the long-term temperature evaluation unit to the ultra-short-term temperature evaluation unit (10
1a to 101c), the respective average values and tendency values are input, and these values and preset temperature evaluations (long-term temperature evaluation, short-term temperature evaluation, ultra-short-term temperature evaluation) shown in Tables 1 to 3 Each temperature evaluation index (+2, +
Any one of 1, 0, -1, and -2) is obtained. Table 1 here
~ Each temperature tendency value (ΔT 1 , Δ shown on the horizontal axis of Table 3)
T 2 and ΔT 3 ) evaluation levels of “large rise”, “small rise”, “level”, “small fall”, and “large fall” are the temperature tendency values (ΔT 1 , ΔT 2 , ΔT 3 ) is 10 ° C. or higher, 10 to 5 ° C., 5 to −5 ° C., −5 to −10, respectively.
It is defined as a state of ℃ and -10 ℃ or less. In addition, "large upper limit deviation", "small upper limit deviation", which are evaluation levels of each temperature average value shown by the vertical axis in Tables 1 to 3,
"Normal", "Small out of the lower limit" and "Large out of the lower limit" means that when the temperature average values (T 1 , T 2 , T 3 ) are higher than the target upper limit value by 5 ° C or more, Within + 5 ° C, between the target upper limit and the target lower limit,
When the temperature is within −5 ° C. from the target lower limit value, it is defined as the state when it is lower than the target lower limit value by 5 ° C. or more. The target upper limit value and the target lower limit value differ depending on the long-term temperature, short-term temperature, and ultra-short-term temperature. Therefore, when the long-term temperature average value T 1 is within the range from the target upper limit value to the target lower limit value, that is, “normal”, and the long-term temperature tendency value ΔT 1 is 15 ° C., that is, “large increase”, Table 1
Therefore, the long-term temperature evaluation index at this time is determined as (0). Similarly, using Table 2, the short-term temperature average value T 2 and the short-term temperature tendency value ΔT 2 are “normal”, respectively.
The short-term temperature evaluation index in the case of being “flat” is (0), and using Table 3, the extreme short-term temperature average value T 3 and the extreme short-term temperature tendency value ΔT 3 are “outside upper limit large” and “downward small”, respectively. The extremely short-term temperature evaluation index at that time is (+1).

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】そして、返鉱発生量評価指数決定部103
は返鉱発生量評価部103aと返鉱発生量指数決定部1
03bからなる。この返鉱発生量評価部103aは返鉱
記憶部100bから1時間間隔で24点測定された24
時間分の経時的な返鉱の発生量の情報を入力し、この返
鉱の発生量を前半12時間、後半12時間に2区分す
る。そして、この24時間の返鉱発生量平均値R及び前
半12時間の平均値Ra 、後半12時間の平均値Rb を
求める。更に、前半平均値Ra と後半平均値Rb との差
(Ra −Rb )を求め、これを返鉱発生量傾向値ΔRと
する。
The return ore generation amount evaluation index determination unit 103
Is the return ore generation amount evaluation unit 103a and the return ore generation amount index determination unit 1
It consists of 03b. The returned mine generation amount evaluation unit 103a measures 24 points at an interval of 1 hour from the returned mine storage unit 100b.
Information on the amount of returned ore generated over time is input, and the amount of returned ore generated is divided into the first half 12 hours and the second half 12 hours. Then, the average value R of the returned ore generation amount in 24 hours, the average value Ra in the first half 12 hours, and the average value Rb in the second half 12 hours are obtained. Further, the difference (Ra-Rb) between the first half average value Ra and the second half average value Rb is obtained, and this is set as the return ore generation amount tendency value ΔR.

【0025】以下、前記返鉱発生量指数決定部103b
の指数決定方法について評価表である表4を用いて詳述
する。この評価表は前記と同様にして焼結操業において
得られた過去の膨大なデータおよびそれらを解析して得
られる知見等が集約された知識ベースに基づいて作成さ
れたものであり、焼結操業の状態をその時点での返鉱量
の測定データから一意的に判断できるように表形式で構
成されているものである。この返鉱発生量指数決定部1
03bは、上記返鉱発生量評価部103aから返鉱発生
量平均値Rと返鉱発生量傾向値ΔRを入力し、これらの
値と予め設定した表4に示す返鉱発生量評価表を照合す
ることにより評価指数(+2、+1、0、−1、−2の
いずれか)を求める。表4の横軸で示されるように返鉱
発生量傾向値ΔRが、“上昇大”、“上昇小”、“横ば
い”、“下降小”、及び“下降大”の状態とは、返鉱発
生量傾向値ΔRがそれぞれ10wt%以上、10〜5w
t%、5〜−5wt%、−5〜−10wt%、及び−1
0wt%以下の状態として定義されたものである。ま
た、表4の縦軸で示されるように返鉱発生量平均値Rが
“上限外れ大”、“上限外れ小”、“正常”、“下限外
れ小”、及び“下限外れ大”の状態とは、返鉱発生量平
均値Rが目標上限値より5wt%以上高いとき、目
標上限値から+5wt%以内のとき、目標上限値と目
標下限値との間にあるとき、目標下限値から−5wt
%以内にあるとき、目標下限値よりも5wt%以上低
いときの状態としてそれぞれ定義されたものである。従
って、返鉱発生量平均値Rが目標上限値と目標下限値と
の範囲内、即ち“正常”であり、返鉱発生量傾向値ΔR
が15wt%、即ち“上昇大”である場合には表4によ
り、このときの返鉱発生量指数決定部103bの評価指
数は(+1)として決定されることになる。
Hereinafter, the return ore generation index determining unit 103b
The index determination method will be described in detail with reference to Table 4, which is an evaluation table. This evaluation table was created on the basis of the knowledge base in which the vast amount of past data obtained in the sintering operation and the knowledge obtained by analyzing them were aggregated in the same manner as described above. The condition of the above is configured in a tabular format so that it can be uniquely judged from the measured data of the amount of returned ore at that time. This return ore generation index determination unit 1
03b inputs the returned ore generation amount average value R and the returned ore generation amount tendency value ΔR from the returned ore generation amount evaluation unit 103a, and collates these values with the preset returned ore generation amount evaluation table shown in Table 4. Then, the evaluation index (any one of +2, +1, 0, -1, and -2) is obtained. As shown by the horizontal axis in Table 4, the return ore generation tendency value ΔR is "upward large", "upward small", "level", "downward small", and "downward large". The generated amount tendency value ΔR is 10 wt% or more, 10 to 5 w
t%, 5 to -5 wt%, -5 to -10 wt%, and -1
It is defined as a state of 0 wt% or less. Also, as shown by the vertical axis in Table 4, the state of the return ore generation average value R being "large upper limit deviation", "small upper limit deviation", "normal", "small lower limit deviation", and "large lower limit deviation" The term "return ore generation average value R" is higher than the target upper limit value by 5 wt% or more, is within +5 wt% from the target upper limit value, is between the target upper limit value and the target lower limit value, and is lower than the target lower limit value. 5 wt
When it is within%, it is defined as the state when it is lower than the target lower limit value by 5 wt% or more. Therefore, the return value average R is within the range between the target upper limit value and the target lower limit value, that is, "normal", and the return value tendency value ΔR
Is 15 wt%, that is, "large increase", the evaluation index of the return ore generation index determining unit 103b at this time is determined as (+1) according to Table 4.

【0026】[0026]

【表4】 [Table 4]

【0027】次に、前記長期温度指数決定部102a及
び返鉱発生量指数決定部103bで求められた各評価指
数を統合する長期焼成状態評価部104について説明す
る。該長期焼成状態評価部104は、長期温度指数決定
部102aで求めた評価指数と返鉱発生量指数決定部1
03bで求めた評価指数を入力し、この両評価指数と予
め設定した表5に示す焼成評価表を照合することにより
評価指数(+2、+1、0、−1、−2のいずれか)を
求める。例えば、前述したように長期温度指数決定部1
02a及び返鉱発生量指数決定部103bの評価指数が
それぞれ(+1)、(−1)である場合、これらを統合
する長期焼成状態評価の評価指数は表5から決定される
ように(+1)となる。従って、以上の操作を行うこと
により、焼結操業における風箱18の温度データを用い
て、マクロ的に捉えた場合の焼成の評価としての評価指
数(+2、+1、0、−1、−2のいずれか)を求める
ことができる。
Next, the long-term firing state evaluation unit 104 which integrates the respective evaluation indexes obtained by the long-term temperature index determination unit 102a and the return ore generation amount index determination unit 103b will be described. The long-term firing state evaluation unit 104 includes an evaluation index determined by the long-term temperature index determination unit 102a and a return ore generation index determination unit 1.
The evaluation index obtained in 03b is input, and the evaluation index (any one of +2, +1, 0, -1, and -2) is calculated by comparing both the evaluation indices with the preset firing evaluation table shown in Table 5. . For example, as described above, the long-term temperature index determination unit 1
When the evaluation indexes of the 02a and the return ore generation index determining unit 103b are (+1) and (−1), respectively, the evaluation indexes of the long-term firing state evaluation integrating these are (+1) as determined from Table 5. Becomes Therefore, by performing the above operation, using the temperature data of the wind box 18 in the sintering operation, the evaluation index (+2, +1, 0, -1, -2) as the evaluation of firing in a macroscopic view. You can ask for either).

【0028】[0028]

【表5】 [Table 5]

【0029】更に、前記長期焼成状態評価部104及び
前記短期温度指数決定部102bで求められた各評価指
数を統合する焼成状態評価部105について説明する。
該焼成状態評価部105は、長期焼成状態評価部104
で求めた評価指数と上記短期温度指数決定部102bで
求めた評価指数を入力し、この両評価指数と予め設定し
た表6に示す焼成状態評価表を照合することにより評価
指数(+2、+1、0、−1、−2のいずれか)を求め
る。例えば、前述したように長期焼成状態評価部104
及び短期温度指数決定部102bの評価指数がそれぞれ
(0)、(+1)である場合、これらを統合する焼成状
態評価指数は表6から決定されるように(0)となる。
Further, the firing state evaluation unit 105 which integrates the respective evaluation indexes obtained by the long-term firing state evaluation unit 104 and the short-term temperature index determination unit 102b will be described.
The firing state evaluation unit 105 is a long-term firing state evaluation unit 104.
By inputting the evaluation index obtained in 1. and the evaluation index obtained in the short-term temperature index determination unit 102b, and comparing both evaluation indexes with the preset firing state evaluation table shown in Table 6, the evaluation index (+2, +1, 0, -1, or -2) is obtained. For example, as described above, the long-term firing state evaluation unit 104
When the evaluation indices of the short-term temperature index determination unit 102b are (0) and (+1), respectively, the firing state evaluation index integrating them is (0) as determined from Table 6.

【0030】[0030]

【表6】 [Table 6]

【0031】次に、前記焼成状態評価部105と前記極
短期温度指数決定部102cで求められた各評価指数を
統合する焼成状態総合評価部106について説明する。
該焼成状態総合評価部106は、焼成状態評価部105
で求めた評価指数と極短期温度指数決定部102cで求
めた評価指数を入力し、この両評価指数と予め設定した
表7に示す焼成状態総合評価表により、焼成状態総合評
価指数を(+2、+1、0、−1、−2のいずれか)を
求めるものである。例えば、前述したように焼成状態評
価部105及び極短期温度指数決定部102cの評価指
数がそれぞれ(0)、(+1)である場合、これらを統
合する焼成状態総合評価指数は表7から決定されるよう
に(0)となる。従って、以上の操作を行うことによ
り、焼結操業における風箱18の温度データを用いミク
ロ的な焼成状態を評価して、焼成状態総合評価指数(+
2、+1、0、−1、−2のいずれか)を求めることが
できる。
Next, the firing state comprehensive evaluation unit 106 which integrates the respective firing indices obtained by the firing state evaluation unit 105 and the ultra short-term temperature index determination unit 102c will be described.
The firing state comprehensive evaluation unit 106 is a firing state evaluation unit 105.
By inputting the evaluation index obtained in (1) and the evaluation index obtained in the ultra short-term temperature index determining unit 102c, the firing state comprehensive evaluation index (+2, (Any one of +1, 0, -1, and -2). For example, as described above, when the evaluation indices of the firing state evaluation unit 105 and the ultra short-term temperature index determination unit 102c are (0) and (+1), respectively, the firing state comprehensive evaluation index that integrates these is determined from Table 7. It becomes (0). Therefore, by performing the above operation, the micro-firing state is evaluated using the temperature data of the wind box 18 in the sintering operation, and the firing state comprehensive evaluation index (+
Any of 2, +1, 0, -1, and -2) can be obtained.

【0032】[0032]

【表7】 [Table 7]

【0033】そして、回転数評価部107は現状MB回
転数評価部107aとMB回転数変更経過時間評価部1
07bとからなる。現状MB回転数評価部107aは、
前記MB回転数記憶部100cに記憶した排風機22の
回転数を入力して、その回転数を、回転数評価指数の一
例である現状MB回転数評価指数X〜Z(X:上限値以
上、Y:上限値〜下限値、Z:下限値以下)のいずれに
該当するかを判定する。ここで前記上下限値は予め設定
される値である。
Then, the rotation speed evaluation unit 107 includes a current MB rotation speed evaluation unit 107a and an MB rotation speed change elapsed time evaluation unit 1.
07b. The current MB rotation speed evaluation unit 107a
The rotation speed of the exhaust fan 22 stored in the MB rotation speed storage unit 100c is input, and the rotation speed is represented by a current MB rotation speed evaluation index X to Z (X: an upper limit value or more, which is an example of the rotation speed evaluation index, Y: upper limit value to lower limit value, Z: less than or equal to lower limit value) is determined. Here, the upper and lower limits are preset values.

【0034】また、MB回転数変更経過時間評価部10
7bにおいては、最後に排風機22の回転数の調整を行
った時刻から、制御を行おうとする時刻までの経過時間
Δtを求め、該経過時間Δtをあらかじめ設定された無
効時間ts と比較し、回転数評価指数の一例であるMB
回転数変更経過時間評価指数(A、Bのいずれか)を求
める。該評価指数がA、Bとは、回転数変更後の経過時
間Δtがそれぞれ無効時間ts 以上の場合、及び無効時
間ts 未満の場合である。
Further, the MB rotation speed change elapsed time evaluation unit 10
In 7b, the elapsed time Δt from the time when the rotation speed of the blower fan 22 was last adjusted to the time when control is to be performed, and the elapsed time Δt is compared with a preset invalid time ts, MB, which is an example of the rotation speed evaluation index
A rotation speed change elapsed time evaluation index (either A or B) is obtained. The evaluation indexes A and B are the cases where the elapsed time Δt after the rotation speed change is equal to or more than the invalid time ts and the case where the elapsed time Δt is less than the invalid time ts, respectively.

【0035】MB回転数調整量決定部108において
は、焼成状態総合評価部106で求めた焼成状態総合評
価指数、MB回転数変更経過時間評価指数、及び現状M
B回転数評価指数とを、表8と照合することにより排風
機22の回転数の調整量を決定する。排風機22の回転
数の調整量を決定するに際して、焼成状態総合評価部1
06、MB回転数変更経過時間評価部107b、現状M
B回転数評価部107aの3項目の値の可能な組合わせ
の数は5×3×2=30となり、この30の組合わせの
それぞれについて、知識ベースに定められたアクション
判定の5通りの段階が割り当てられている。即ち、排風
機22の回転数の調整する操作がそれぞれの組合わせに
ついて+10rpm、+5rpm、±0rpm
(静観)、−5rpm、−10rpmのいずれかに
確定する。
In the MB rotation speed adjustment amount determining unit 108, the firing condition comprehensive evaluation index, the MB rotation speed change elapsed time evaluation index, and the current condition M obtained by the firing condition comprehensive evaluation unit 106.
The adjustment amount of the rotation speed of the exhaust fan 22 is determined by collating the B rotation speed evaluation index with Table 8. When determining the adjustment amount of the rotation speed of the exhaust fan 22, the firing state comprehensive evaluation unit 1
06, MB rotation speed change elapsed time evaluation unit 107b, current state M
The number of possible combinations of the values of the three items of the B rotation speed evaluation unit 107a is 5 × 3 × 2 = 30, and for each of these 30 combinations, there are five stages of action determination defined in the knowledge base. Has been assigned. That is, the operation for adjusting the rotation speed of the air exhauster 22 is +10 rpm, +5 rpm, ± 0 rpm for each combination.
(Quiet), -5 rpm, -10 rpm.

【0036】[0036]

【表8】 [Table 8]

【0037】例えば、表8中のルールNo.1で示され
るように、MB回転数変更経過時間評価部107b、現
状MB回転数評価部107a、焼成状態総合評価部10
6、のそれぞれの評価指数が(A、X、+2)である場
合のアクション判定は−10rpmとなり、現状のMB
回転数を10rpmだけ減ずる判定結果が得られる。そ
して、この判定結果に基づいて制御部109を介して排
風機22の回転数の自動制御を行う。MB回転数変更経
過時間評価部107bでのMB回転数変更経過時間評価
指数がBの場合には、最後に排風機22の回転数の調整
を行ってから、この調整による温度変化を安定化させる
のに要する時間が経過していないので、表8中のNo.
16、17に示すように排風機22の回転数の制御を行
わないように定められている。なお、以上の各評価、及
び判定は必ずしも、前記した評価表上で対照する必要は
なく、コンピュータにおける等価な操作を代行すること
のできるプログラムにより実現することができる。
For example, the rule No. 1, the MB rotation speed change elapsed time evaluation unit 107b, the current MB rotation speed evaluation unit 107a, and the firing state comprehensive evaluation unit 10 are shown.
When each evaluation index of 6 is (A, X, +2), the action determination is −10 rpm, and the current MB
A determination result that the number of revolutions is reduced by 10 rpm is obtained. Then, based on the determination result, the control unit 109 automatically controls the rotation speed of the exhaust fan 22. When the MB rotation speed change elapsed time evaluation index in the MB rotation speed change elapsed time evaluation unit 107b is B, the rotation speed of the exhaust fan 22 is finally adjusted, and the temperature change due to this adjustment is stabilized. Since the time required for No. in Table 8 has not elapsed,
As shown in 16 and 17, the rotation speed of the exhaust fan 22 is not controlled. Note that the above evaluations and judgments do not necessarily need to be compared on the evaluation table described above, and can be realized by a program that can perform equivalent operations on a computer.

【0038】以上、説明したような本実施の形態におい
ては、風箱における過去及び現在の温度データを基にし
て、かつ、知識ベースのデータを反映させて、パレット
速度を変更することなく排風機の回転数の制御のみで効
果的な焼結温度パターンの制御を行うことができる。そ
のため、生産変動の少ない安定した自動制御が行える。
また、風箱内の焼結排ガス温度の変化速度が最大になる
位置の風箱の温度をもとに各温度評価(長期、短期、極
短期)を行って、制御性を良くしたが、本発明において
は、従来のBTPの位置に相当する風箱内の焼結排ガス
温度を基に各温度評価を行っても良い。
In the present embodiment as described above, based on the past and present temperature data in the wind box and by reflecting the knowledge base data, the air blower can be operated without changing the pallet speed. It is possible to effectively control the sintering temperature pattern only by controlling the number of revolutions. Therefore, stable automatic control with little production fluctuation can be performed.
Moreover, each temperature evaluation (long-term, short-term, very short-term) was performed based on the temperature of the wind box at the position where the rate of change of the sintering exhaust gas temperature in the wind box was the maximum, to improve controllability. In the present invention, each temperature evaluation may be performed based on the temperature of the sintering exhaust gas in the air box corresponding to the position of the conventional BTP.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態に係る焼結温度パターンの
制御方法の説明図である。
FIG. 1 is an explanatory diagram of a sintering temperature pattern control method according to an embodiment of the present invention.

【図2】(a)、(b)はそれぞれ本発明の実施の形態
に係る焼結温度パターンの制御方法を適用する焼結機、
及び各風箱内の温度分布の説明図である。
2 (a) and 2 (b) are respectively a sintering machine to which a method for controlling a sintering temperature pattern according to an embodiment of the present invention is applied,
3A and 3B are explanatory diagrams of temperature distribution in each wind box.

【図3】風箱における測定温度の長期間の時間変化を説
明する図である。
FIG. 3 is a diagram illustrating a long-term change in measured temperature in a wind box.

【図4】風箱における測定温度の短期間の時間変化を説
明する図である。
FIG. 4 is a diagram illustrating a short-term temporal change in measured temperature in a wind box.

【図5】風箱における測定温度の極短期間の時間変化を
説明する図である。
FIG. 5 is a diagram for explaining a temporal change in measured temperature in a wind box for an extremely short period of time.

【符号の説明】[Explanation of symbols]

10 焼結機 11 焼結原料 12 パレット 13 点火炉 16 風箱 17 風箱 18 風箱 19 風箱 20 風箱 21 風箱 22 排風機(MB) 23 排鉱部 24 温度計 25 制御装置 26 集塵機 100 記憶部 100a 温度
記憶部 100b 返鉱記憶部 100c MB
回転数記憶部 101 温度評価部 101a 長期
温度評価部 101b 短期温度評価部 101c 極短
期温度評価部 102 温度指数決定部 102a 長期
温度指数決定部 102b 短期温度指数決定部 102c 極短
期温度指数決定部 103 返鉱発生量評価指数決定部 103a 返鉱
発生量評価部 103b 返鉱発生量指数決定部 104 長期焼
成状態評価部 105 焼成状態評価部 106 焼成状
態総合評価部 107 回転数評価部 107a 現状
MB回転数評価部 107b MB回転数変更経過時間評価部 108 MB回転数調整量決定部 109 制御部
10 Sintering machine 11 Sintering raw material 12 Pallet 13 Ignition furnace 16 Windbox 17 Windbox 18 Windbox 19 Windbox 20 Windbox 21 Windbox 22 Exhaust fan (MB) 23 Exhaust section 24 Thermometer 25 Controller 26 Dust collector 100 Storage unit 100a Temperature storage unit 100b Return ore storage unit 100c MB
Rotation speed storage unit 101 Temperature evaluation unit 101a Long-term temperature evaluation unit 101b Short-term temperature evaluation unit 101c Extreme short-term temperature evaluation unit 102 Temperature index determination unit 102a Long-term temperature index determination unit 102b Short-term temperature index determination unit 102c Extreme short-term temperature index determination unit 103 Return Ore generation evaluation index determination unit 103a Return ore generation amount evaluation unit 103b Return ore generation index determination unit 104 Long-term firing condition evaluation unit 105 Firing condition evaluation unit 106 Firing condition comprehensive evaluation unit 107 Rotation speed evaluation unit 107a Current MB rotation speed evaluation Unit 107b MB rotation speed change elapsed time evaluation unit 108 MB rotation speed adjustment amount determination unit 109 control unit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 焼結原料を焼結パレット上に装入した
後、上方から点火すると共に該焼結パレット下方から風
箱、集塵機、排風機を順次介して焼結排ガスを吸引しつ
つ焼結鉱を製造し、この焼結鉱を冷却すると共に整粒
し、この整粒中に発生した所定粒度以下の焼結鉱を返鉱
として回収しつつ操業するに際して、前記焼結排ガスを
吸引する排風機の回転数を調整する焼結温度パターンの
制御方法において、 前記焼結排ガスの温度が最も急速に上昇する位置から最
大温度となる位置までの間のいずれかの位置に於ける風
箱内の焼結排ガス温度を測定し、この測定した所定期間
内の経時的焼結排ガス温度データを長期、短期、極短期
に区分して、その各区分期間の焼結排ガス温度の平均値
と傾向値を求め、この各区分期間の平均値と傾向値から
長期温度評価指数、短期温度評価指数、極短期温度評価
指数を各々求め、 更に、前記返鉱の発生量を経時的に測定し、この測定し
た所定期間内の経時的返鉱の発生量からその平均値と傾
向値を求め、この返鉱の発生量の平均値と傾向値から返
鉱発生量評価指数を求め、 該返鉱発生量評価指数と前記長期温度評価指数から焼結
原料の長期焼成状態評価指数を求め、 該長期焼成状態評価指数と前記短期温度評価指数及び前
記極短期温度評価指数から焼結原料の焼成状態総合評価
指数を求め、 一方、前記焼結排ガス吸引用の排風機の回転数を測定
し、所定期間内の回転数を評価して得られる回転数評価
指数と前記焼成状態総合評価指数により該排風機の回転
数の増減調整量を求め、 この排風機の回転数の増減調整量に基づいて排風機の回
転数を調整することを特徴とする焼結温度パターンの制
御方法。
1. A method of charging a sintering raw material onto a sintering pallet, igniting the sintering pallet from above, and sintering the sintering exhaust gas from below the sintering pallet through a wind box, a dust collector, and an air exhauster in this order. When the ore is manufactured, the sinter is cooled and sized, and the sinter having a predetermined particle size or less generated during the sizing is recovered as a return ore while operating, the exhaust gas for sucking the sintering exhaust gas is discharged. In a method for controlling a sintering temperature pattern for adjusting the number of revolutions of a blower, in the wind box at any position between a position where the temperature of the sintering exhaust gas rises most rapidly and a position where it reaches the maximum temperature. The sintering exhaust gas temperature is measured, and the time-dependent sintering exhaust gas temperature data within the measured predetermined period is divided into long-term, short-term, and ultra-short-term, and the average value and the trend value of the sintering exhaust gas temperature in each divided period are calculated. Calculated from the average value and trend value of each segment period The temperature evaluation index, the short-term temperature evaluation index, and the ultra-short-term temperature evaluation index are obtained, and the amount of the returned ore is measured over time, and the average is calculated from the amount of the returned ore over time within the measured predetermined period. The value and tendency value are obtained, the return ore generation amount evaluation index is obtained from the average value and tendency value of the return ore generation amount, and the long-term firing state of the sintering raw material is obtained from the return ore generation amount evaluation index and the long-term temperature evaluation index. An evaluation index is obtained, and an overall evaluation index of the sintering state of the sintering raw material is obtained from the long-term sintering state evaluation index, the short-term temperature evaluation index, and the ultra-short-term temperature evaluation index. The number of revolutions of the exhaust fan is measured by measuring the number of revolutions within a predetermined period, and the above-mentioned firing state comprehensive evaluation index is used to obtain an adjustment amount for increasing or decreasing the number of revolutions of the exhaust fan. Adjust the speed of the exhaust fan based on the adjustment amount The method of sintering temperature pattern characterized by Rukoto.
【請求項2】 前記焼結排ガス温度を測定する場所を該
焼結排ガス温度の上昇が最も急速となる位置またはその
近傍に設定することを特徴とする請求項1記載の焼結温
度パターンの制御方法。
2. The control of the sintering temperature pattern according to claim 1, wherein the location where the sintering exhaust gas temperature is measured is set at a position where the temperature of the sintering exhaust gas temperature rises most rapidly or in the vicinity thereof. Method.
【請求項3】 焼結原料を焼結パレット上に装入した
後、上方から点火すると共に該焼結パレット下方から風
箱、集塵機、排風機を順次介して焼結排ガスを吸引しつ
つ焼結鉱を製造し、この焼結鉱を冷却すると共に整粒
し、この整粒中に発生した所定粒度以下の焼結鉱を返鉱
として回収しつつ操業するに際して、前記焼結排ガスを
吸引する排風機の回転数を調整する焼結温度パターンの
制御装置において、 前記焼結排ガスの温度が急速に上昇する位置より下流側
にある風箱内の焼結排ガス温度、前記返鉱の発生量、前
記排風機の回転数を経時的に測定して記憶する記憶部
と、 該記憶部からの所定期間内の経時的焼結排ガス温度デー
タを長期、短期、極短期に区分して、その各区分期間の
焼結排ガス温度の平均値と傾向値を求める温度評価部
と、 該温度評価部で求めた各区分期間の平均値と傾向値から
長期温度評価指数、短期温度評価指数、極短期温度評価
指数を各々求める温度指数決定部と、 前記記憶した所定期間内の経時的返鉱の発生量からその
平均値と傾向値を求め、この返鉱の発生量の平均値と傾
向値から返鉱発生量評価指数を求める返鉱発生量評価指
数決定部と、 該返鉱発生量評価指数決定部からの返鉱発生量評価指数
と前記温度指数決定部からの長期温度評価指数により焼
結原料の長期焼成状態評価指数を求める長期焼成状態評
価部と、 該長期焼成状態評価部からの長期焼成状態評価指数と前
記温度指数決定部からの短期温度評価指数及び前記極短
期温度評価指数から焼結原料の焼成状態総合評価指数を
求める焼成状態総合評価部と、 前記記憶部に保持する排風機の回転数のデータを評価す
る回転数評価部を有し、該回転数評価部より得られる回
転数評価指数と前記焼成状態総合評価指数により前記排
風機の回転数の増減調整量を求める排風機回転数調整量
決定部と、該排風機回転数調整量決定部からの排風機の
回転数の増減調整量に基づいて排風機の回転数を調整す
る制御部を有することを特徴とする焼結温度パターンの
制御装置。
3. After charging the sintering raw material onto the sintering pallet, it is ignited from above and is sintered while sucking the sintering exhaust gas from below the sintering pallet through a wind box, a dust collector and an exhaust fan in order. When the ore is manufactured, the sinter is cooled and sized, and the sinter having a predetermined particle size or less generated during the sizing is recovered as a return ore while operating, the exhaust gas for sucking the sintering exhaust gas is discharged. In the control device of the sintering temperature pattern for adjusting the rotation speed of the wind blower, the temperature of the sintering exhaust gas is a sintering exhaust gas temperature in the wind box downstream from the position where the temperature rapidly rises, the amount of the returned ore, and A storage unit that measures and stores the number of revolutions of the exhaust fan with time, and the sintering exhaust gas temperature data from the storage unit over time within a predetermined period is divided into long-term, short-term, and ultra-short-term, and each divided period And the temperature evaluation part to find the average value and tendency value of the sintering exhaust gas temperature of A temperature index determination unit that determines a long-term temperature evaluation index, a short-term temperature evaluation index, and an ultra-short-term temperature evaluation index from the average value and tendency value of each divided period obtained by the temperature evaluation unit, and the time-course within the stored predetermined period. An average value and a tendency value are calculated from the amount of return ore generated, and an index for evaluating the amount of returned ore generation is calculated from the average value and the trend value of the amount of returned ore generation, and a return ore generation amount evaluation index determination unit, and the returned ore generation A long-term firing state evaluation unit that obtains a long-term firing state evaluation index of the sintering raw material from the return ore generation amount evaluation index from the volume evaluation index determination unit and the long-term temperature evaluation index from the temperature index determination unit; From the long-term firing state evaluation index from the temperature index determination unit and the short-term temperature evaluation index from the temperature index determination unit and the ultra-short-term temperature evaluation index to obtain the firing state comprehensive evaluation index of the sintering raw material, and the firing state comprehensive evaluation unit, which is stored in the storage unit. Times of the exhaust fan An exhaust fan rotation having a rotational speed evaluation unit for evaluating the rotational speed data, and obtaining an increase / decrease adjustment amount of the rotational speed of the exhaust fan by the rotational speed evaluation index obtained from the rotational speed evaluation unit and the firing state comprehensive evaluation index. A sintering temperature characterized by having a number adjustment amount determination unit and a control unit that adjusts the rotation speed of the exhaust fan based on the increase / decrease adjustment amount of the rotation speed of the exhaust air from the exhaust fan rotation speed adjustment amount determination unit. Pattern controller.
JP20527595A 1995-07-18 1995-07-18 Method for controlling sintering temperature pattern and device therefor Pending JPH0931555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20527595A JPH0931555A (en) 1995-07-18 1995-07-18 Method for controlling sintering temperature pattern and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20527595A JPH0931555A (en) 1995-07-18 1995-07-18 Method for controlling sintering temperature pattern and device therefor

Publications (1)

Publication Number Publication Date
JPH0931555A true JPH0931555A (en) 1997-02-04

Family

ID=16504287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20527595A Pending JPH0931555A (en) 1995-07-18 1995-07-18 Method for controlling sintering temperature pattern and device therefor

Country Status (1)

Country Link
JP (1) JPH0931555A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021204A (en) * 2010-07-16 2012-02-02 Nippon Steel Corp Method for treatment of high-temperature slag
CN108358610A (en) * 2018-04-28 2018-08-03 中电建水环境治理技术有限公司 A kind of regulation and control method and device of sludge potting sintering temperature
WO2019124790A1 (en) * 2017-12-22 2019-06-27 주식회사 포스코 Apparatus and method for producing sintered ore

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021204A (en) * 2010-07-16 2012-02-02 Nippon Steel Corp Method for treatment of high-temperature slag
WO2019124790A1 (en) * 2017-12-22 2019-06-27 주식회사 포스코 Apparatus and method for producing sintered ore
KR20190076675A (en) * 2017-12-22 2019-07-02 주식회사 포스코 Apparatus and mehtod for manufacutring sintered ore
CN108358610A (en) * 2018-04-28 2018-08-03 中电建水环境治理技术有限公司 A kind of regulation and control method and device of sludge potting sintering temperature
CN108358610B (en) * 2018-04-28 2020-07-14 中电建生态环境集团有限公司 Method and device for regulating and controlling sintering temperature of sludge ceramic preparation

Similar Documents

Publication Publication Date Title
JP5298634B2 (en) Quality control method for sintered ore
JP2012072432A (en) Method for measuring firing-condition in sintering machine and method for manufacturing sintered ore
JPH0931555A (en) Method for controlling sintering temperature pattern and device therefor
JP5103820B2 (en) Method for producing sintered ore
KR101559687B1 (en) Method and regulator for adjusting the burn-through point in a sintering machine
CN109654897B (en) Intelligent sintering end point control method for improving carbon efficiency
KR100638449B1 (en) Steam producing method and device of a sintering waste heat recovery facilities
JP2720653B2 (en) Sinter production method
JPH1046215A (en) Method for controlling furnace heat in blast furnace
RU2229074C1 (en) Method for controlling pellets roasting process on conveying machine
JP7099433B2 (en) Sintered ore manufacturing method
CN117352075A (en) Method for evaluating matching property of blast furnace top temperature and blanking
KR102010932B1 (en) Apparatus and mehtod for manufacutring sintered ore
KR102305734B1 (en) Apparatus and method for controlling charging amount of sintering material
JPS62188733A (en) Manufacture of sintered ore
JP2658748B2 (en) Operating method of sintering machine
JPH06330194A (en) Operation of sintering machine
JP2024078868A (en) Firing index predicting method and method for operating dwight-lloyd type sintering machine
KR100311787B1 (en) Method for predicting drop strength of sintered ore
CN117408051A (en) Method for determining initial air flow distribution state of blast furnace
JPH06256862A (en) Method for controlling pallet velocity in sintering machine
CN117242194A (en) Method and apparatus for producing sintered ore
JPH05279756A (en) Production of sintered ore
JP2000256759A (en) Method for estimating progressing condition of sintering reaction
JPH09125164A (en) Method for blending sintered returned ore in optimum