JPS586898B2 - Temperature detection method of sintered raw material layer - Google Patents
Temperature detection method of sintered raw material layerInfo
- Publication number
- JPS586898B2 JPS586898B2 JP14433078A JP14433078A JPS586898B2 JP S586898 B2 JPS586898 B2 JP S586898B2 JP 14433078 A JP14433078 A JP 14433078A JP 14433078 A JP14433078 A JP 14433078A JP S586898 B2 JPS586898 B2 JP S586898B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- raw material
- material layer
- layer
- sintering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
【発明の詳細な説明】
本発明は移動火格子型焼結機(以下、DL焼結機と云う
)におけるパレット上焼結原料層の温度検出方法に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting the temperature of a sintered raw material layer on a pallet in a moving grate type sintering machine (hereinafter referred to as DL sintering machine).
周知の通り,近代の鉄冶金においては、鉄鉱石石灰、コ
ークス等の粉粒体を適当な水分配合のもとに混錬し、凝
似粒塊とした焼結原料をDL焼結機で焼結鉱としたもの
が主要原料として使用されている。As is well known, in modern iron metallurgy, powders such as iron ore lime and coke are kneaded with an appropriate moisture content, and the sintered raw materials are made into coagulated granules and sintered using a DL sintering machine. The condensed ore is used as the main raw material.
前述のDL焼結機における鉄鉱石の焼結手段においては
、高温でも充分な潰裂強度を持ち、粉化しにくく、高い
通気性が保てる高品質の焼結鉱を得るため、焼成が基準
通り適確に進行しているかどうかを常に監視し、焼成制
御を適切に実施せねばならない。In the method of sintering iron ore in the aforementioned DL sintering machine, sintering must be performed in accordance with standards in order to obtain high-quality sintered ore that has sufficient crushing strength even at high temperatures, is difficult to powder, and maintains high air permeability. It is necessary to constantly monitor whether the firing is progressing properly and to appropriately control firing.
例を上げるとDL焼結機ではパレットの移動速度が早す
ぎると焼成が不充分となる。For example, in a DL sintering machine, if the pallet movement speed is too fast, sintering will be insufficient.
つまりベッド下層部まで充分な焼結反応が進行しないた
め歩留りが低下し得られた製品は落下強度の低いものと
なる。In other words, since the sintering reaction does not proceed sufficiently to the lower layer of the bed, the yield decreases and the resulting product has low drop strength.
逆にパレットの移動速度が遅過がると焼結反応は充分で
あるが酸化が進みすぎて還元粉化指数が悪化する。On the other hand, if the moving speed of the pallet is too slow, the sintering reaction will be sufficient, but oxidation will proceed too much and the reduction powdering index will deteriorate.
つまり生産性は著しく低下してしまう。In other words, productivity will drop significantly.
前述のように適切な焼成を行なうための一条件としての
パレットの移動速度のみをとっても、それぞれ異なった
原料配合の状態においてベッドの通気性が変化するため
、それに応じてパレットの移動速度の最適値も変化する
。As mentioned above, even if we consider only the pallet moving speed as one condition for proper firing, the air permeability of the bed will change depending on the state of the different raw material compositions, so the optimal value of the pallet moving speed should be determined accordingly. also changes.
即ち通常の操業では原料配合、含水率、原料充填度等が
絶えず変動するため、それに応じてパレットの移動速度
を変更する必要がある。That is, in normal operations, the raw material composition, moisture content, degree of filling of raw materials, etc. constantly change, so it is necessary to change the moving speed of the pallet accordingly.
つまり焼成速度を過去の技術経験から求めた値に保つこ
とが要求される訳であるが前記焼成速度を定めるための
指標として適当なものがないため、従来は排鉱部でのシ
ンターケーク破断面の観察結果、たとえば燃焼帯の形状
、厚さ輝度などにより判断したり、ストランド後半の排
ガス温度分布が一定になるように操業するなどの方法が
採用されていた。In other words, it is required to maintain the firing rate at a value determined from past technical experience, but since there is no suitable index for determining the firing rate, conventionally the sinter cake fracture surface in the ore discharge area was Methods such as making judgments based on observation results, such as the shape, thickness, and brightness of the combustion zone, and operating so that the exhaust gas temperature distribution in the latter half of the strand is constant have been adopted.
即ちオンラインで焼成の進度および焼成速度の適、不適
を直接的に監視し、焼成制御のための有効な情報を提供
する手段は見当らないのが現状であった。That is, at present, there is no means to directly monitor the progress of firing and the suitability or unsuitability of the firing speed online and to provide effective information for firing control.
そこで本発明者等は焼成の進度を直接的に検出する方法
を研究した結果、本発明の方法を開発したもので本発明
の要旨は、移動火格子型焼結機のパレット上原料層に上
端面開放の耐熱性筒体を挿入し、次いで該筒体内に温度
検出端を上下動自在に挿入し、前記筒体内の任意部分の
温度を継続的もしくは断続的に測定することにより原料
層の鉛直方向の温度もしくは温度分布を間接的に測定す
ることを特徴とする焼結原料層の温度検出方法にある。Therefore, the present inventors researched a method of directly detecting the progress of firing, and as a result, developed the method of the present invention.The gist of the present invention is to Insert a heat-resistant cylinder with an open end, then insert a temperature detection end into the cylinder so that it can move up and down, and measure the temperature of any part of the cylinder continuously or intermittently to measure the vertical direction of the raw material layer. The present invention provides a method for detecting temperature of a sintered raw material layer, which is characterized by indirectly measuring temperature or temperature distribution in a direction.
以下本発明を図面に基づき詳細に説明する。The present invention will be explained in detail below based on the drawings.
第1図は本発明を実施するために用いられた周知のDL
焼結機の概略構成図を示すもので、1はスプロケットホ
イール、2はパレット、3は床敷鉱供給装置、4は焼結
原料供給装置、5は点火炉6は床敷層、7は未焼結層、
8は焼成進行中の層つまり燃焼帯,9は焼成が完了した
層、つまり焼結層を示す。Figure 1 shows a well-known DL used to implement the present invention.
This figure shows a schematic diagram of the sintering machine, in which 1 is a sprocket wheel, 2 is a pallet, 3 is a bedding supply device, 4 is a sintering raw material supply device, 5 is an ignition furnace 6 is a bedding layer, and 7 is an unused bedding layer. sintered layer,
Reference numeral 8 indicates a layer in progress of firing, that is, a combustion zone, and reference numeral 9 indicates a layer in which firing has been completed, that is, a sintered layer.
而して説明の便宜上、パレット2の一部は省略し図示し
ていないが該パレット2は通常スプロケットホイール1
で1〜5m/minの速度で移動せしめられる。For convenience of explanation, a part of the pallet 2 is omitted and not shown, but the pallet 2 is normally attached to the sprocket wheel 1.
It is moved at a speed of 1 to 5 m/min.
パレット2上の焼結原料の層厚は300〜500mm程
度であり、焼結原料は点火炉5で表層に点火されたのち
、パレット2の下部に設けられたウインドボックス10
で下方に吸引通気され焼成が行なわれる。The layer thickness of the sintered raw material on the pallet 2 is about 300 to 500 mm, and after the sintered raw material is ignited on the surface layer in the ignition furnace 5, it is transferred to the wind box 10 provided at the bottom of the pallet 2.
Then, air is sucked and vented downward to perform firing.
前記燃焼帯8は通常20〜3 0mm/m inの速度
で下方に移動し排鉱部11で最下層に達するように制御
される。The combustion zone 8 is controlled to move downward at a speed of usually 20 to 30 mm/min and reach the lowest layer at the ore discharge section 11.
ところで点火炉5から排鉱部11までの焼成進度(本発
明で焼成進度とは、パレット2の移動方向、つまりスト
ランド方向または幅方向における任意位置での焼結層深
度を指すものとする。Incidentally, the firing progress from the ignition furnace 5 to the ore discharge section 11 (in the present invention, the firing progress refers to the depth of the sintered layer at any position in the moving direction of the pallet 2, that is, the strand direction or the width direction.
)を模式的に示すと第2図のように表わすことができる
。) can be schematically represented as shown in FIG.
図において7は未焼結層で、8は燃焼帯、9は完全に焼
成が完了した焼結層を示す。In the figure, 7 is an unsintered layer, 8 is a combustion zone, and 9 is a sintered layer that has been completely fired.
またパレット2の移動方向において任意の点をとり鉛直
方向A−A’における燃焼帯8を示す斜線部分13の上
縁13aと下縁13bと鉛直面14との交点をそれぞれ
B , B’とするとB−B’間の距離は燃焼帯8の厚
さを示すことになる。Further, if an arbitrary point is taken in the moving direction of the pallet 2 and the intersections of the upper edge 13a and the lower edge 13b of the diagonally shaded portion 13 indicating the combustion zone 8 in the vertical direction A-A' with the vertical plane 14 are B and B', respectively. The distance between B and B' indicates the thickness of the combustion zone 8.
さて前記未燃焼層7燃焼帯8、焼結層9の鉛直面14に
沿った温度分布は、概略第3図に示す通りである。Now, the temperature distribution along the vertical plane 14 of the unburned layer 7, combustion zone 8, and sintered layer 9 is roughly as shown in FIG.
第3図は、横軸に温度(’C)をとり縦軸に前記未燃焼
層7、燃焼帯8、焼結層9の分布つまり、焼結原料の厚
さ方向の分布をとったものである。In Figure 3, the horizontal axis represents temperature ('C), and the vertical axis represents the distribution of the unburned layer 7, combustion zone 8, and sintered layer 9, that is, the distribution in the thickness direction of the sintered raw material. be.
而して該焼結原料層の表層近傍から鉛直方向における温
度を検出すれば焼成進度あるいは焼成速度(本発明にお
いて焼成速度とは燃焼帯8が表層から下方に向う進行速
度を云う)を知ることが可能になる。By detecting the temperature in the vertical direction from near the surface layer of the sintered raw material layer, it is possible to know the firing progress or firing speed (in the present invention, the firing speed refers to the speed at which the combustion zone 8 moves downward from the surface layer). becomes possible.
以下、焼結原料層の温度検出方法について詳細に説明す
る。Hereinafter, a method for detecting the temperature of the sintered raw material layer will be described in detail.
第4図は本発明の温度検出方法を説明するためのパレッ
ト上焼結原料層の部分断面図である。FIG. 4 is a partial sectional view of the sintered raw material layer on the pallet for explaining the temperature detection method of the present invention.
図において15は上端面開放の耐熱性筒体、16は温度
検出端である。In the figure, 15 is a heat-resistant cylinder whose upper end is open, and 16 is a temperature detection end.
前記筒体15は、焼結原料供給装置4と点火炉5間、も
しくは点火炉5を通過した直後の焼結原料層に挿入され
る。The cylindrical body 15 is inserted between the sintering raw material supply device 4 and the ignition furnace 5, or into the sintering raw material layer immediately after passing through the ignition furnace 5.
温度検出端16は、前記筒体15に上下動自在に挿入さ
れる。The temperature detection end 16 is inserted into the cylindrical body 15 so as to be vertically movable.
本実施例における温度検出端16は第5図に側断面図で
示すように捲取駆動装置,例えば電動機17および捲取
ドラム18を有する検出端昇降装置19で吊持され、前
記電動機17を駆動することによって上下動するよう構
成されている。The temperature sensing end 16 in this embodiment is suspended by a winding drive device, for example, a sensing end lifting device 19 having an electric motor 17 and a winding drum 18, as shown in a side sectional view in FIG. It is configured to move up and down by doing this.
尚第4図において20は温度表示装置、21は昇降量表
示装置をそれぞれ示す。In FIG. 4, 20 indicates a temperature display device, and 21 indicates a lift amount display device.
而して本発明において焼結原料層の温度を検出するには
、まず焼結原料供給装置4と点火炉5間,もしくは、点
火炉5を通過直後における焼結原料層の任意の位置に筒
体15を挿入する。In order to detect the temperature of the sintering raw material layer in the present invention, first, a cylinder is placed between the sintering raw material supply device 4 and the ignition furnace 5, or at any position of the sintering raw material layer immediately after passing through the ignition furnace 5. Insert the body 15.
次いで前記筒体15が点火炉5を通過した時点で検出端
昇降装置19を焼結原料層表面に載置し、温度検出端1
6が筒体15内へ垂下するようセットする。Next, when the cylinder 15 passes through the ignition furnace 5, the detection end lifting device 19 is placed on the surface of the sintering raw material layer, and the temperature detection end 1 is placed on the surface of the sintered raw material layer.
6 is set so that it hangs down into the cylindrical body 15.
然る後電動機17を継続的,もしくは、断続的に駆動し
て温度検出端16を降下せしめ筒体15内の任意部分に
おける温度を測定する。Thereafter, the electric motor 17 is driven continuously or intermittently to lower the temperature detection end 16 and measure the temperature at any part within the cylinder body 15.
即ち、筒体15内の雰囲気温度あるいは内壁温度を測定
することにより焼結原料層の鉛直方向所定レベル(所定
レベルとは、焼結原料表層より所定の深さのレベルを云
う)の温度を間接的に測定するものである。That is, by measuring the atmospheric temperature or inner wall temperature inside the cylinder 15, the temperature at a predetermined level in the vertical direction of the sintering raw material layer (the predetermined level means a level at a predetermined depth from the surface layer of the sintering raw material layer) can be indirectly determined. It is measured based on the
つまり、温度検出端16の基準レベルよりの昇降量を例
えば昇降量表示装置21で検出しながらそのレベルにお
ける温度を測定すれば前記所定レベルにおける焼結原料
層の温度の検出ができ,又前記測定レベルを順次変化さ
せれば第3図に示すような鉛直方向における温度分布を
検出することもできる。That is, by measuring the temperature at that level while detecting the amount of elevation of the temperature detection end 16 from the reference level using the elevation amount display device 21, the temperature of the sintering raw material layer at the predetermined level can be detected. By sequentially changing the levels, it is also possible to detect the temperature distribution in the vertical direction as shown in FIG.
また筒体15をパレット2の巾方向あるいはストランド
方向に複数個挿入し、それらにそれぞれ温度検出端16
を挿入せしめることにより巾方向あるいはストランド方
向における相対的温度分布を検出することも勿論可能で
ある。In addition, a plurality of cylinders 15 are inserted in the width direction or strand direction of the pallet 2, and a temperature detection end 16 is inserted into each of them.
Of course, it is also possible to detect the relative temperature distribution in the width direction or strand direction by inserting the strand.
以上のように本発明は焼結原料層に筒体15を挿入せし
め、該筒体15を介して、焼結原料層の鉛直方向の温度
、もしくは温度分布を間接的に測定するものであり,而
して筒体15としては.焼結原料層の鉛直方向における
温度変化をその内部に正確に伝達でき、かつ、点火炉5
から排鉱部11へ移動する間に焼失、あるいは熱変形を
生じ温度検出端16の上下動を阻害することのない耐熱
性を有するものでなければならない。As described above, the present invention involves inserting the cylindrical body 15 into the sintering raw material layer, and indirectly measuring the temperature or temperature distribution in the vertical direction of the sintering raw material layer through the cylindrical body 15. Therefore, as for the cylindrical body 15. The temperature change in the vertical direction of the sintering raw material layer can be accurately transmitted to the inside thereof, and the ignition furnace 5
It must have heat resistance that will not cause burnout or thermal deformation during movement from the ore discharge section 11 to the upper and lower movements of the temperature detection end 16.
本発明者等の経験では、アルミナあるいはジルコニア等
のセラミック系の材質のものが、前記温度変化を極めて
正確に伝達でき非常に効果的であった。According to the experience of the present inventors, ceramic materials such as alumina or zirconia can transmit the temperature change extremely accurately and are very effective.
しかしながら筒体15として普通鋼、あるいはステンレ
ス鋼等の鋼管を用いた場合でも、前記セラミック系に比
べ熱伝導率が良くなるため、温度変化の境界が若干、不
鮮明となる(本発明者等の一実験結果では,焼結原料層
の設定温度に対し、アルミナ質の筒体15では、10龍
以内のバラツキであるが肉厚1mmのステンレス鋼管で
は約20mm程度となった。However, even when a steel pipe such as ordinary steel or stainless steel is used as the cylinder 15, the thermal conductivity is better than that of the ceramic pipe, so the boundary of temperature change becomes somewhat unclear (as proposed by the present inventors). According to the experimental results, with respect to the set temperature of the sintering raw material layer, the variation was within 10 mm for the alumina cylinder 15, but was about 20 mm for the stainless steel pipe with a wall thickness of 1 mm.
)が相対的な傾向を把握することは充分可能であること
が確認された。) was confirmed to be sufficiently possible to grasp relative trends.
従って筒体15の材質は、前記機能を有する範囲で、管
理目的、測定頻度等に応じて適宜選定すれは良い。Therefore, the material of the cylindrical body 15 may be appropriately selected depending on the management purpose, measurement frequency, etc., as long as it has the above-mentioned functions.
本発明において耐熱性筒体15とは係る意味で用いるも
のである。In the present invention, the heat-resistant cylindrical body 15 is used in this sense.
さて、第6図は筒体15としてアルミナ質の有底管を用
い180m”級のDL焼結機において前記焼結原料層の
温度を測定した一実施結果を示す図表である。Now, FIG. 6 is a chart showing the results of measuring the temperature of the sintering raw material layer in a 180 m'' class DL sintering machine using an alumina bottomed tube as the cylinder 15.
即ち第6図Aは点火炉5より熱25m離れた位置aおよ
び30m離れた位置bにおける鉛直方向の温度分布を示
すもので,横軸に温度(℃)を、縦軸に焼結原料の鉛直
方向の分布をとったものである。In other words, Figure 6A shows the vertical temperature distribution at position a, which is 25 m away from the ignition furnace 5, and position b, which is 30 m away from the ignition furnace 5. This is the distribution of directions.
第6図Bは、温度検出端16を焼結原料表層面より20
0mmの深さに固定し該レベルにおける点火炉5より排
鉱部11まで、連続的に測定したストランド方向の温度
分布を示すもので、横軸にストランド方向の分布を、縦
軸に温度(℃)をとったものである。In Figure 6B, the temperature detection end 16 is placed 20 degrees from the surface of the sintered raw material.
This figure shows the temperature distribution in the strand direction that was fixed at a depth of 0 mm and was continuously measured from the ignition furnace 5 to the ore discharge section 11 at that level.The horizontal axis shows the distribution in the strand direction, and the vertical axis shows the temperature (℃ ).
該第6図から判明するように筒体15を介して間接的に
測定したものであるけれども、焼結原料層の温度あるい
は温度分布を確実に把握できることが確認された。As is clear from FIG. 6, although the measurements were made indirectly through the cylinder 15, it was confirmed that the temperature or temperature distribution of the sintering raw material layer could be reliably determined.
さて第7図は、本発明に基づく他の実施例を示す構成図
である。Now, FIG. 7 is a block diagram showing another embodiment based on the present invention.
本実施例における温度検出端16は第4図に示す実施例
と同様に検出端昇降装置19で吊持されているが温度検
出端16で検出された検出値は、温度変換器22を介し
て温度設定器23に入力せしめられる。The temperature detection end 16 in this embodiment is suspended by a detection end lifting device 19 as in the embodiment shown in FIG. The temperature setting device 23 is inputted.
温度設定器23には、あらかじめ所定の温度、例えば第
3図に示すような燃焼帯8の上面の平均温度700℃が
設定され、記憶せしめられており、該設定された所定の
温度と、温度検出端16より連続的に入力される検出値
が温度設定器23で比較され、その比較結果に基づき電
動機17が駆動制御されるよう構成されている。In the temperature setting device 23, a predetermined temperature, for example, an average temperature of 700° C. on the upper surface of the combustion zone 8 as shown in FIG. The temperature setter 23 compares the detection values continuously inputted from the detection end 16, and the electric motor 17 is driven and controlled based on the comparison result.
而して温度設定器23が例えば700℃に設定されれば
温度検出端16は燃焼帯8のほぼ上面に対応する位置で
停止し、パレット2の進行に伴なって降下する燃焼帯8
に追従して温度検出端16も順次降下する。If the temperature setting device 23 is set to, for example, 700° C., the temperature detection end 16 will stop at a position substantially corresponding to the upper surface of the combustion zone 8, and the combustion zone 8 will descend as the pallet 2 advances.
Following this, the temperature detection end 16 also falls sequentially.
従って、該温度検出端16の降下状況、降下速度等を記
録および/もしくは表示装置24で追跡調査すれば焼結
原料層のストランド方向における設定温度の分布,つま
り燃焼帯8の降下速度を確認することも可能である。Therefore, by recording and/or tracking the descending state and descending speed of the temperature detection end 16 using the display device 24, it is possible to confirm the distribution of the set temperature in the strand direction of the sintering raw material layer, that is, the descending speed of the combustion zone 8. It is also possible.
第8図は前記拾7図の実施例に基づき温度設定器23の
設定温度を700℃としてそのレベルの追跡調査を行っ
たー実施結果を示すチャート図であり、横軸にストラン
ドの長さ(m)を,縦軸に焼結原料表層よりの深さを取
ったものである。Fig. 8 is a chart showing the results of a follow-up investigation of the temperature setting device 23 set at 700°C based on the example shown in Fig. m), where the vertical axis is the depth from the surface layer of the sintered raw material.
該第8図からも判明するように本発明によって燃焼帯8
の降下状況を確実に把握することが可能となった。As is clear from FIG. 8, the combustion zone 8 is
It became possible to accurately grasp the descent status of the aircraft.
尚、本発明において継続的に測定するとは、前記第6図
Bおよび第8図の実施例のように焼結原料層の温度を連
続的に測定することを云うものであり、断続的に測定す
るとは第6図Aの実施例のように筒体15が点火炉5よ
り所定距離進行した都度、あるいは点火炉5を通過後、
所定時間経過毎に、あるいは必要な都度随時測定するこ
とを云うものである。In the present invention, "continuously measuring" refers to continuously measuring the temperature of the sintered raw material layer as in the embodiments shown in FIG. 6B and FIG. This means that each time the cylindrical body 15 advances a predetermined distance from the ignition furnace 5, or after passing through the ignition furnace 5, as in the embodiment shown in FIG. 6A,
This means that the measurement is performed every predetermined period of time or whenever necessary.
以上詳述したように本発明は、焼結原料層に挿入された
筒体15内の温度を継続的もしくは断続的に測定し、焼
結原料層の鉛直方向の温度もしくは、温度分布を把握す
ることにより、焼結原料の焼成状況つまり焼成速度を知
ることが可能となった。As detailed above, the present invention continuously or intermittently measures the temperature inside the cylinder 15 inserted into the sintering raw material layer, and grasps the vertical temperature or temperature distribution of the sintering raw material layer. This made it possible to know the firing status of the sintering raw material, that is, the firing rate.
前記焼成速度の確認が行えると操業者は焼成が順調に行
なわれているか否かを迅速に把握でき,もし不調になれ
ば、つまり前記焼成速度が経験的もしくは理論的に求め
られている基準の焼成速度と比較して、その差が矢きい
ときは、すみやかに各種の制御要因、たとえば、パレッ
ト2の移動速度、焼結原料の装入量、装入分布、焼結原
料の配合,ウインドボックスダンパー開度、点火強度、
焼結原料の含有水分などを適宜操作して操業を適正化す
ることができる。If the firing speed can be confirmed, the operator can quickly grasp whether the firing is going smoothly or not. If the difference is large compared to the firing speed, immediately adjust various control factors such as the moving speed of pallet 2, the charging amount of sintering raw materials, charging distribution, the composition of sintering raw materials, and the wind box. damper opening, ignition strength,
Operation can be optimized by appropriately controlling the moisture content of the sintering raw material.
本発明は前述のように、オンラインにおいて焼成の適否
を知るための重要な情報を与えるのみならず,逆に制御
要因を変更した場合それが焼成にどのような影響を与え
るかその相関関係を知るための重要な検索手段を与える
ものである。As mentioned above, the present invention not only provides important information online to determine whether or not firing is appropriate, but also provides information on how changing control factors affects firing. This provides an important means of searching for information.
第1図はDL焼結設備の概略説明図、第2図は焼成進度
を説明する模式図、第3図は焼結原料の鉛直方向におけ
る温度分布説明図,第4図および第7図は本発明の温度
検出方法を実施するためのそれぞれ異なった実施例を示
す概略構成図、第5図は検出端昇降装置の側断面図、第
6図および第8図は本発明に基づく一実施結果を示すも
ので第6図Aは焼結原料の鉛直方向における温度分布図
、第6図Bは,焼結原料の所定レベルにおけるストラン
ド方向の温度分布図、第8図は.焼結原料層における所
定温度のストランド方向に対する降下状況の相関を示す
グラフである。
1・・・・・・スプロケットホイール、2・・・・・・
パレット,3・・・・・・床敷層供給装置、4・・・・
・・焼結原料供給装置,5・・・・・・点火炉、6・・
・・・・床敷層、7・・・・・・未焼結層、8・・・・
・・燃焼帯、9・・・・・・焼結層、10・・・・・・
ウインドボックス、15・・・・・・筒体、16・・・
・・・温度検出端、17・・・・・・電動機、18・・
・・・・捲取ドラム、19・・・・・・検出端昇降装置
、20・・・・・・温度表示装置、21・・・・・・昇
降量表示装置、22・・・・・・温度変換器、23・・
・・・・温度設定器、24・・・・・・記録表示装置。Figure 1 is a schematic illustration of the DL sintering equipment, Figure 2 is a schematic diagram explaining the progress of sintering, Figure 3 is an illustration of the temperature distribution in the vertical direction of the sintering raw material, and Figures 4 and 7 are used in this book. Schematic configuration diagrams showing different embodiments for carrying out the temperature detection method of the invention, FIG. 5 is a side sectional view of the detection end lifting device, and FIGS. 6 and 8 show the results of one implementation based on the present invention. Figure 6A is a vertical temperature distribution diagram of the sintered raw material, Figure 6B is a temperature distribution diagram of the sintered raw material in the strand direction at a predetermined level, and Figure 8 is a temperature distribution diagram of the sintered raw material in the strand direction. It is a graph which shows the correlation of the fall situation with respect to the strand direction of the predetermined temperature in a sintering raw material layer. 1... Sprocket wheel, 2...
Pallet, 3...Bedding layer supply device, 4...
...Sintering raw material supply device, 5...Ignition furnace, 6...
...Bedding layer, 7...Unsintered layer, 8...
... Combustion zone, 9... Sintered layer, 10...
Wind box, 15... Cylindrical body, 16...
...Temperature detection end, 17...Electric motor, 18...
... Winding drum, 19 ... Sensing end lifting device, 20 ... Temperature display device, 21 ... Lifting amount display device, 22 ... Temperature converter, 23...
... Temperature setting device, 24 ... Recording display device.
Claims (1)
放の耐熱性筒体を挿入し、次いで該筒体内に温度検出端
を上下動自在に挿入し、前記筒体内の任意部分の温度を
継続的もしくは断続的に測定することにより、原料層の
鉛直方向の温度もしくは温度分布を間接的に測定するこ
とを特徴とする焼結原料層の温度検出方法。1. A heat-resistant cylinder with an open top end is inserted into the raw material layer on the pallet of a moving grate type sintering machine, and then a temperature detection end is inserted into the cylinder so as to be movable up and down, and the temperature of any part inside the cylinder is measured. A method for detecting the temperature of a sintered raw material layer, the method comprising indirectly measuring the temperature or temperature distribution in the vertical direction of the raw material layer by continuously or intermittently measuring the temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14433078A JPS586898B2 (en) | 1978-11-24 | 1978-11-24 | Temperature detection method of sintered raw material layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14433078A JPS586898B2 (en) | 1978-11-24 | 1978-11-24 | Temperature detection method of sintered raw material layer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5573833A JPS5573833A (en) | 1980-06-03 |
JPS586898B2 true JPS586898B2 (en) | 1983-02-07 |
Family
ID=15359592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14433078A Expired JPS586898B2 (en) | 1978-11-24 | 1978-11-24 | Temperature detection method of sintered raw material layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS586898B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0774399B2 (en) * | 1990-02-23 | 1995-08-09 | 新日本製鐵株式会社 | Insertion device of protective tube for heat pattern measurement of sintering machine |
-
1978
- 1978-11-24 JP JP14433078A patent/JPS586898B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5573833A (en) | 1980-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009280837A (en) | Method for controlling quality of sintered ore | |
JPS586898B2 (en) | Temperature detection method of sintered raw material layer | |
CN106197027B (en) | A kind of device and method for detecting dry type ramming refractory material sintering character | |
CN107843505A (en) | The shear at high temperature Strength Testing Methods and device of high temperature lining repairing material or chamotte | |
CN104537177A (en) | Method and device for determining position of softening face of softening and melting band in blast furnace | |
JP6527306B2 (en) | Calculation method of sintering temperature history | |
JP6107461B2 (en) | Sintering raw material sintering method | |
CN207623159U (en) | A kind of shear at high temperature strength test device of high temperature lining repairing material or chamotte | |
JPH055589A (en) | Operating method for sintering machine | |
KR100896569B1 (en) | An Apparatus for Controlling the Sub Gate in Sintering Facilities | |
CN106746768A (en) | A kind of calciner plant for detecting and controlling temperature | |
JP7111278B1 (en) | METHOD AND DEVICE FOR DETECTING RESIDUAL MELTS, AND METHOD OF OPERATING VERTICAL FURNACE | |
JP7111277B1 (en) | METHOD AND DEVICE FOR DETECTING LIQUID LEVEL HEIGHT OF MELTS, AND METHOD OF OPERATING VERTICAL FURNACE | |
CN113758269B (en) | Device and method for detecting width and burning rate of burning zone of sintering trolley on line | |
WO2022168557A1 (en) | Detection method and detection device for liquid level height of liquid, detection method and detection device for liquid level height of molten material, and operation method for vertical furnace | |
WO2022168556A1 (en) | Method for detecting remaining amount of liquid and detection device for same, method for detecting remaining amount of molten substance and detection device for same, and vertical furnace operation method | |
JP2669200B2 (en) | Situation measuring method in sintering raw material layer | |
CN211291004U (en) | Temperature detection device in rotary kiln | |
JPS586770B2 (en) | Method of sintering ores, etc. | |
CN205295168U (en) | A sintering device for detecting and controlled temperature | |
JPS5934216B2 (en) | How to operate DL sintering machine | |
KR100311787B1 (en) | Method for predicting drop strength of sintered ore | |
JPS6126731A (en) | Method for measuring heat pattern during sintering | |
JPS5910496B2 (en) | Method for detecting sintered layer depth profile of sintered raw material layer | |
CN107727788A (en) | The detection method of sintering charge level heat intensity in a kind of ignition furnace |