JP2010100490A - Method for measuring firing temperature of fired product - Google Patents

Method for measuring firing temperature of fired product Download PDF

Info

Publication number
JP2010100490A
JP2010100490A JP2008274467A JP2008274467A JP2010100490A JP 2010100490 A JP2010100490 A JP 2010100490A JP 2008274467 A JP2008274467 A JP 2008274467A JP 2008274467 A JP2008274467 A JP 2008274467A JP 2010100490 A JP2010100490 A JP 2010100490A
Authority
JP
Japan
Prior art keywords
temperature
firing
fired product
firing furnace
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008274467A
Other languages
Japanese (ja)
Other versions
JP5084695B2 (en
Inventor
Akinori Nakamura
明則 中村
Kenzo Sugimoto
賢三 杉本
Takashi Sabayashi
敬司 茶林
Hiroyoshi Kato
弘義 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2008274467A priority Critical patent/JP5084695B2/en
Publication of JP2010100490A publication Critical patent/JP2010100490A/en
Application granted granted Critical
Publication of JP5084695B2 publication Critical patent/JP5084695B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for correctly measuring the firing temperature of a fired product to be fired in a firing furnace and a method for managing the operating conditions of the firing furnace by using the firing temperature measured by the measuring method. <P>SOLUTION: Cement clinker (the fired product) is withdrawn from the firing furnace to be typified by a rotary kiln for firing the cement clinker and the withdrawn cement clinker is heated to raise the temperature thereof. A temperature at which the void volume being a physical property of the cement clinker starts to be reduced during the time to raise the temperature thereof is obtained and is defined as the firing temperature of the fired product. The firing temperatures of the fired product in the continuous firing furnace are measured successively, thereby the operating conditions, such as the amounts of the raw material and fuel to be charged in the firing furnace, of the firing furnace can be managed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、焼成炉において焼成される焼成物の被焼成温度の測定方法及びかかる測定方法により得られる被焼成温度により、焼成炉の運転条件を管理する方法に関する。   The present invention relates to a method for measuring a firing temperature of a fired product fired in a firing furnace and a method for managing the operating conditions of the firing furnace based on the firing temperature obtained by such a measuring method.

セメント原料を連続焼成炉であるロータリーキルンによって焼成して得られるセメントクリンカーの性状は、様々な要因によって影響を受ける。例えば、炉内における焼成温度、焼成時間(焼成帯滞在時間)や、原料の組成や粒度などが挙げられる。そして、それぞれの各種要素が複合した結果としてセメントクリンカーが得られる。   The properties of cement clinker obtained by firing cement raw material with a rotary kiln, which is a continuous firing furnace, are affected by various factors. For example, the firing temperature in the furnace, the firing time (sintering time in the firing zone), the composition of the raw materials, the particle size, and the like can be mentioned. A cement clinker is obtained as a result of the combination of the various elements.

従来、前記ロータリーキルンの焼成における運転条件を管理する指標としては、機器動力、ガス温度など各種の測定値が挙げられるが、該ロータリーキルン内において、セメントクリンカーが何℃で焼成されているか、その被焼成温度について的確な温度情報を得ることは極めて困難であった。即ち、キルン外部からのシェル温度の測定を行なう方法が提案されているが、かかる方法は、上手く温度測定できたとしても相対的な温度の高低の情報であり、内部の温度を検出できるものではなかった。   Conventionally, as an index for managing the operating conditions in the firing of the rotary kiln, various measured values such as equipment power and gas temperature can be mentioned. In the rotary kiln, the temperature at which the cement clinker is fired is measured. It was extremely difficult to obtain accurate temperature information about the temperature. In other words, a method of measuring the shell temperature from outside the kiln has been proposed, but this method is information on relative temperature level even if the temperature can be measured well, and it cannot detect the internal temperature. There wasn't.

また、他の方法として、ロータリーキルン内部のコーチングの付着量を測定する方法も提案されているが、コーチングの付着量は、相対的な温度の高低の情報すら的確に示すものではなく、信頼性に乏しい。   As another method, a method of measuring the amount of coating on the inside of the rotary kiln has also been proposed, but the amount of coating on the coaching does not accurately indicate relative high and low temperature information. poor.

更に、ロータリーキルンの窯前の覗き窓から内部を非接触式温度計でその温度を測定することも検討されているが、この方法によれば、精々窯前付近の温度、即ち、ロータリーキルン内の最高温度領域を過ぎた冷却領域の温度しか測定することができず、ロータリーキルン内における焼成温度、特に、最高焼成温度の測定はできない。   Furthermore, it is also considered to measure the temperature inside the rotary kiln from the observation window in front of the kiln with a non-contact type thermometer, but according to this method, the temperature near the kiln at the most, that is, the highest temperature in the rotary kiln. Only the temperature in the cooling region after the temperature region can be measured, and the firing temperature in the rotary kiln, in particular, the maximum firing temperature cannot be measured.

近年のセメント産業では、ロータリーキルンの燃料としても廃棄物の利用が進んでおり、セメントクリンカーを焼成する際のコンディションが遂次変化しており、その管理の重要性が増している。そのような中で、ロータリーキルンの運転条件を管理するためのデータとして有用な、ロータリーキルン内における焼成物の被焼成温度を正確に把握するための技術が求められているのが現状である。   In the cement industry in recent years, waste is also being used as a fuel for rotary kilns, and the conditions at the time of firing cement clinker are gradually changing, and its management is becoming more important. Under such circumstances, there is a demand for a technique for accurately grasping the firing temperature of the fired product in the rotary kiln, which is useful as data for managing the operating conditions of the rotary kiln.

従って、本発明の目的は、焼成炉における焼成物の被焼成温度を正確に測定することが可能な測定方法を提供することにある。また、本発明の他の目的は、測定方法により得られる被焼成温度により、焼成炉の焼成温度を管理する方法を提供することにある。   Accordingly, an object of the present invention is to provide a measurement method capable of accurately measuring the firing temperature of a fired product in a firing furnace. Another object of the present invention is to provide a method for managing the firing temperature of the firing furnace based on the firing temperature obtained by the measurement method.

本発明者らは、上記目的を達成するため、鋭意研究を行なった結果、前記ロータリーキルン内を移動する焼成物であるセメントクリンカーの被焼成温度は、その空隙量等の物性として固定され、熱履歴として残るという知見を得た。即ち、セメントクリンカーがロータリーキルン内の焼成の際に受けた最高被焼成温度において空隙量は最小となり、焼成炉であるロータリーキルンより取出される。
上記知見に基づき、更に検討を進めた結果、焼成炉より取出された焼成物について、これを再加熱により昇温し、昇温温度における焼成物の空隙量等の物性を測定すれば、該焼成物の前記被焼成温度を越えた時点で空隙率の減少のような物性の変化が起こり、これにより、該焼成物が焼成炉内で焼成された温度である被焼成温度を正確に測定し得ることを見出し、本発明を完成するに至った。
As a result of intensive studies to achieve the above object, the present inventors have determined that the firing temperature of the cement clinker, which is a fired product that moves in the rotary kiln, is fixed as a physical property such as the void volume, and the thermal history. I got the knowledge that it will remain as. That is, the amount of voids is minimized at the highest firing temperature that the cement clinker has undergone during firing in the rotary kiln and is taken out from the rotary kiln that is a firing furnace.
As a result of further investigation based on the above knowledge, if the calcined product taken out from the calcining furnace is heated again by reheating and the physical properties such as the void amount of the calcined product at the temperature rising temperature are measured, the calcined product A change in physical properties such as a decrease in porosity occurs when the temperature exceeds the baking temperature of the product, and thereby the baking temperature, which is the temperature at which the fired product is fired in a firing furnace, can be accurately measured. As a result, the present invention has been completed.

即ち、本発明は、焼成炉内より焼成物を取り出し、取り出された焼成物を加熱して昇温せしめ、上記昇温において該焼成物の物性が変化し始める温度(以下、上記温度を変化開始温度ともいう)を求め、上記温度を該焼成物の被焼成温度とすることを特徴とする焼成物の被焼成温度の測定方法である。   That is, the present invention takes out the fired product from the firing furnace, heats the taken fired product and raises the temperature, and the temperature at which the physical properties of the fired product begins to change at the above temperature rise (hereinafter, the temperature starts to change). This is a method for measuring the firing temperature of a fired product, wherein the temperature is also referred to as the firing temperature of the fired product.

また、前記ロータリーキルンのような連続焼成炉である焼成炉内の温度プロファイルは、セメント原料が焼成物であるセメントクリンカーを形成するまでは、炉内の焼成温度は最高温度には至らず、セメントクリンカー形成後に炉内の最高焼成温度領域が存在することが確認されており、これより、連続焼成炉の運転中に該焼成炉より連続的に取り出されるセメントクリンカーの被焼成温度は、該焼成炉内の最高焼成温度を示すものとなる。従って、焼成炉より連続的に取り出される焼成物の物性の変化開始温度を求め、該変化開始温度を焼成物の最高被焼成温度としてロータリーキルンの運転条件を管理し得ることを見出した。   In addition, the temperature profile in the firing furnace, which is a continuous firing furnace such as the rotary kiln, indicates that the firing temperature in the furnace does not reach the maximum temperature until the cement raw material forms a cement clinker that is a fired product, and the cement clinker It has been confirmed that there is a maximum firing temperature region in the furnace after formation, and the firing temperature of the cement clinker continuously taken out from the firing furnace during operation of the continuous firing furnace is The maximum firing temperature is shown. Therefore, it has been found that the change start temperature of the physical properties of the fired product continuously taken out from the firing furnace is obtained, and the operation condition of the rotary kiln can be managed with the change start temperature as the maximum firing temperature of the fired product.

即ち、本発明によれば、焼成炉が連続焼成炉であり、該連続焼成炉より連続的に取出される焼成物について、取り出された焼成物を加熱して昇温せしめ、上記昇温において該焼成物の物性が変化し始める温度を求め、上記温度を焼成物の最高被焼成温度としてロータリーキルンの運転条件を管理することを特徴とする連続焼成炉の運転方法が提供される。   That is, according to the present invention, the firing furnace is a continuous firing furnace, and the fired product continuously taken out from the continuous firing furnace is heated to raise the temperature, There is provided a method for operating a continuous firing furnace characterized in that a temperature at which the physical properties of the fired product starts to change is obtained, and the operating conditions of the rotary kiln are managed using the above temperature as the maximum firing temperature of the fired product.

本発明の方法によれば、焼成炉において焼成された焼成物の被焼成温度を正確に把握することが可能であり、その測定値自体で、焼成炉の焼成状態の管理を行なうことができるが、特に、連続焼成炉においては、連続的に取出される焼成物について、上記測定を定期的に行ない、その測定により把握された被焼成温度を焼成炉内の最高焼成温度として、ロータリーキルンの運転条件の管理を正確に行うことが可能である。   According to the method of the present invention, it is possible to accurately grasp the firing temperature of the fired product fired in the firing furnace, and the measurement value itself can manage the firing state of the firing furnace. In particular, in a continuous firing furnace, the above measurement is periodically performed on the fired product continuously taken out, and the operating temperature of the rotary kiln is determined by setting the firing temperature obtained by the measurement as the maximum firing temperature in the firing furnace. Can be accurately managed.

また、前記被焼成温度の測定方法は、前記セメントクリンカーを製造するためのロータリーキルンの内壁に副生物として付着するコーチングも、焼成物として捉えることができ、ロータリーキルン停止時に上記コーチングをキルンの長手方向に対して任意の複数位置より取り出し、それぞれの箇所で取り出したコーチングについて物性の変化開始温度を求めることにより、ロータリーキルン内の焼成温度の分布を知ることも可能であり、焼成炉の運転条件の検討において有用な情報として利用することができる。   In addition, the method for measuring the temperature to be baked is that the coating that adheres as a by-product to the inner wall of the rotary kiln for producing the cement clinker can also be regarded as a fired product. On the other hand, it is possible to know the distribution of the firing temperature in the rotary kiln by obtaining the change start temperature of the physical properties of the coaching taken out from any plurality of positions, and in examining the operating conditions of the firing furnace It can be used as useful information.

本発明において、測定の対象となる焼成物を焼成するための焼成炉は特に限定されるものではなく、公知の焼成炉が制限なく使用される。代表的な焼成炉を例示すれば、セメントクリンカー等の焼成物を得るためのロータリーキルンが挙げられる。また、連続焼成炉としては、その他、トンネル炉等が挙げられる。また、バッチ方式の焼成炉としては、箱型炉等が挙げられる。   In the present invention, the firing furnace for firing the fired product to be measured is not particularly limited, and a known firing furnace is used without limitation. A typical kiln is exemplified by a rotary kiln for obtaining a fired product such as cement clinker. In addition, examples of the continuous firing furnace include a tunnel furnace. Moreover, a box furnace etc. are mentioned as a batch-type baking furnace.

本発明の測定方法の対象となる焼成物は、上記焼成炉によって焼成される焼成物が対象となる。具体的には、セメント原料を焼成して得られるセメントクリンカー、窒化アルミニウム粉等のセラミックス粉のグリーン体を脱脂焼成して得られる脱脂体、該脱脂体を焼結焼成して得られる焼結体、粘土鉱物の焼結体、その他の無機物焼結体などが挙げられる。   The fired product to be subjected to the measurement method of the present invention is a fired product fired in the firing furnace. Specifically, cement clinker obtained by firing a cement raw material, degreased body obtained by degreasing and firing a green body of ceramic powder such as aluminum nitride powder, and sintered body obtained by sintering and firing the degreased body , Clay mineral sintered bodies, other inorganic sintered bodies, and the like.

また、前記セメントクリンカー等の焼成物を得る際に、焼成炉内に副生物として付着するコーチングも本発明の対象とする焼成物として含まれる。   Moreover, when obtaining a fired product such as the cement clinker, a coating that adheres as a by-product in the firing furnace is also included as the fired product targeted by the present invention.

本発明において、焼成炉からの焼成物の取り出しは、該焼成炉を運転中に行なってもよいし、焼成炉の運転が停止したときに行なってもよい。一般には、連続焼成炉においては、通常の取出部より取り出された焼成物の一部を試料として使用して被焼成温度の測定を実施すればよい。上記連続焼成炉において、セメントクリンカー製造用のロータリーキルンにおける窯前部となる、通常の取出部より焼成物を取り出した場合、該焼成物より測定される被焼成温度はロータリーキルン内での最高被焼成温度となる。   In the present invention, removal of the fired product from the firing furnace may be performed while the firing furnace is in operation, or may be performed when the operation of the firing furnace is stopped. In general, in a continuous firing furnace, the firing temperature may be measured by using a part of the fired product taken out from a normal takeout part as a sample. In the above continuous firing furnace, when the fired product is taken out from the normal take-out part, which is the front of the kiln in the rotary kiln for producing cement clinker, the firing temperature measured from the fired product is the highest firing temperature in the rotary kiln. It becomes.

また、焼成炉の運転中に焼成物の取り出しが困難な場合は、焼成炉の運転が停止している際に、必要な箇所より取り出し、本発明の方法を適用すればよい。例えば、ロータリーキルン内のコーチングの被焼成温度を測定しようとした場合、停止時に上記コーチングをキルンの長手方向に対して任意の複数位置より取り出すことも可能である。   Moreover, when it is difficult to take out the fired product during the operation of the firing furnace, the method of the present invention may be applied by taking it out from a necessary portion when the operation of the firing furnace is stopped. For example, when the firing temperature of the coaching in the rotary kiln is to be measured, the coaching can be taken out from a plurality of arbitrary positions with respect to the longitudinal direction of the kiln when stopped.

また、前記焼成炉からの取り出し量は、後記の焼成物の再加熱において、その物性を測定可能な量であればよい。一般には10〜500gである。また、セメントクリンカーの場合、分級して代表的な粒系、例えば、焼成後の空隙率の測定がし易い、相当径10〜20mmに揃えて測定を行なうことが好ましい。   Further, the amount taken out from the firing furnace may be an amount capable of measuring the physical properties in the reheating of the fired product described later. Generally it is 10-500g. In the case of a cement clinker, it is preferable to classify and measure a typical grain system, for example, with an equivalent diameter of 10 to 20 mm, which makes it easy to measure the porosity after firing.

本発明の方法は、上記のようにして取り出された焼成物を加熱して昇温温度における焼成物の物性を測定し、該物性の変化開始温度を求めて該焼成物の被焼成温度とする。   In the method of the present invention, the calcined product taken out as described above is heated to measure the physical properties of the calcined product at the temperature rising temperature, and the change start temperature of the physical property is obtained as the firing temperature of the calcined product. .

上記焼成物の物性は、温度に依存する物性であり、該焼成物が受けた熱履歴の最高温度を超えた際に変化する物性が選択される。例えば、焼成物が前記セメントクリンカーやコーチング、更には、前記窒化アルミニウムの脱脂体である場合、前記物性は、前記焼成物の空隙量とし、その物性の変化を空隙量の減少により確認することが正確に被焼成温度を測定するために好適である。   The physical property of the fired product is a temperature-dependent physical property, and the physical property that changes when the maximum temperature of the thermal history received by the fired product is selected. For example, when the fired product is the cement clinker or the coating, and further, the aluminum nitride degreaser, the physical property is the void amount of the fired product, and the change in the physical property can be confirmed by the decrease in the void amount. It is suitable for accurately measuring the firing temperature.

かかる空隙量の測定は、公知の方法が特に制限無く採用される。例えば、間接的に空隙量を測定する方法として、全ての空隙中に液が満たされるように脱気しながら飽液させ、液中での重量を測り、その試料の飽液重量、乾燥重量を測定して求める方法(アルキメデス法あるいは液中秤量法)により空隙率を測定する方法、直接的な方法として、水銀ポロシメーターにより体積あたりの細孔容積を測定する方法などが挙げられる。また、前記窒化アルミニウム焼結体などのセラミックスについては、注目する物性として、焼結体の密度が挙げられる。   For the measurement of the void amount, a known method is employed without any particular limitation. For example, as a method of indirectly measuring the amount of voids, let the liquid be saturated while degassing so that all the voids are filled with liquid, measure the weight in the liquid, and determine the saturated weight and dry weight of the sample. A method of measuring the porosity by a method obtained by measurement (Archimedes method or submerged weighing method), and a direct method include a method of measuring the pore volume per volume with a mercury porosimeter. Further, regarding ceramics such as the aluminum nitride sintered body, the density of the sintered body is given as a physical property to be noted.

また、前記物性の測定は、焼成物を加熱して昇温せしめ、任意の昇温温度毎に行なえばよいが、物性を測定する温度の間隔があまり大き過ぎると、正確な変化開始温度が確認できない。そのため、かかる間隔は、5〜100℃、好ましくは、10〜50℃とすることが推奨される。   The physical properties may be measured by heating the fired product to raise the temperature, and at any temperature increase temperature. However, if the temperature interval for measuring the physical properties is too large, an accurate change start temperature is confirmed. Can not. Therefore, it is recommended that the interval be 5 to 100 ° C, preferably 10 to 50 ° C.

上記加熱に使用する装置は、加熱温度が設定可能な公知の加熱炉が特に制限なく使用される。例えば、電気炉が代表的である。また、焼成物の加熱時間は、過剰に長くする必要はなく、15〜60分程度、特に、20〜40分程度が望ましい。更に、上記加熱温度までの昇温は、できるだけ速い方が望ましく、最も好ましいのは、予め設定温度に調整された加熱炉内に供給する態様である。また、上記電気炉内の雰囲気は、一般には大気で十分であるが、対象となる焼成物が酸化され易い場合は、非酸化性雰囲気下で加熱を行なうことが好ましい。因みに、焼成物が前記セメントクリンカーの場合は、大気で十分である。   As the apparatus used for the heating, a known heating furnace capable of setting the heating temperature is used without particular limitation. For example, an electric furnace is typical. The heating time of the fired product does not need to be excessively long, and is preferably about 15 to 60 minutes, particularly about 20 to 40 minutes. Furthermore, it is desirable that the temperature rise to the heating temperature is as fast as possible, and the most preferable is an aspect in which the temperature is supplied into a heating furnace adjusted to a preset temperature. The atmosphere in the electric furnace is generally sufficient for the atmosphere, but when the target fired product is easily oxidized, it is preferable to heat in a non-oxidizing atmosphere. Incidentally, air is sufficient when the fired product is the cement clinker.

本発明において、焼成物の物性の変化開始温度の求め方は、特に制限されるものではないが、代表的な方法を、図1に従って説明する。図1は、実施例において、焼成炉より取り出したセメントクリンカーの加熱温度(横軸)とその温度における空隙率(縦軸)との関係をプロットしたものであるが、図に示すように、加熱温度とその温度での物性値との関係を示すグラフを作成し、空隙率が変化していない測定点により近似される水平線と空隙率が変化した測定点により近似される斜線を引き、その交点の温度を該焼成物の被焼成温度とする。   In the present invention, the method for determining the change start temperature of the physical properties of the fired product is not particularly limited, but a representative method will be described with reference to FIG. FIG. 1 is a plot of the relationship between the heating temperature (horizontal axis) of the cement clinker taken out from the firing furnace and the porosity (vertical axis) at that temperature in the examples. Create a graph showing the relationship between the temperature and the physical property value at that temperature, draw a horizontal line approximated by the measurement point where the porosity is not changed, and a diagonal line approximated by the measurement point where the porosity is changed. Is the firing temperature of the fired product.

上記のように、焼成物を加熱して昇温していくと、前記選択した物性である空隙率は、該焼成物が受けた熱履歴の最高温度に至るまでは殆ど変化せず、該最高温度を超えた時点を変曲点として減少する。   As described above, when the fired product is heated and heated, the porosity, which is the selected physical property, hardly changes until reaching the highest temperature of the thermal history received by the fired product. Decrease as the inflection point when the temperature is exceeded.

本発明の焼成物の被焼成温度の測定方法は、その測定値自体で、焼成炉の焼成状態の管理を行なうことができる。   The method for measuring the firing temperature of the fired product of the present invention can manage the firing state of the firing furnace by the measured value itself.

特に、焼成炉が連続焼成炉であり、該連続焼成炉より連続的に取出される焼成物については、前記セメントクリンカーの焼成において説明したように、該焼成物の被焼成温度は、焼成炉内における焼成物の最高被焼成温度と見ることができる。   In particular, the firing furnace is a continuous firing furnace, and for the fired product continuously taken out from the continuous firing furnace, as described in the firing of the cement clinker, the firing temperature of the fired product is set within the firing furnace. It can be regarded as the maximum firing temperature of the fired product at.

従って、上記焼成物について本発明の方法による被焼成温度の測定を任意の時期に行なうことにより、ロータリーキルンの運転条件を管理することが可能である。具体的には、焼成物について最高被焼成温度の最適設定値に対して、上記被焼成温度の測定値を対比し、焼成に供給する燃料や燃焼用空気等の供給量を連続的に制御することができる。   Therefore, it is possible to manage the operating conditions of the rotary kiln by measuring the temperature to be fired by the method of the present invention at any time for the fired product. Specifically, the measured value of the firing temperature is compared with the optimum set value of the maximum firing temperature for the fired product, and the supply amount of fuel, combustion air, and the like supplied for firing is continuously controlled. be able to.

また、本発明の焼成物の被焼成温度の測定方法は、前記セメントクリンカーを製造するためのロータリーキルンの内壁に副生物として付着するコーチングに対して適用する場合、ロータリーキルン内の温度分布を把握することが可能である。即ち、一般に、コーチングは、セメントクリンカーの焼成において、焼成物であるクリンカーが生成し始める地点から、焼成物が取り出される窯前に至る領域に付着する。このコーチングは、その付着位置における最高の焼成温度で焼成された状態で、前記物性が固定される。従って、該コーチングをキルンの長手方向に対して任意の複数位置より取り出し、それぞれの箇所で取り出したコーチングについて物性の変化開始温度を求めることにより、ロータリーキルン内の各箇所における最高被焼成温度を推定することができ、これにより、ロータリーキルン内の温度分布を把握することができる。かかる温度分布は、焼成炉の運転条件の検討において有用な情報として利用することができる。   In addition, the method for measuring the firing temperature of the fired product of the present invention grasps the temperature distribution in the rotary kiln when applied to the coating that adheres as a by-product to the inner wall of the rotary kiln for producing the cement clinker. Is possible. That is, in general, in the firing of the cement clinker, the coating is attached to a region from the point where the clinker which is the fired product starts to be generated and before the kiln from which the fired product is taken out. The physical properties of the coaching are fixed while being fired at the highest firing temperature at the adhesion position. Therefore, the maximum firing temperature at each location in the rotary kiln is estimated by taking out the coaching from an arbitrary plurality of positions with respect to the longitudinal direction of the kiln and obtaining the change start temperature of the physical properties of the coaching taken out at each location. Thus, the temperature distribution in the rotary kiln can be grasped. Such temperature distribution can be used as useful information in examining the operating conditions of the firing furnace.

以下、本発明を具体的に説明するために、実施例を示すが、本発明は、これらの実施例に限定されるものではない。
実施例1
セメントクリンカー(以下、単に「クリンカー」ともいう)焼成用のロータリーキルンの窯前に設置されたグレートクーラーより、クリンカーAを取り出し、9.5mm未満(細粒)、9.5mm〜19.5mm(中粒)および19.5mm超(粗粒)に分級し、この中の中粒部を50gずつ取分け、1250℃〜1550℃まで50℃間隔で温度を変え、電気炉で加熱した。このときの焼成時間は、各設定温度で30分とした。
EXAMPLES Examples will be shown below for specifically explaining the present invention, but the present invention is not limited to these examples.
Example 1
Clinker A is taken out from a great cooler installed in front of a kiln of a rotary kiln for cement clinker (hereinafter also referred to simply as “clinker”), less than 9.5 mm (fine particles), 9.5 mm to 19.5 mm (medium) Grain) and more than 19.5 mm (coarse grains), 50 g of the medium grain portion was separated, and the temperature was changed from 1250 ° C. to 1550 ° C. at intervals of 50 ° C. and heated in an electric furnace. The firing time at this time was 30 minutes at each set temperature.

それぞれの加熱温度において得られた焼成物と加熱しないものの空隙率を、アルコール溶媒を用いたアルキメデス法によって求めた。結果を表1(図1)に示す。   The porosity of the fired product obtained at each heating temperature and that not heated was determined by the Archimedes method using an alcohol solvent. The results are shown in Table 1 (FIG. 1).

この関係より、このクリンカーの被焼成温度は、約1400℃であることが判る。   From this relationship, it can be seen that the firing temperature of the clinker is about 1400 ° C.

Figure 2010100490
Figure 2010100490

実施例2
実施例1と運転条件の異なるロータリーキルンより、実施例1同様の方法にて採取したクリンカーBについて、実施例1と同様にして、加熱温度毎のクリンカーの空隙率を測定した。
Example 2
About the clinker B extract | collected by the method similar to Example 1 from the rotary kiln from which operating conditions differ from Example 1, it carried out similarly to Example 1, and measured the porosity of the clinker for every heating temperature.

表2(図2)にクリンカーBの加熱温度と空隙率の関係を示す。この関係より、このクリンカーの被焼成最高温度は、約1500℃であることが判る。   Table 2 (FIG. 2) shows the relationship between the heating temperature of clinker B and the porosity. From this relationship, it can be seen that the maximum temperature to be fired of this clinker is about 1500 ° C.

Figure 2010100490
Figure 2010100490

この被焼成最高温度は、セメントクリンカーの焼成温度としては過焼と思われ、燃料の削減操作を行った。   The maximum temperature to be fired was considered to be overfired as the firing temperature of the cement clinker, and the fuel was reduced.

実施例3
実施例1と運転条件の異なるロータリーキルンにおいて、燃料使用量を調整して燃焼のバーナーフレームの長さを変えて2種類のクリンカーC、Dを製造し、それぞれのクリンカーを実施例1同様の方法にて採取した。次いで、実施例1と同様にして、各クリンカーC、Dの加熱温度毎の空隙率を測定した。
Example 3
In a rotary kiln with different operating conditions from Example 1, two types of clinkers C and D are manufactured by adjusting the amount of fuel used and changing the length of the burner frame for combustion. And collected. Subsequently, the porosity for each heating temperature of each clinker C and D was measured in the same manner as in Example 1.

表3(図3)にクリンカーCの、表4(図4)にクリンカーDの加熱温度と空隙率の関係を示す。この関係より、クリンカーCの被焼成最高温度は、約1400℃、クリンカーDの被焼成最高温度は、約1400℃であることが判る。   Table 3 (FIG. 3) shows the relationship between the clinker C and Table 4 (FIG. 4) shows the relationship between the heating temperature of the clinker D and the porosity. From this relationship, it can be seen that the maximum temperature of the clinker C to be fired is about 1400 ° C., and the maximum temperature of the clinker D to be fired is about 1400 ° C.

Figure 2010100490
Figure 2010100490

Figure 2010100490
Figure 2010100490

このように、本発明の方法を用いてバーナーフレームの長さに対して最高被焼成温度を監視することによって、最高被焼成温度を低下させないようなバーナーフレームの調整が可能となる。   Thus, by monitoring the maximum firing temperature with respect to the length of the burner frame using the method of the present invention, it is possible to adjust the burner frame so as not to reduce the maximum firing temperature.

実施例4
キルンコンディションが不調なロータリーキルンより採取したクリンカーEについて、実施例1と同様にして、加熱温度毎のクリンカーの空隙率を測定した。
Example 4
About the clinker E extract | collected from the rotary kiln where the kiln condition is unsatisfactory, it carried out similarly to Example 1, and measured the porosity of the clinker for every heating temperature.

表5(図5)にクリンカーEの加熱温度と空隙率の関係を示す。この関係より、このクリンカーの被焼成最高温度は、約1350℃であることが判る。   Table 5 (FIG. 5) shows the relationship between the heating temperature of clinker E and the porosity. From this relationship, it can be seen that the maximum firing temperature of this clinker is about 1350 ° C.

Figure 2010100490
Figure 2010100490

この結果、キルン最高温度の低下が要因と判断でき、燃料の供給量を増やし、キルンコンディションを回復させる操作を行った。   As a result, it was judged that the decrease in the maximum kiln temperature was the cause, and the operation was carried out to increase the fuel supply amount and restore the kiln condition.

実施例5
調合されたセメント原料をもとに、実験室で原料ペレットを作製し、電気炉にて1450℃、1時間焼成することでクリンカーXを作製した。このクリンカーXを試料として使用し、実施例1と同様にして、加熱温度毎のクリンカーの空隙率を測定した。
Example 5
Based on the blended cement raw material, raw material pellets were produced in a laboratory, and clinker X was produced by firing at 1450 ° C. for 1 hour in an electric furnace. Using this clinker X as a sample, the porosity of the clinker at each heating temperature was measured in the same manner as in Example 1.

表6(図6)にクリンカーXの加熱温度と空隙率の関係を示す。この関係より、このクリンカーの被焼成最高温度は、約1450℃であることが判る。   Table 6 (FIG. 6) shows the relationship between the heating temperature of the clinker X and the porosity. From this relationship, it can be seen that the maximum temperature to be fired of this clinker is about 1450 ° C.

Figure 2010100490
Figure 2010100490

このように、本発明の測定方法で測定される被焼成温度の値は、実際の焼成におけるクリンカーの(最高)被焼成温度と一致していることが確認され、本発明の測定方法が正確であることが判る。   Thus, it was confirmed that the firing temperature value measured by the measurement method of the present invention was consistent with the (maximum) firing temperature of the clinker in actual firing, and the measurement method of the present invention was accurate. I know that there is.

実施例6
キルン停止時に、キルン窯前から5m毎の箇所でキルンコーチングを採取し、9.5mm〜19.5mm程度の大きさのコーチングを分取した。5m毎に採取したそれぞれのコーチングについて、実施例1と同様の方法により、夫々の最高被焼成温度を求めた。
Example 6
When the kiln was stopped, kiln coaching was sampled every 5 m from the front of the kiln, and coaching with a size of about 9.5 mm to 19.5 mm was collected. For each coaching sampled every 5 m, the maximum firing temperature was determined in the same manner as in Example 1.

結果を表7に示し、キルン窯前からの距離と最高被焼成温度の関係として図7に示す。   The results are shown in Table 7 and are shown in FIG. 7 as the relationship between the distance from the front of the kiln and the maximum firing temperature.

Figure 2010100490
Figure 2010100490

このようにして得られた結果により、ロータリーキルン内の温度分布(各箇所における最高到達温度)が明らかとなる。そして、かかるデータは、ロータリーキルンの運転条件の検討において有用な情報となり、最良のキルンンディショへンの調整が可能となる。
The temperature distribution in the rotary kiln (the highest temperature reached at each location) becomes clear from the results obtained in this way. Such data is useful information in examining the operating conditions of the rotary kiln, and the best kiln condition can be adjusted.

実施例1において、取り出されたセメントクリンカーの加熱温度(横軸)とその温度における空隙率(縦軸)との関係を示すグラフIn Example 1, the graph which shows the relationship between the heating temperature (horizontal axis) of the taken-out cement clinker, and the porosity (vertical axis) in the temperature 実施例2において、取り出されたセメントクリンカーの加熱温度(横軸)とその温度における空隙率(縦軸)との関係を示すグラフIn Example 2, the graph which shows the relationship between the heating temperature (horizontal axis) of the taken-out cement clinker, and the porosity (vertical axis) in the temperature 実施例3において、取り出されたセメントクリンカーの加熱温度(横軸)とその温度における空隙率(縦軸)との関係を示すグラフIn Example 3, the graph which shows the relationship between the heating temperature (horizontal axis) of the taken-out cement clinker, and the porosity (vertical axis) in the temperature 実施例3において、取り出されたセメントクリンカーの加熱温度(横軸)とその温度における空隙率(縦軸)との関係を示すグラフIn Example 3, the graph which shows the relationship between the heating temperature (horizontal axis) of the taken-out cement clinker, and the porosity (vertical axis) in the temperature 実施例4において、取り出されたセメントクリンカーの加熱温度(横軸)とその温度における空隙率(縦軸)との関係を示すグラフIn Example 4, the graph which shows the relationship between the heating temperature (horizontal axis) of the taken-out cement clinker, and the porosity (vertical axis) in the temperature 実施例5において、取り出されたセメントクリンカーの加熱温度(横軸)とその温度における空隙率(縦軸)との関係を示すグラフIn Example 5, the graph which shows the relationship between the heating temperature (horizontal axis) of the taken-out cement clinker, and the porosity (vertical axis) in the temperature 実施例6において、取り出されたコーチングの被焼成温度(縦軸)と、取出し箇所(横軸)との関係を示すグラフIn Example 6, the graph which shows the relationship between the to-be-fired temperature (vertical axis) of the taken-out coaching, and a taking-out location (horizontal axis)

Claims (4)

焼成炉内より焼成物を取り出し、取り出された焼成物を加熱して昇温せしめ、上記昇温において該焼成物の物性が変化し始める温度を求め、上記温度を該焼成物の被焼成温度とすることを特徴とする焼成物の被焼成温度の測定方法。 Taking out the fired product from the firing furnace, heating the taken-out fired product to raise the temperature, obtaining a temperature at which the physical properties of the fired product begin to change at the above temperature rise, and determining the temperature as the firing temperature of the fired product A method for measuring a firing temperature of a fired product. 前記物性が前記焼成物の空隙量であり、該物性の変化が空隙量の減少である請求項1記載の方法。 The method according to claim 1, wherein the physical property is a void amount of the fired product, and the change in the physical property is a decrease in the void amount. 焼成炉がセメント原料焼成用のロータリーキルンであり、焼成物がセメントクリンカーである請求項1又は2記載の方法。 The method according to claim 1 or 2, wherein the firing furnace is a rotary kiln for cement raw material firing, and the fired product is a cement clinker. 焼成炉が連続焼成炉であり、該連続焼成炉より連続的に取出される焼成物について、取り出された焼成物を加熱して昇温せしめ、上記昇温において該焼成物の物性が変化し始める温度を求め、上記温度を焼成物の最高被焼成温度としてロータリーキルンの運転条件を管理することを特徴とする連続焼成炉の運転方法。 The firing furnace is a continuous firing furnace, and the fired product continuously taken out from the continuous firing furnace is heated to raise the temperature of the fired product, and the physical properties of the fired product begin to change at the above temperature rise. A method for operating a continuous firing furnace, characterized in that a temperature is obtained, and the operation condition of the rotary kiln is managed using the above temperature as the maximum firing temperature of the fired product.
JP2008274467A 2008-10-24 2008-10-24 Method for measuring the firing temperature of the fired product Active JP5084695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008274467A JP5084695B2 (en) 2008-10-24 2008-10-24 Method for measuring the firing temperature of the fired product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008274467A JP5084695B2 (en) 2008-10-24 2008-10-24 Method for measuring the firing temperature of the fired product

Publications (2)

Publication Number Publication Date
JP2010100490A true JP2010100490A (en) 2010-05-06
JP5084695B2 JP5084695B2 (en) 2012-11-28

Family

ID=42291485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008274467A Active JP5084695B2 (en) 2008-10-24 2008-10-24 Method for measuring the firing temperature of the fired product

Country Status (1)

Country Link
JP (1) JP5084695B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104848964A (en) * 2015-05-25 2015-08-19 华润水泥技术研发有限公司 Clinker calorimetric measuring device and measuring method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197338A (en) * 1989-12-27 1991-08-28 Mitsubishi Materials Corp Method for carrying out quality control of cement clinker
JPH07267699A (en) * 1994-03-24 1995-10-17 Chichibu Onoda Cement Corp Production of cement
JPH0952741A (en) * 1995-08-10 1997-02-25 Chichibu Onoda Cement Corp Condition for firing clinker, method for estimating cement strength and method for controlling kiln
JP2008272677A (en) * 2007-04-27 2008-11-13 Kubota Matsushitadenko Exterior Works Ltd Calcination temperature determination method of inorganic base material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197338A (en) * 1989-12-27 1991-08-28 Mitsubishi Materials Corp Method for carrying out quality control of cement clinker
JPH07267699A (en) * 1994-03-24 1995-10-17 Chichibu Onoda Cement Corp Production of cement
JPH0952741A (en) * 1995-08-10 1997-02-25 Chichibu Onoda Cement Corp Condition for firing clinker, method for estimating cement strength and method for controlling kiln
JP2008272677A (en) * 2007-04-27 2008-11-13 Kubota Matsushitadenko Exterior Works Ltd Calcination temperature determination method of inorganic base material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104848964A (en) * 2015-05-25 2015-08-19 华润水泥技术研发有限公司 Clinker calorimetric measuring device and measuring method thereof

Also Published As

Publication number Publication date
JP5084695B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP6273007B2 (en) Rapid firing method for porous ceramics
JP2018184342A (en) Fast firing method for ceramics
JP2014228239A (en) Heat treatment vessel
MX2013004502A (en) Method for producing fired body and firing furnace used therefor.
JP5084695B2 (en) Method for measuring the firing temperature of the fired product
JP2010083729A (en) Alumina-based sintered compact excellent in corrosion resistance, heat shock resistance, and durability
TWI751709B (en) Refractory
JP4836348B2 (en) Heat-treating member made of an alumina sintered body with excellent durability
KR101514180B1 (en) Method for manufacturing ceramic body having uniform density
Fayyad et al. Improvement of the refractoriness under load of fire-clay refractory bricks
Suárez et al. Sintering kinetics of 8Y–cubic zirconia: Cation diffusion coefficient
Sánchez et al. Residual stresses in porcelain tiles. Measurement and process variables assessment
Doroganov et al. Highly concentrated ceramic binder suspensions based on silicon carbide
JP2020097509A (en) Mullite-based sintered compact and method for producing the same
JP4911203B2 (en) In-furnace temperature measurement method, in-furnace temperature measurement device, heat treatment device, and calcining synthesis method of ceramic raw material powder
JP4993812B2 (en) Heat treatment member made of zirconia sintered body
JP2002137962A (en) Component for heat treatment consisting of mullite-based sintered compact
JP7187954B2 (en) Evaluating Method of Delamination Resistance of Alumina-Magnesia Castable Refractories
JP2000327408A (en) Thermal shock resistant silica brick for hot repairing and its production
JPH07315915A (en) Orientated alumina sintered compact
JP4485615B2 (en) Corrosion-resistant spinel sintered body and heat treatment member comprising the same
RU2286968C1 (en) Method of manufacturing quartz ceramics products
WO2013105577A1 (en) Tunnel kiln and method for producing fired body using same
JP2014024740A (en) Ceramic sintered body, and member for heat treatment
JP4906240B2 (en) Alumina sintered body excellent in thermal shock resistance and corrosion resistance, heat treatment member comprising the same, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120904

R150 Certificate of patent or registration of utility model

Ref document number: 5084695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3