JPS5920736B2 - Method for detecting sintering progress inside the sintered layer - Google Patents

Method for detecting sintering progress inside the sintered layer

Info

Publication number
JPS5920736B2
JPS5920736B2 JP1629181A JP1629181A JPS5920736B2 JP S5920736 B2 JPS5920736 B2 JP S5920736B2 JP 1629181 A JP1629181 A JP 1629181A JP 1629181 A JP1629181 A JP 1629181A JP S5920736 B2 JPS5920736 B2 JP S5920736B2
Authority
JP
Japan
Prior art keywords
sintering
sintered layer
combustion zone
wind speed
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1629181A
Other languages
Japanese (ja)
Other versions
JPS57131330A (en
Inventor
春生 国分
晃 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1629181A priority Critical patent/JPS5920736B2/en
Publication of JPS57131330A publication Critical patent/JPS57131330A/en
Publication of JPS5920736B2 publication Critical patent/JPS5920736B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明はビワイトロイド式焼結機パレット上の焼結層内
部における焼結進行状況を検出する方法に関し、詳しく
は燃焼帯の焼結機機長方向の分布形状や通気抵抗指数な
どの操業情報を提供する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting the progress of sintering inside a sintered layer on a pallet of a biwitroid sintering machine, and more specifically, the present invention relates to a method for detecting the progress of sintering inside a sintered layer on a pallet of a biwitroid sintering machine, and more specifically, the distribution shape of the combustion zone in the longitudinal direction of the sintering machine and the ventilation resistance index. This relates to a method of providing operational information such as.

DL焼結機における焼結層内部は第1図に示すように、
未焼結部分の原料帯1、コークスの燃焼と鉱石の溶融が
起っている燃焼帯2、焼結が完了した焼結帯3から構成
されている。
The inside of the sintered layer in the DL sintering machine is as shown in Figure 1.
It consists of a raw material zone 1 which is an unsintered part, a combustion zone 2 where coke combustion and ore melting are occurring, and a sintered zone 3 where sintering is completed.

燃焼帯2の機長方向の分布形状とその通気抵抗指数は、
それぞれ焼結の進行状況およびコークスの燃焼効果と鉱
石の溶融状況を示していて、焼結操業上重要な因子であ
る。
The distribution shape of combustion zone 2 in the longitudinal direction and its ventilation resistance index are:
Each shows the progress of sintering, the combustion effect of coke, and the melting state of ore, which are important factors in sintering operations.

すなわち焼結層の焼結が進行して、パレット上から排出
される時点では燃焼がほぼ終って焼結が完了しているこ
とが必要であるが、焼結層の排出部における燃焼帯の断
面観察からだけでは、後続の焼結層内部の燃焼の進行状
況、即ち焼結工程における原料の着火、燃焼の進行状態
などが適切であるか否かを的確に判断することが出来な
い。
In other words, when the sintering of the sintered layer progresses and it is discharged from the pallet, the combustion must be almost complete and the sintering must be completed. It is not possible to accurately judge from observation alone whether or not the progress of combustion inside the subsequent sintered layer, that is, the progress of ignition of raw materials and combustion in the sintering process, is appropriate.

従って、パレット上への装入原料におけるコークス量、
原料配合、水分添加量などが適切になされているかどう
かを知るためには、燃焼帯の機長方向の分布形状や通気
抵抗指数などを的確に把握することが肝要である。
Therefore, the amount of coke in the charge on the pallet,
In order to know whether the raw material mixture, amount of water added, etc. are appropriate, it is important to accurately understand the distribution shape of the combustion zone in the longitudinal direction and the ventilation resistance index.

一般に、焼結層における燃焼帯の分布形状の推定は、焼
結層内高さ方向に数本の熱電対を埋め込み、パレット進
行に伴なう温度変化を測定することによって行なわれる
が、この方式には @)温度測定位置か局所的である。
Generally, the distribution shape of the combustion zone in the sintered layer is estimated by embedding several thermocouples in the height direction within the sintered layer and measuring the temperature change as the pallet advances. @) Temperature measurement location or local.

(ロ)熱電対の寿命が1〜2日位の非常に短いものであ
って連続的に測定できない。
(b) The lifespan of thermocouples is very short, about 1 to 2 days, and cannot be measured continuously.

(ハ)熱電対の着脱時に焼結機を停止する必要がある。(c) It is necessary to stop the sintering machine when attaching and detaching the thermocouple.

など、熱電対測定には問題点が多く、試験的に行なわれ
ているに過ぎない。
There are many problems with thermocouple measurements, and this is only being done on a trial basis.

一方原料帯の通気抵抗指数の測定値は、その測定が容易
であることから多く報告されているが、燃焼帯の通気抵
抗指数については、その温度が1200〜1400°C
と高温であり、寸だ燃焼帯の位置を操業時に把握、特定
することが困難であると云う理由から、これ丑で測定が
できなかった。
On the other hand, the measured value of the ventilation resistance index in the raw material zone is often reported because it is easy to measure.
It was not possible to measure the combustion zone directly because the temperature was so high that it was difficult to grasp and identify the exact location of the combustion zone during operation.

現在までに発表されている焼結モデルは、焼結層内反応
を忠実に表わそうとするあまり、パラメータが多くなり
モデル式そのものが複雑で、実操業に適用されるに至っ
ていない実情であるので、焼結操業に実際に適用できる
ような焼結モデルによって、焼結層内部における焼結の
進行状態を的確に知り得る方法の提案が熱返されている
現状である。
The sintering models that have been published to date try to faithfully represent the reactions within the sintered layer, so they have too many parameters and the model formulas themselves are complicated, so they have not been applied to actual operations. Therefore, proposals are being made for methods that can accurately determine the progress of sintering inside the sintered layer using a sintering model that can actually be applied to sintering operations.

本発明はこのような当該技術分野の要望にこたえ、焼結
層内部における焼結の進行状態を知る方法を提案したも
のであって、本発明における焼結モデルでは、糸を出来
るだけ単純化し実操業に適用し得るようにしだものであ
る。
The present invention has responded to such demands in the technical field and proposed a method for determining the progress state of sintering inside the sintered layer. It is designed to be applicable to operations.

即ちその要旨は焼結機のウィンドボックス部あるいは焼
結層上面で機長方向の4ケ所以上に風速計を設置して得
られる風速測定値を、吸引負圧、パレットスピード層厚
とともに焼結モデルに入力し燃焼帯の機長方向の分布形
状、原料帯、燃焼帯の通気抵抗指数及び機長方向の風速
分布を連続的に検出し、操業者に日常操業情報として提
供しようとするものである。
In other words, the gist is that the wind speed measurements obtained by installing anemometers at four or more locations in the machine length direction on the wind box part of the sintering machine or on the top surface of the sintered layer, along with the suction negative pressure and pallet speed layer thickness, are applied to the sintering model. The system continuously detects the input combustion zone distribution shape in the longitudinal direction of the machine, the ventilation resistance index of the raw material zone and the combustion zone, and the wind speed distribution in the longitudinal direction, and provides the information to operators as daily operation information.

次に本発明方法について詳細に説明する。Next, the method of the present invention will be explained in detail.

本発明の焼結モデルの流れは次に示す通りである。The flow of the sintering model of the present invention is as follows.

(1)焼結機機長方向の本発明による風速分布関数の導
出。
(1) Derivation of the wind speed distribution function according to the present invention in the longitudinal direction of the sintering machine.

(11)機長方向4点の風速測定値から風速分布函数の
構成パラメータである原料帯、燃焼帯の通気・ 抵抗指
数の導出。
(11) Derive the ventilation/resistance index of the raw material zone and combustion zone, which are the constituent parameters of the wind speed distribution function, from the wind speed measurements at four points in the longitudinal direction of the aircraft.

以下に本発明の焼結モデルの概略を示す。An outline of the sintered model of the present invention is shown below.

焼結層が第1図に示したように、原料帯1、燃焼帯2、
焼結帯3から構成されるとし、通気抵抗指数を次の(ト
)式のように定義する。
As shown in Figure 1, the sintered layer consists of a raw material zone 1, a combustion zone 2,
The airflow resistance index is defined as the following equation (g).

R=JP/ΔH/Qn −−−−−−(])ま
た yB/ VF−KB / KF ・・・・・
・(2)dyB/dx=KB −Q/PS ・・・・・
・(3)上記(1)式より次の(4)式が得られる。
R=JP/ΔH/Qn --------(]) Also yB/VF-KB/KF...
・(2) dyB/dx=KB −Q/PS ・・・・・
-(3) The following equation (4) is obtained from the above equation (1).

yB’R8HO+(yF yB)・RNEN + (
HYv )・F?Gwn−ΔP/Q0 ・・・・
・・・・・(4)上記(2)、(4)式を(3)式に代
入して解くと、以下のようなHFP 4.HBP
5の分布函数、さらに焼結機機長方向の風速分布函数が
得られる。
yB'R8HO+(yF yB)・RNEN+(
HYv)・F? Gwn-ΔP/Q0...
...(4) Substituting equations (2) and (4) above into equation (3) and solving the following HFP 4. HBP
A distribution function of 5 and a wind speed distribution function in the longitudinal direction of the sintering machine are obtained.

なお経験的にΔP/ΔH−RQ 1゛4(n = 1.
4 )が成立すると称せられているし、また焼結機の実
操業においてもn=1..4の場合が最もよく実際に符
号することを確認しているので、以下n−14とした解
を示す。
Additionally, empirically, ΔP/ΔH-RQ 1゛4 (n = 1.
4) is said to hold true, and also in actual operation of a sintering machine, n=1. .. Since it has been confirmed that the case of 4 is actually encoded best, a solution of n-14 will be shown below.

(1)式より(4)式が得られ、(2)、 (4)式を
(3)式に代入して解くと、以下のようなHFP 4
.HBP 5の分布関数さらに焼結機機長方向の風速
分布関数が得られる。
Equation (4) is obtained from Equation (1), and by substituting Equation (2) and (4) into Equation (3) and solving, the following HFP 4 is obtained.
.. The distribution function of HBP 5 and the wind speed distribution function in the longitudinal direction of the sintering machine are obtained.

X≦Loのとき ■−yB’KF/KB ・・・・・・
・・・(6)XンL。
When X≦Lo■-yB'KF/KB ・・・・・・
...(6) XL.

のときここで B=H’ Rcgrq ・−−(13)C二R8
HORNE N ”−・(14)D=H−RNF、N
・・・・・・・・・・・・(15)yB:焼
結層表面からHBP 5までの距離(m)yF:焼結
層表面からHFP 4までの距離(m)Q :焼結層
通過風速(m/m in )PS :パレットスピード
(m/m1n)ΔP :吸引負圧(rnmH20) X :点火位置から機長方向への距離(m)ΔH:任意
の層厚(m) H:層厚(m) RGF、N’原料帯の通気抵抗指数(mIIIH20・
min’°4/m2°4) RNEN’燃焼帯の通気抵抗指数 R8HO:焼結帯の通気抵抗指数 KF :HFP 4の風速係数 KB :HBP 5の風速係数 Lo :HFP 4と焼結層低面との交点1での距離
(m ) を示すものである。
Then, B=H' Rcgrq ・--(13)C2R8
HORNE N”-・(14) D=H-RNF, N
・・・・・・・・・・・・(15) yB: Distance from the sintered layer surface to HBP 5 (m) yF: Distance from the sintered layer surface to HFP 4 (m) Q: Sintered layer Passing wind speed (m/min) PS: Pallet speed (m/m1n) ΔP: Negative suction pressure (rnmH20) Thickness (m) RGF, N' Airflow resistance index of raw material zone (mIIIH20・
min'°4/m2°4) RNEN' Airflow resistance index of the combustion zone R8HO: Airflow resistance index of the sintered zone KF: Wind speed coefficient of HFP 4 KB: Wind speed coefficient of HBP 5 Lo: HFP 4 and the lower surface of the sintered layer This shows the distance (m) at the intersection point 1 with .

さらに経験式として次の(16)式が成立する。Furthermore, the following equation (16) holds true as an empirical equation.

R5Ho =RNEN / 20 −・−−−−−(
16)以上の説明から次のことが云える。
R5Ho =RNEN/20 -・------(
16) From the above explanation, the following can be said.

(7L (9)式の焼結層通過風速分布函数はR6゜、
(7L The wind speed distribution function passing through the sintered layer in equation (9) is R6°,
.

RNF、N 、R8HO’ KF’ KBの5箇の未知
数から成り、(7)、(9Xにそれぞれ2点づつの風速
測定値を代入すれば、(16)式と共に5元連立方程式
が得られ、これを解くことによって未知数をすべて導く
ことが出来る。
It consists of five unknowns: RNF, N, R8HO'KF' KB, and by substituting the measured wind speed values at two points each into (7) and (9X), a five-element simultaneous equation is obtained along with equation (16), By solving this, we can derive all the unknowns.

これによって燃焼帯の機長方向の分布形状および機長方
向の風速分布を推定することが可能となる。
This makes it possible to estimate the distribution shape of the combustion zone in the longitudinal direction and the wind speed distribution in the longitudinal direction.

第2図に本発明方法によって得られた燃焼帯2の分布形
状と熱電対により実測した層内温度分布9とを対比して
示す。
FIG. 2 shows a comparison between the distribution shape of the combustion zone 2 obtained by the method of the present invention and the in-bed temperature distribution 9 actually measured by a thermocouple.

層内温度分布9のaおよびbのグラフは焼結層下端から
それぞれ10CrrLおよび20cIrLの2箇所で測
定したものであって、熱電灯の移動経路を燃焼帯分布図
上に実線で示した。
The graphs a and b of the temperature distribution in the layer 9 were measured at two locations, 10 CrrL and 20 cIrL, respectively, from the bottom of the sintered layer, and the movement path of the thermoelectric lamp is shown by a solid line on the combustion zone distribution map.

実測した層内温度分布の高温部と燃焼帯2の位置、形状
は比較的良好な一致を示している。
The actually measured high-temperature portion of the temperature distribution in the layer and the position and shape of the combustion zone 2 show relatively good agreement.

次に本発明方法の実施例について述べる。Next, examples of the method of the present invention will be described.

焼結工場のA、3.7,10.13ウインドボツクス7
のウィンドレッグ部8(第1図参照)にそれぞれベンチ
ュリ風量計を設置し、得られる4点の風速測定値を吸引
負圧、パレットスピード、層厚とともに計算機に入力し
、常時第3図に示すような燃焼帯分布図と風速分布図1
0及び原料帯1の通気抵抗指数、燃焼帯2の通気抵抗指
数等をCRT画面に表示している。
Sintering factory A, 3.7, 10.13 Wind box 7
A Venturi airflow meter is installed in each of the wind legs 8 (see Figure 1), and the wind speed measurements obtained at the four points are input into the computer along with the suction negative pressure, pallet speed, and layer thickness, as shown in Figure 3. Combustion zone distribution map and wind speed distribution map 1
0, the ventilation resistance index of raw material zone 1, the ventilation resistance index of combustion zone 2, etc. are displayed on the CRT screen.

これによって操業者は焼結層内部の焼結進行状況を常時
監視することが可能となった。
This allows operators to constantly monitor the progress of sintering inside the sintered layer.

この結果、焼結進行状況を示すCRT画面に異状が見ら
れた場合は、直ちに原料への添加水分量あるいはコーク
ス量を調節するなどの対応手段を採ることが出来、焼結
モデルに現れだ変化の原因ならびにその対策を的確に判
断し、実行に移すことが可能となった。
As a result, if an abnormality is observed on the CRT screen showing the sintering progress, it is possible to immediately take measures such as adjusting the amount of water added to the raw material or the amount of coke, and any changes that appear in the sintered model can be taken. It has now become possible to accurately determine the cause and countermeasures and implement them.

同風速分布図10中の目印は風速測定値を示しており、
この目印を結ぶ曲線が本発明方法によって検出された風
速(風量)分布曲線である。
The marks in the same wind speed distribution map 10 indicate the measured wind speed values,
A curve connecting these landmarks is a wind speed (air volume) distribution curve detected by the method of the present invention.

本発明によって、燃焼帯の機長方向の分布形状および原
料帯、燃焼帯の各通気抵抗指数、さらに機長方向の風速
分布を連続的に検出し、操業情報として提供することが
可能になった。
According to the present invention, it has become possible to continuously detect the distribution shape of the combustion zone in the longitudinal direction, the ventilation resistance index of the raw material zone and the combustion zone, and the wind speed distribution in the longitudinal direction and provide them as operational information.

尚この情報提供は日常操業ばかりでなく、DL焼結機の
操業条件全般の検討による条件の決定・変更などの際に
も適用されることは云うまでもない。
It goes without saying that this provision of information is applied not only to daily operations, but also when determining or changing conditions by examining the overall operating conditions of the DL sintering machine.

これらの情報に基づいて、焼結条件を的確に調整するこ
とが可能となった効果は頗る犬である。
The fact that the sintering conditions can be adjusted accurately based on this information is remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼結層内の原料帯・燃焼帯・焼結帯の構成を示
しだ模式図、第2図は本発明により推定された燃焼帯分
布形状と熱電対による焼結層内実測温度分布との関係を
示した図面、第3図は本発明によって得られる種々の情
報をCRT画向に表示する一例を示した図面である。 1・・・原料帯、2・・・燃焼帯、3・・・焼結帯、4
・・・HFP 、5・・・HBP 、 6・・・点
火炉、7・・・ウィンドボックス、8・・、ウィンドレ
ッグ、9・・・実測層内温度分布、10・・・風速分布
図。
Figure 1 is a schematic diagram showing the composition of the raw material zone, combustion zone, and sintering zone in the sintered layer, and Figure 2 is the combustion zone distribution shape estimated by the present invention and the actual temperature inside the sintered layer measured by a thermocouple. FIG. 3 is a drawing showing the relationship with the distribution, and is a drawing showing an example of displaying various information obtained by the present invention on a CRT screen. 1... Raw material zone, 2... Combustion zone, 3... Sintering zone, 4
... HFP, 5... HBP, 6... Ignition furnace, 7... Wind box, 8... Wind leg, 9... Actual temperature distribution in the layer, 10... Wind speed distribution map.

Claims (1)

【特許請求の範囲】[Claims] 1 ドワイトロイド式焼結機のウィンドボックス部も
しくは焼結機上面において機長方向4箇所以上に設置し
た風速計から得られる風速測定値とパレットスピード、
層厚ならびに吸引風圧を焼結モデルに入力して計算させ
て、焼結層内部の原料帯と燃焼帯の各通気抵抗指数、焼
結機の機長方向の吸引風速分布および燃焼帯の機長方向
の分布形状を連続的に検出することを特徴とする焼結層
内部の焼結進行状況検出方法。
1. Wind speed measurements and pallet speed obtained from anemometers installed at four or more locations in the machine length direction on the wind box part of the Dwight Lloyd sintering machine or on the top surface of the sintering machine,
The layer thickness and suction wind pressure are input into the sintering model and calculated, and the ventilation resistance index of the raw material zone and combustion zone inside the sintered layer, the suction wind speed distribution in the longitudinal direction of the sintering machine, and the longitudinal direction of the combustion zone are calculated. A method for detecting the progress of sintering inside a sintered layer, which is characterized by continuously detecting the distribution shape.
JP1629181A 1981-02-07 1981-02-07 Method for detecting sintering progress inside the sintered layer Expired JPS5920736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1629181A JPS5920736B2 (en) 1981-02-07 1981-02-07 Method for detecting sintering progress inside the sintered layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1629181A JPS5920736B2 (en) 1981-02-07 1981-02-07 Method for detecting sintering progress inside the sintered layer

Publications (2)

Publication Number Publication Date
JPS57131330A JPS57131330A (en) 1982-08-14
JPS5920736B2 true JPS5920736B2 (en) 1984-05-15

Family

ID=11912435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1629181A Expired JPS5920736B2 (en) 1981-02-07 1981-02-07 Method for detecting sintering progress inside the sintered layer

Country Status (1)

Country Link
JP (1) JPS5920736B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430822Y2 (en) * 1984-11-05 1992-07-24

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103033053B (en) * 2012-12-27 2015-07-29 中冶长天国际工程有限责任公司 Resistance coefficient of material layer defining method and system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430822Y2 (en) * 1984-11-05 1992-07-24

Also Published As

Publication number Publication date
JPS57131330A (en) 1982-08-14

Similar Documents

Publication Publication Date Title
CN110513604A (en) A kind of LNG station leakage intelligent checking system and its detection method based on multi-source image
CN103017530B (en) Method and system for predicting sintering burn-through point
WO2020155230A1 (en) Method for determining real-time thermal deformation attitude of spindle
CN108871208A (en) Bulk grain railway carriage three-dimensional size detects automatically and its case top three-dimensional coordinate method for building up
JPS5920736B2 (en) Method for detecting sintering progress inside the sintered layer
CN104568187B (en) A kind of kiln temperature detection method and device
JPH06300459A (en) Detecting method for air leakage in sintering machine
CN103045855B (en) Method and system for predicting thickness of sintered ore bed
KR102531803B1 (en) Method for monitoring wear of refractory linings of blast furnaces
CN106319122A (en) Method and device for measuring slag-iron liquid level information of hearth of blast furnace online
CN105219403A (en) A kind of coke oven regenerator detect aperture structure and using method thereof
CN205893456U (en) Single crystal growing furnace silicon solution liquid surface position detecting device and adjustment system
CN205133494U (en) Coke oven checker chamber inspection hole structure
CN105219905B (en) Device for monitoring upward hearth temperature change of blast furnace and application of device
JPS58166218A (en) Method for measuring level of powder
CN208847110U (en) COREX furnace melting gasification furnace vault expansion detection device
CN112304260B (en) Method for determining length of sintering flue gas cover
JPS6039725B2 (en) Blast furnace gas flow rate measurement method
CN112903507B (en) Apparatus and system for measuring glass pull
JPH05186811A (en) Method for operating blast furnace
JPH03240926A (en) Method for estimating distribution of carbon concentration in height direction of sintered layer
CN206143235U (en) Hearth radial temperature measuring device
JPS57166541A (en) Method and device estimating life of fluid receptacle at high temperature
JPS6329248Y2 (en)
JPS586898B2 (en) Temperature detection method of sintered raw material layer