JPS6039725B2 - Blast furnace gas flow rate measurement method - Google Patents

Blast furnace gas flow rate measurement method

Info

Publication number
JPS6039725B2
JPS6039725B2 JP16366882A JP16366882A JPS6039725B2 JP S6039725 B2 JPS6039725 B2 JP S6039725B2 JP 16366882 A JP16366882 A JP 16366882A JP 16366882 A JP16366882 A JP 16366882A JP S6039725 B2 JPS6039725 B2 JP S6039725B2
Authority
JP
Japan
Prior art keywords
furnace
gas flow
charge
gas
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16366882A
Other languages
Japanese (ja)
Other versions
JPS5953608A (en
Inventor
正 磯山
嘉雄 奥野
俊幸 入田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16366882A priority Critical patent/JPS6039725B2/en
Publication of JPS5953608A publication Critical patent/JPS5953608A/en
Publication of JPS6039725B2 publication Critical patent/JPS6039725B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は、高炉炉□部装入物表面におけるガス流分布測
定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring gas flow distribution on the surface of a charge in a blast furnace.

一般に高炉の操業にあたっては、炉内に装入する鉱石、
コークス等の固体原料(以後装入物と称す)と、炉下部
羽□部に送風する熱風で装入物中のコークスが燃焼して
発生する還元性炉内ガス(以後単に炉内ガスと称す)と
の接触をよくし、鉱石の還元および溶解状況を適正な状
態に保持することが重要であるが、このためには炉内ガ
ス流分布を確実に把握することが必要である。
Generally, when operating a blast furnace, the ore charged into the furnace,
Solid materials such as coke (hereinafter referred to as the charge) and reducing furnace gas (hereinafter simply referred to as the furnace gas) generated when the coke in the charge is burned by hot air blown to the lower part of the furnace. ), and it is important to maintain the reduction and dissolution of the ore in an appropriate state, and for this purpose, it is necessary to reliably understand the gas flow distribution in the furnace.

すなわち、炉内ガスの流れが部分的に偏流して著しくガ
ス流分布が乱れた場合、ガス流れの多い部分と少ない部
分が生じ、鉱石の還元割合が不均一となる。この結果、
炉下部での鉱石溶融レベルのバランスが崩れて棚吊り、
スリップ等の装入物降下異常等を起こし、高炉操業の安
定を大きく乱すことになる。このような炉内ガス流の偏
流現象が生じた場合には、ガス流の多い部分には鉱石を
多く装入すべ〈装入方式が変更する等、いわゆる装入物
分布を制御してガス流分布の乱れを改善する方策がとら
れている。したがって高炉の安定な操業を維持する上で
炉内ガス流分布を的確に検知することが極めて重要なポ
イントとなっている。しかるに従来は、炉□部装入物表
面のガス温度が50〜8003Cまで高範囲に変化する
ことおよび炉内ガス中に多量のダストが混入しているこ
とからガス流速を直接測定することが困難なため、炉内
ガスの温度および成分分布を測定しこれらの変化から炉
内ガス流分布の変化を間接的に推定する方法に止つてい
る。
That is, if the flow of gas in the furnace is partially uneven and the gas flow distribution is significantly disturbed, there will be parts where there is a lot of gas flow and parts where there is less gas flow, and the reduction ratio of the ore will become non-uniform. As a result,
The ore melting level in the lower part of the furnace is unbalanced and the shelf hangs.
This will cause abnormalities in the descent of the burden such as slips, which will greatly disrupt the stability of blast furnace operations. If such a phenomenon of uneven gas flow in the furnace occurs, it is necessary to charge more ore to the areas where there is a large amount of gas flow. Measures are being taken to improve the disordered distribution. Therefore, it is extremely important to accurately detect the gas flow distribution in the furnace in order to maintain stable operation of the blast furnace. However, in the past, it was difficult to directly measure the gas flow rate because the gas temperature on the surface of the charge in the furnace □ section varied over a wide range from 50 to 8003 C, and because a large amount of dust was mixed in the gas in the furnace. Therefore, the only method available is to measure the temperature and component distribution of the gas in the furnace and indirectly estimate the change in the gas flow distribution in the furnace from these changes.

しかし、この方法では、炉内ガスの温度、成分の変化が
かならずしもガス流速の変化だけで生ずるものではなく
、装入物の量、コークス鉱石の割合および装入物の性状
等の変化によっても著しく変化する。したがって炉内ガ
ス流速分布の推定精度が悪く、装入物分布を的確に制御
できないという問題が存在する。本発明はこれらの問題
を解決するために炉内ガス流速分布を精度よく把握する
方法を提供するものである。
However, with this method, changes in the temperature and composition of the gas in the furnace are not necessarily caused only by changes in the gas flow rate, but also due to changes in the amount of the charge, the proportion of coke ore, the properties of the charge, etc. Change. Therefore, there is a problem in that the accuracy of estimating the gas flow velocity distribution in the furnace is poor and the charge distribution cannot be accurately controlled. In order to solve these problems, the present invention provides a method for accurately grasping the gas flow velocity distribution in the furnace.

本発明における炉内ガス流速分布の測定原理は、高炉装
入物を炉内に装入した時に炉内で形成する堆積形状が装
入時の炉内ガス流分布に対応して変化することから、装
入直後の装入物堆積形状を測定し、この結果をもとにガ
ス流分布を把握するものである。
The principle of measuring the gas flow velocity distribution in the furnace in the present invention is that when the blast furnace charge is charged into the furnace, the shape of the pile formed in the furnace changes in accordance with the gas flow distribution in the furnace at the time of charging. , the shape of the charge piled up immediately after charging is measured, and the gas flow distribution is determined based on the results.

すなわち、通常高炉で使用されるコークス、鉱*石等の
装入物は、高炉内に装入されると第3図に示すようにあ
る角度をもつて堆積する。
That is, when the charges such as coke and ore used in a blast furnace are charged into the blast furnace, they are deposited at a certain angle as shown in FIG.

一般にこの時の装入物面と水平面とのなす角度を傾斜角
8と称するが、この傾斜角は、装入物の粒度、密度、空
隙率および装入時のガス流速によって大きく変化する。
この場合傾斜角は、一般的に次の式で表わされることが
公知である。岬/tana。
Generally, the angle formed between the charge surface and the horizontal plane at this time is called the inclination angle 8, but this inclination angle varies greatly depending on the particle size, density, porosity of the charge and the gas flow rate during charging.
In this case, it is known that the inclination angle is generally expressed by the following formula. Cape/tana.

=1−〔増子十I.75〕〔短キ〕X(器)(支う)
.・仙ここで:8ガス流下での傾斜角(o)8o:
内部摩擦角(o) ご:装入物空隙率(−) Rep:粒子レィノルズ数(一) Dp粒子径(m)、pf:ガス密度(k9/が)u:ガ
ス流速(m/s)、p:粒子密度(kg/の) 中:形状係数、g:重力加速度(m/sec2)川式は
、U=0(無風)で8:8o、U=Umf(Umfは粒
子の流動化開始速度m/s)で8=00となる。
=1-[Masuko Ju I. 75] [Short key] X (vessel) (support)
..・Here: 8 Inclination angle (o) under gas flow: 8o:
Internal friction angle (o) Go: Charge porosity (-) Rep: Particle Reynolds number (1) Dp particle diameter (m), pf: Gas density (k9/), u: Gas flow rate (m/s), p: Particle density (kg/) Medium: Shape factor, g: Gravitational acceleration (m/sec2) The river formula is 8:8o at U = 0 (no wind), U = Umf (Umf is the starting speed of particle fluidization m/s) becomes 8=00.

したがって、m式は次のように整理できる。8/8。Therefore, the m formula can be rearranged as follows. 8/8.

=f〔1−(U/Umf)〕 …■f:関数を表わ
す記号Umf:流動化開始速度 そこで、別途炉外において、装入物固有の物性値である
ご,Dp,pb,8oを求め、これらの装入物について
ガス流下での傾斜角8を測定して、a/8。
=f[1-(U/Umf)]...■f: Symbol representing a function Umf: Fluidization start speed Therefore, separately outside the furnace, calculate the physical property values unique to the charge, Dp, pb, 8o. , measuring the inclination angle 8 under gas flow for these charges, a/8.

とUmfとの関係として求めると第1図が得られる。こ
こで、流動化開始速度Umfは、一般に高炉に装入され
る装入物粒度の範囲(コークス:10〜70柳、鉱石5
〜50側)では以下の式で求められることが公知である
。Umf=0.12ノ3夕(pb−pf)Dp/pf
…(3}したがって粒子径(Dp)、粒子密度(pb
)およびガスの密度(pf)を把握できれば制式でUm
fを算出できる。
Figure 1 is obtained by determining the relationship between and Umf. Here, the fluidization start speed Umf is generally determined by the particle size range of the charge charged into the blast furnace (coke: 10 to 70 Yanagi, ore 5
~50 side) is known to be calculated using the following formula. Umf = 0.12 no 3 evenings (pb-pf) Dp/pf
...(3} Therefore, particle diameter (Dp), particle density (pb
) and the density of the gas (pf), it is legal to use Um
f can be calculated.

ここで、粒子径(Dp)は、一般に炉外試験において高
炉直径方向における粒度分布変化として装入方式、装入
量、装入割合等が変化した場合について測定し、同時に
粒子密度(pb)も測定しているので両者は容易に把握
できる。またガス密度(pf)も炉頂圧力(PT)、炉
頂温度(T)およびガス成分が測定されていることから
ボイル・シャールの法則により容易に計算できる。この
場合、ガス成分の変化はガス温度(T)、炉頂圧力(P
T)が変化した場合よりガス密度(pf)への影響が小
まし、ので直径方向で一定成分とみなしてガス密度を計
算しても大きな誤差は生じない。一方高炉においては、
炉内に装入した堆積形状をかなり精度よく測定できる技
術が開発されている(例えば、し−ザー、マイクロ波を
用いたプロフイルメーターとして特公昭56−9644
、実開昭54−60608)。
Here, the particle diameter (Dp) is generally measured in the case where the charging method, charging amount, charging ratio, etc. change as a particle size distribution change in the diameter direction of the blast furnace in an outside-furnace test, and at the same time, the particle density (pb) is also measured. Since both are measured, it is easy to understand both. Furthermore, the gas density (pf) can be easily calculated using the Boyle-Scharr law since the furnace top pressure (PT), furnace top temperature (T), and gas components are measured. In this case, the changes in gas components are gas temperature (T), furnace top pressure (P
The effect on the gas density (pf) is smaller than when T) is changed, so even if the gas density is calculated by regarding it as a constant component in the diametrical direction, no large error will occur. On the other hand, in a blast furnace,
Techniques have been developed that can measure the shape of the deposits charged in the furnace with a high degree of accuracy (for example, the Japanese Patent Publication No. 56-9644 as a profile meter using scissors and microwaves).
, Utility Model Publication No. 54-60608).

したがって炉内の装入物堆積形状から、装入物の傾斜角
は容易に求まる。また、■式における8/8oも容易に
算出できる。すなわち、装入物堆積形状を測定する場合
は、高炉内のある基準面から高さhと、水平方向の距離
Xとが同時に求められるのでこれから装入物面の傾斜角
のま次式に計算できる。脚8=器三洋三 イ4} h:ある基準面からの高さ(m) ×:ある基準点からの水平距離(m) i:測定位置を示すサフィツクス したがって、{4}式で得た傾斜角8との事前に炉外試
験で求めた無風時の傾斜角ooとから■式におけるa/
8。
Therefore, the inclination angle of the charge can be easily determined from the shape of the charge piled up in the furnace. Furthermore, 8/8o in formula (2) can be easily calculated. In other words, when measuring the shape of the burden pile, the height h and the horizontal distance can. Leg 8 = Yozo Kisan A4} h: Height from a certain reference plane (m) ×: Horizontal distance from a certain reference point (m) i: Suffix indicating the measurement position Therefore, the slope obtained by the formula {4} From the angle 8 and the inclination angle oo in no wind, which was determined in advance by an outside furnace test, a/ in the formula ■
8.

が求まる。そこで、第1図によりこの0/aoに対応す
るU/Umfの値を議取り、前記(3}式で求めたUm
fを代入すれば袋入物堆積形状の傾斜角8を示す位置の
ガス流速が容易に求められる。以上説明したように本発
明は、計算手順を第2図に示すが、高炉炉□部装入物表
面のガス温度(T)およびガス成分を測定し、操業条件
で決定される炉頂圧力(PT)とからガス密度(pf)
を算出し、このガス密度(pf)と炉外試験で求めた装
入物粒度(Dp)、密度(pb)とから装入物の流動化
開始速度(Umf)を算出する。
is found. Therefore, we discussed the value of U/Umf corresponding to this 0/ao using Fig.
By substituting f, the gas flow velocity at the position showing the inclination angle 8 of the bag pile shape can be easily determined. As explained above, in the present invention, the calculation procedure is shown in FIG. PT) and gas density (pf)
The fluidization start speed (Umf) of the charge is calculated from this gas density (pf) and the charge particle size (Dp) and density (pb) determined by the outside-furnace test.

一方、別途炉□部の装入物堆積形状を測定し、この形状
から各測定点毎の傾斜角8を計算し、炉外試験で求めた
無風下での装入物傾斜角8。とから8/8oを算出する
。このようにして求めた8/8oに対応するU/Umf
の値を第1図から読取り、この値より傾斜角のこ対する
炉内ガス流速Uを求めるものであ。本発明を実施例にも
とづいて説明すると、第3図は高炉炉□部における装入
物1の堆積形状を測定するレーザー式ブロフィルメータ
ーの機器構成例で2はしーザー発生装置、3は投光装置
、4はしーザー、5は受光器、6は測定された装入物の
堆積形状から測定点毎の傾斜角aを算出して出力する演
算器である。
On the other hand, we separately measured the shape of the charge accumulation in the □ section of the furnace, calculated the inclination angle 8 for each measurement point from this shape, and obtained the charge inclination angle 8 in no wind conditions by an outside-furnace test. Calculate 8/8o from . U/Umf corresponding to 8/8o obtained in this way
The value of . To explain the present invention based on an embodiment, FIG. 3 shows an example of the equipment configuration of a laser brofilmeter for measuring the deposition shape of the charge 1 in the blast furnace section. An optical device, 4 is a Caesar, 5 is a light receiver, and 6 is an arithmetic unit that calculates and outputs an inclination angle a for each measurement point from the measured deposition shape of the charge.

7は装入物表面におけるガス温度、成分分布を測定する
移動式ガス分布測定ゾンデであり、8は架台、9はゾン
デ7で検知したガス温度Tおよび成分を出力する計測器
、10は堆積形状、ガス分布測定時の操業条件より炉頂
圧力(PT)、装入方式等を計算器11に出力する変換
器である。
7 is a mobile gas distribution measurement sonde that measures the gas temperature and component distribution on the surface of the charge; 8 is a mount; 9 is a measuring device that outputs the gas temperature T and components detected by the sonde 7; 10 is a deposition shape , is a converter that outputs the furnace top pressure (PT), charging method, etc. to the calculator 11 based on the operating conditions at the time of gas distribution measurement.

計算器11は、額斜角8、ガス温度T、ガス成分および
炉頂圧力(PT)とから測定点毎のガス密度(pf)を
計算すると共に、事前に炉外で求めた装入物の粒度分布
、密度および無風時の傾斜角8。を記憶しておき、これ
と装入条件とを対応させて各測定点における装入物粒度
(DP)、密度(pb)を求め、ガス流速Uを演算する
。12は、計算されたガス流速を、高炉操業者が装入物
分布制御の可否を判定しやすい形で表示するようにした
表示器である。
The calculator 11 calculates the gas density (pf) for each measurement point from the oblique angle 8, the gas temperature T, the gas components, and the furnace top pressure (PT), and also calculates the gas density (pf) of the charge determined in advance outside the furnace. Particle size distribution, density and windless inclination angle8. is stored, and the charge particle size (DP) and density (pb) at each measurement point are determined by making this correspond to the charging conditions, and the gas flow rate U is calculated. Reference numeral 12 denotes a display device that displays the calculated gas flow rate in a manner that allows the blast furnace operator to easily determine whether or not the charge distribution control is possible.

本発明によるガス流速計算例を第4図イ〜へに示す。Examples of gas flow rate calculations according to the present invention are shown in FIG.

この時の装入方式はC↓C↓○↓○↓(↓は炉内への装
入タイミングを示す記号、Cはコークス、8‘ま鉱石)
で、炉頂圧力は1.0k9/地、鉱石の密度は3.2句
/力、傾斜角8o は360である。第4図イは移動式
ガス分布測定ゾンデで求めた高炉炉口部直径方向におけ
るガス温度分布であり、口はしーザー式プロフィルメー
ターにより測定した炉口部の装入物堆積形状で基準点よ
りの高さで示したものである。第4図ハは、前記第4図
口の測定結果より測定点間隔毎に求めた装入物煩斜角8
である。第4図二は炉外試験で求めた当日の菱入方式の
もとでの鉱石の粒度分布である。第4図木はこれらの測
定結果より本発明の方法で求めた装入物表面のガス流速
分布であり、第4図へは装入物方式をC↓C↓○↓○↓
からC↓C↓○↓00↓に変更した時の炉口部ガス流速
分布の変化を示したものである。このように本発明によ
れば従来直接測定することができなかった炉□部のガス
流速分布を確実に把握することが可能であり、装入条件
等を変更して高炉内のガス流分布を適正な範囲に制御す
る高炉操業法の極めて有効な検出情報を得ることができ
る。
The charging method at this time is C↓C↓○↓○↓ (↓ is a symbol indicating the timing of charging into the furnace, C is coke, 8' ore)
The pressure at the top of the furnace is 1.0 k9/force, the density of ore is 3.2 k9/force, and the angle of inclination is 360. Figure 4 A shows the gas temperature distribution in the diametrical direction at the mouth of the blast furnace as determined by a mobile gas distribution measuring sonde. It is shown in height. Figure 4 C shows the charge angle angle 8 determined for each measurement point interval from the measurement results in Figure 4.
It is. Figure 4-2 shows the particle size distribution of the ore under the Hishiri method on the day determined by the outside-furnace test. The tree in Figure 4 shows the gas flow velocity distribution on the surface of the charge obtained by the method of the present invention from these measurement results.
This figure shows the change in the gas flow velocity distribution at the furnace mouth when changing from C↓C↓○↓00↓. As described above, according to the present invention, it is possible to reliably grasp the gas flow velocity distribution in the □ part of the furnace, which could not be directly measured in the past, and it is possible to change the charging conditions etc. to determine the gas flow distribution in the blast furnace. It is possible to obtain extremely effective detection information for controlling blast furnace operating methods within an appropriate range.

なお、本発明の実施例として、堆積形状測定装置をし−
ザー式プロフィルメーターで、またガス分布測定を移動
ゾンデで測定しているが、本発明の目的からしてこれら
の装置に限定されるものではなく、装入物の堆積形状お
よび装入物表面ガス温度分布を測定できるものが全て含
まれることは明かである。
In addition, as an example of the present invention, a deposition shape measuring device is used.
Although gas distribution is measured using a sensor-type profile meter and a moving sonde, the purpose of the present invention is not limited to these devices. It is clear that everything that can measure temperature distribution is included.

しかし、この場の直径方向における測定点数は、ガス流
速分布計算時の精度に大きく影響するので、ガス分布は
直径方向に10点以上(測定間隔は1.0m以下)、堆
積形状については直径方向20点以上(測定間隔0.5
の以下)であることが望ましい。装入物堆積形状測定間
隔と、か)る分布測定間隔が一致しない場合は、堆積形
状測定位置に対応させてガス分布値から内挿法でガス温
度、成分を推定することが可能である。
However, the number of measurement points in the diametrical direction in this field greatly affects the accuracy when calculating the gas flow velocity distribution. 20 points or more (measurement interval 0.5
(below) is desirable. If the charge deposition shape measurement interval does not match the distribution measurement interval, it is possible to estimate the gas temperature and components by interpolation from the gas distribution value in correspondence with the deposition shape measurement position.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は8/8。 とU/Umfの関係を示すグラフ、第2図は本発明の計
算手順を示す説明図、第3図は本発明における機器構成
図、第4図は計算結果を示す説明図である。1は高炉内
装入物、2ぁレーザー発生装置、3は投光装置、4はし
ーザー、5は受光器、6は演算器、7はゾンデ、8はゾ
ンデの架台、9はガス温度、成分を出力する計測器、1
0‘ま操業条件を出力する変換器、11は計算器、12
は表示器である。 第1図 第2図 第3図 第4図
Figure 1 is 8/8. FIG. 2 is an explanatory diagram showing the calculation procedure of the present invention, FIG. 3 is an equipment configuration diagram in the present invention, and FIG. 4 is an explanatory diagram showing the calculation results. 1 is the contents in the blast furnace, 2 is the laser generator, 3 is the projector, 4 is the laser, 5 is the light receiver, 6 is the computing unit, 7 is the sonde, 8 is the sonde mount, 9 is the gas temperature, components A measuring device that outputs 1
0' is a converter that outputs operating conditions, 11 is a calculator, 12
is an indicator. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 高炉炉内装入物表面上のガス温度を測定し、この測
温値と炉頂圧力とから炉内のガス密度を計算し、このガ
ス密度と予め炉外において求めた装入物の粒度分布及び
密度とから装入物の流動化開始送度U_m_fを計算し
、一方、高炉に装入した直後の装入物の径方向の堆積物
を測定してこの測定値をもとに一定間隔毎の傾斜角θを
求め、この傾斜角θと予め無風下で求めた傾斜角θ_0
との比θ/θ_0を求め、この比θ/θ_0に対応する
炉内ガス流速Uと前記計算で求めたU_m_fとの比U
/U_m_fを予め求めておくことによつて前記傾斜角
θを求めた位置における炉内ガス流速Uを算出すること
を特徴とする高炉内ガス流速測定法。
1 Measure the gas temperature on the surface of the charge inside the blast furnace, calculate the gas density inside the furnace from this temperature value and the pressure at the top of the furnace, and calculate the particle size distribution of the charge previously determined outside the furnace based on this gas density. The fluidization start feed rate U_m_f of the charge is calculated from Find the inclination angle θ of
Find the ratio θ/θ_0 of
A method for measuring gas flow velocity in a blast furnace, characterized in that the in-furnace gas flow velocity U at the position where the inclination angle θ is determined is calculated by determining /U_m_f in advance.
JP16366882A 1982-09-20 1982-09-20 Blast furnace gas flow rate measurement method Expired JPS6039725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16366882A JPS6039725B2 (en) 1982-09-20 1982-09-20 Blast furnace gas flow rate measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16366882A JPS6039725B2 (en) 1982-09-20 1982-09-20 Blast furnace gas flow rate measurement method

Publications (2)

Publication Number Publication Date
JPS5953608A JPS5953608A (en) 1984-03-28
JPS6039725B2 true JPS6039725B2 (en) 1985-09-07

Family

ID=15778315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16366882A Expired JPS6039725B2 (en) 1982-09-20 1982-09-20 Blast furnace gas flow rate measurement method

Country Status (1)

Country Link
JP (1) JPS6039725B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101193749B1 (en) 2010-07-29 2012-10-22 인하대학교 산학협력단 method for anlyzing gas flow of blast furnace
JP6311482B2 (en) * 2013-07-02 2018-04-18 新日鐵住金株式会社 Estimation method of gas flow rate and reduction load of blast furnace block.

Also Published As

Publication number Publication date
JPS5953608A (en) 1984-03-28

Similar Documents

Publication Publication Date Title
JP3498973B2 (en) Leak detection method for sintering machine
JPS6039725B2 (en) Blast furnace gas flow rate measurement method
JP6311482B2 (en) Estimation method of gas flow rate and reduction load of blast furnace block.
JP2971183B2 (en) Estimation method of charge accumulation shape in vertical furnace
JP2010209404A (en) Method, apparatus and program for estimating distribution of in-furnace gas flow in blast furnace
JPH05186811A (en) Method for operating blast furnace
CA1049258A (en) Method of detecting abnormal conditions of blast furnaces
JPS5920736B2 (en) Method for detecting sintering progress inside the sintered layer
JPS6277414A (en) Operating method for blast furnace
CN206143235U (en) Hearth radial temperature measuring device
JPS5852411A (en) Measuring method for distribution of charging materials in blast furnace
JPS6116405B2 (en)
SU1015283A1 (en) Hard material friction coefficient determination method
JP3624658B2 (en) Evaluation method of in-furnace deposition shape stability in blast furnace
KR950012396B1 (en) Control method of blast f'ce gas distribution
CN113699291A (en) Method for calculating blast furnace material distribution drop point based on laser measurement data
JPS6136564B2 (en)
JP3016955B2 (en) Gas flow velocity measurement method in blast furnace
JPS6038446B2 (en) Method for detecting burden deposition distribution in blast furnace
JPS5838670A (en) Copying method for welding groove
JP2020172689A (en) Charging process determination method, charging process determination apparatus, and charging process determination program
JPH01142006A (en) Operation of blast furnace
JPS6191307A (en) Detection of descending of charge in blast furnace
JPH0627284B2 (en) Blast furnace operation method
JPS5862570A (en) Detection of falling speed distribution for charge in blast furnace