JPS58144432A - Operation for sintering - Google Patents

Operation for sintering

Info

Publication number
JPS58144432A
JPS58144432A JP2779282A JP2779282A JPS58144432A JP S58144432 A JPS58144432 A JP S58144432A JP 2779282 A JP2779282 A JP 2779282A JP 2779282 A JP2779282 A JP 2779282A JP S58144432 A JPS58144432 A JP S58144432A
Authority
JP
Japan
Prior art keywords
layer
distribution
heat
sintering
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2779282A
Other languages
Japanese (ja)
Other versions
JPS626619B2 (en
Inventor
Kiyosuke Niko
精祐 児子
Toshiharu Yasumoto
安本 俊治
Takumi Kasahara
笠原 工
Mitsuzo Kimura
木村 光蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2779282A priority Critical patent/JPS58144432A/en
Publication of JPS58144432A publication Critical patent/JPS58144432A/en
Publication of JPS626619B2 publication Critical patent/JPS626619B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To stabilize the quality of sintered ore, by adjusting the distribution of the air-flow velocity of inhaled air or the like in a manner such that the distributions of heat-retaining and cooling indices obtained by calculating the model of a numerical formula is set in a predetermined range along the depth of a layer in a pallet. CONSTITUTION:The known model of a sintering numerical formula comprising the heat and material balances of gases and solid matter in a layer to be sintered is used. From said model of the numerical formula, the mixing ratio, particle size, density and wter content of a raw material and auxiliary material, the thickness of a layer, the speed of a pallet and the condition of an igniting oven are found as data on operation, and a plurality of heat patterns along the depth of the layer is obtained using the distribution of the wind velocity of inhaled air measured during sintering. From these heat patterns, the distributions of heat- retaining and cooling indexes along the depth of the layer are calculated. In succession, the distribution of the air-flow velocity of inhaled air or the distribution of a carbon source along the depth of the layer is adjuted in a manner such that the former distribution is set in a predetermined range.

Description

【発明の詳細な説明】 本発明は、焼結操業における焼結鉱の品質管理を効果的
に実現することのできる焼結操業方法に関し、さらに詳
しくは焼結鉱の品質関連指標である保熱指数、冷却指数
のパレット層厚方向の分布を求め、これらの分布が一定
範囲内に収まるように焼結機の風速分布または炭材の層
厚方向分布を調整する焼結操業方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sintering operation method that can effectively control the quality of sintered ore in sintering operation, and more specifically, the present invention relates to a sintering operation method that can effectively control the quality of sintered ore. The present invention relates to a sintering operation method in which the distribution of the index and cooling index in the thickness direction of the pallet layer is determined, and the wind speed distribution of the sintering machine or the distribution of the carbon material in the layer thickness direction is adjusted so that these distributions fall within a certain range.

焼結層内の熱履歴を表わすヒートパターンは、焼結鉱の
物理性状に関する品質と関係があることはよく知られて
いる。
It is well known that the heat pattern representing the thermal history within the sintered layer is related to the quality of the physical properties of the sintered ore.

第1図はヒートパターンの例を示すグラフである。横軸
に焼結時間をとり、縦軸に焼結層内温度T(℃)をとっ
て、層厚方向深さの異る2点の温度履歴曲線A、Bl描
いたものである。
FIG. 1 is a graph showing an example of a heat pattern. The horizontal axis represents the sintering time, and the vertical axis represents the internal temperature T (° C.) of the sintered layer, and temperature history curves A and Bl are drawn at two points at different depths in the layer thickness direction.

A曲線の斜線を施した部分の面積QTは、温度T ”C
以上の保持状態を示すもので、保熱指数と呼ばれ、通常
T=900℃をとりQ9ooで表わされ、次式で求めら
れる。
The area QT of the shaded part of curve A is the temperature T ``C
The above-mentioned holding state is called the heat retention index, and is usually expressed as Q9oo, where T=900°C, and is determined by the following formula.

8曲線の最高温度の点TPから例えば1100℃までの
冷却速度を表わすCT 1tooは冷却指数と呼ばれ、
次式で示される。
CT1too, which represents the cooling rate from the highest temperature point TP of the 8 curve to, for example, 1100°C, is called the cooling index,
It is shown by the following formula.

強度(シャッター強度)やFeO%と強警秀相関がある
ことはよく知られている。
It is well known that there is a strong correlation between strength (shutter strength) and FeO%.

従来、これらの指数は焼結機内に挿入された熱電対によ
って実測されたヒートパターンから算出されていた。従
って、焼結層内の数点の実測値から求めた代表値であっ
て、焼結層の層厚方向全域に亘って求めることはできず
、焼結層全体の品質を管理する指数として用いるには不
十分であった。
Conventionally, these indices have been calculated from heat patterns actually measured by thermocouples inserted into the sintering machine. Therefore, it is a representative value obtained from actual measurements at several points within the sintered layer, and cannot be obtained over the entire thickness of the sintered layer, and is used as an index to control the quality of the entire sintered layer. was insufficient.

例えば第1表に焼結成品のパレット層厚方向の冷間強度
(SI)、還元崩壊指数(RDI)、FeOの分布例を
示す。
For example, Table 1 shows an example of the distribution of cold strength (SI), reduction decay index (RDI), and FeO in the pallet layer thickness direction of a sintered product.

第1表 第1表から焼結成品がパレット層厚方向の品質のばらつ
きが大きいことがわかる。この層厚方向の品質ばらつき
を実測による数点の従来のヒートパターンを用いて管理
することはできない。
Table 1 It can be seen from Table 1 that the quality of the sintered products varies greatly in the thickness direction of the pallet layer. This quality variation in the layer thickness direction cannot be managed using conventional heat patterns measured at several points.

本発明は、上記のパレット層厚方向の品質のばらつきを
管理するためにパレット層厚方向を多数に区分し、その
各層ごとに保熱指数と冷却指数とを求め、これらの指数
のパレット層厚方向の分布状態を管理することにより、
焼結鉱の品質のばらつきを一定範囲内に収めて焼結鉱品
質を安定せしめる焼結操業方法を提供することを目的と
する。
In order to manage the quality variations in the pallet layer thickness direction, the present invention divides the pallet layer thickness direction into a large number of layers, determines a heat retention index and a cooling index for each layer, and calculates the pallet layer thickness based on these indices. By managing the distribution of directions,
It is an object of the present invention to provide a sintering operation method that stabilizes the quality of sintered ore by keeping the variation in quality of sintered ore within a certain range.

本発明は、焼結操業の解析のために用いられる焼結数式
モデルを利用すれば、熱電対による実測とは異なり焼結
層内の任意の点のヒートパターンを自由に予測できるこ
とに着目してなされたもので、条件として与えられる操
業データと焼結過程で実測された吸引風速分布データか
ら数式モデル計算により保熱指数と冷却指数のノくレッ
ト層厚方向分布を求め、この分布が一定範囲に収まるよ
うに吸引風速分布または炭材の層厚方向分布を調整する
ことを特徴とする焼結操業方法である。
The present invention focuses on the fact that by using a sintering mathematical model used to analyze sintering operations, it is possible to freely predict the heat pattern at any point within the sintered layer, unlike actual measurements using thermocouples. The distribution of heat retention index and cooling index in the nolet layer thickness direction is determined by mathematical model calculation from operational data given as conditions and suction wind speed distribution data actually measured during the sintering process, and this distribution is determined within a certain range. This sintering operation method is characterized by adjusting the suction wind speed distribution or the layer thickness direction distribution of carbon material so that

この発明で用いる焼結の数式モデルは焼結層内のガス、
固体の熱収支および物質収支からなる一般的な公知の数
式モデルを使用することができる。
The mathematical model of sintering used in this invention is the gas in the sintered layer,
Commonly known mathematical models consisting of solid heat and mass balances can be used.

(3) この既知の焼結数式モデルにより、操業データとして原
料、副原料の配合比・粒度・密度・水分、層厚、パレッ
トスピード、点火炉条件を与え、実測した焼結の吸引風
速分布を用いて層厚方向に多数のヒートパターンを求め
る。これらのヒートパターンから保熱指数、冷却指数が
算出される。
(3) Using this known sintering formula model, we provide operational data such as the mixing ratio, particle size, density, moisture content, layer thickness, pallet speed, and ignition furnace conditions of raw materials and auxiliary materials, and calculate the actually measured sintering suction wind speed distribution. A large number of heat patterns are obtained in the layer thickness direction. A heat retention index and a cooling index are calculated from these heat patterns.

以下具体例に従って本発明を具体的に説明する。The present invention will be explained in detail below according to specific examples.

第2図は数式モデルによる熱計算のフローチャートであ
る。計算条件として、(1)コークス、石灰石、鉱石の
配合比、初期平均粒度、密度、(2)混合原料嵩密度、
(3)層厚(Zmax)、(4)パレット長さくL)お
よび速度(PS)、(51点火炉条件(温度パターン)
 、(6)吸引空気の温度、風速分布、(7)混合原料
水分(W)、混合原料平衡水分値(We ) 、(8)
コークスの偏析係数、燃焼速度係数を読み込む。次に原
料層の初期値を設定し、時刻0を0.01分毎に進め、
原料層厚4 mml毎に区切って位置を進め、乾燥帯、
燃焼帯また冷却帯の熱計算を収束するま(4) 以上の計算結果によりヒートパターンを作画処理し、そ
の作画より保熱指数Q、。。、冷却指数CT、1゜。を
算出し、これをグラフに出力する。
FIG. 2 is a flowchart of thermal calculation using a mathematical model. The calculation conditions are (1) blending ratio of coke, limestone, ore, initial average particle size, density, (2) mixed raw material bulk density,
(3) Layer thickness (Zmax), (4) Pallet length L) and speed (PS), (51 Ignition furnace conditions (temperature pattern)
, (6) Temperature of suction air, wind speed distribution, (7) Moisture content of mixed raw material (W), equilibrium moisture value of mixed raw material (We ), (8)
Load the coke segregation coefficient and combustion rate coefficient. Next, set the initial value of the raw material layer, advance time 0 every 0.01 minutes,
Divide the raw material layer into 4 mm thick sections, advance the position, dry zone,
Until the heat calculations for the combustion zone and the cooling zone are converged (4) A heat pattern is drawn based on the above calculation results, and the heat retention index Q is calculated from the drawing. . , cooling index CT, 1°. Calculate and output this on a graph.

第3図は、得られたグラフである。図の横軸は焼結層の
層厚、縦軸は保熱指数Q*oo(’C・m1n)冷却指
数CT11oo  (”C/ min )である。
FIG. 3 is the obtained graph. The horizontal axis of the figure is the layer thickness of the sintered layer, and the vertical axis is the heat retention index Q*oo ('C·m1n) and the cooling index CT11oo (''C/min).

第3図の保熱指数と冷却指数との分布は、第1表の冷間
強度(S、1.)およびFeO%のばらつきと対応して
いるものである。
The distribution of heat retention index and cooling index shown in FIG. 3 corresponds to the variations in cold strength (S, 1.) and FeO% shown in Table 1.

保熱指数は高温に保持される高温保持状況を示し、この
保熱量が不足すれば冷間強度(S、1.)の不足に至り
、少くともその下限を定めて焼結鉱成品のSIを維持す
ることが必要である。
The heat retention index indicates the state of high temperature retention, and if this heat retention is insufficient, the cold strength (S, 1.) will be insufficient. It is necessary to maintain it.

冷却指数は冷却速度を示すもので、ゆるやかな冷却速度
をとればヘマタイトの再酸化が進み易いことから下限を
定め、所定範囲に維持する必要がある。
The cooling index indicates the cooling rate, and since reoxidation of hematite tends to proceed if the cooling rate is slow, it is necessary to set a lower limit and maintain it within a predetermined range.

例えば第3図の保熱指数の下限を200℃・minと定
めれば、表層から30〜140朋の範囲は熱不足である
からこれを改善しなければならな(6) い。
For example, if the lower limit of the heat retention index in Fig. 3 is set at 200°C/min, the range from 30 to 140 m from the surface layer is insufficient in heat, so this must be improved (6).

また第3図の冷却指数の下限値をヘマタイトの再酸化防
止の観点から40℃/ min以上とすれば、表層から
230inより下層部分を改善しなければならないこと
がわかる。
Furthermore, if the lower limit of the cooling index in Fig. 3 is set to 40°C/min or more from the viewpoint of preventing reoxidation of hematite, it can be seen that the lower layer 230 inches from the surface layer must be improved.

第3図に対応する吸引風速分布を第4図に実線で示す。The suction wind speed distribution corresponding to FIG. 3 is shown in FIG. 4 by a solid line.

第4図の横軸は焼結時間をとっである。The horizontal axis in FIG. 4 represents the sintering time.

第3図の保熱指数の不足部である表層から30〜140
mの範囲は、この部分に焼成帯がある時間帯すなわち第
4図の焼結時間5〜10分の時間帯に相当する。保熱指
数を増加するにはこの部分の風速を減少させればよい。
30 to 140 from the surface layer, which is the area where the heat retention index is insufficient in Figure 3.
The range of m corresponds to the time period in which there is a sintering zone in this part, that is, the sintering time period of 5 to 10 minutes in FIG. To increase the heat retention index, the wind speed in this area can be decreased.

また、第3図の230 m以下の層に相当する部分の風
速を増加させて冷却指数を上昇させる。
Additionally, the cooling index is increased by increasing the wind speed in the area corresponding to the layer below 230 m in Figure 3.

この改善は第4図の破線で示され、この破線のように風
速分布を変更した結果、第3図は第6図のように改善さ
れ、焼結層内の品質は第2表のように改善された。
This improvement is shown by the broken line in Figure 4. As a result of changing the wind speed distribution as shown in this broken line, Figure 3 is improved as shown in Figure 6, and the quality within the sintered layer is improved as shown in Table 2. Improved.

第2表 第3図の保熱指数分布と冷却指数分布を改善する別の方
策を第5図に示す。第5図は焼結層のコークス配合比の
層厚方向分布を変更するものであって、図中実線の一様
分布を破線のように変更し焼結層上層部の保熱指数の上
昇、焼結層下層部の保熱指数の減少と冷却指数の上昇を
図る。
Another measure for improving the heat retention index distribution and cooling index distribution shown in Table 2 and Figure 3 is shown in Figure 5. FIG. 5 shows a method of changing the distribution of the coke blending ratio in the layer thickness direction of the sintered layer, and changing the uniform distribution shown by the solid line in the figure to the broken line to increase the heat retention index in the upper layer of the sintered layer. The aim is to reduce the heat retention index and increase the cooling index of the lower layer of the sintered layer.

コークス配合比の変更は給鉱部の粒度偏析の原理を応用
した公知の方法で調整することができる。
The coke mixing ratio can be adjusted by a known method applying the principle of grain size segregation in the ore feed section.

この改善の結果を第7図と第3表に示す。The results of this improvement are shown in FIG. 7 and Table 3.

(7) 第3表 以上、具体例に即して詳細に説明したように、本発明は
、焼結鉱成品の層厚方向の保熱指数と冷却指数分布を求
め、この結果に基づき適正な焼結操業条件を選択するこ
とができ、焼結鉱の層厚方向の品質のばらつきを改善し
、焼結鉱成品品質の安定化を図り、良品の焼結鉱を得る
こ、とができる。
(7) As explained in detail in Table 3 and above based on specific examples, the present invention calculates the heat retention index and cooling index distribution in the layer thickness direction of the sintered ore product, and based on these results, determines the appropriate It is possible to select the sintering operating conditions, improve the quality variation in the layer thickness direction of the sintered ore, stabilize the quality of the sintered ore product, and obtain a good quality sintered ore.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼結のヒートパターンを例示するグラフ、第2
図は焼結の数式モデルの計算フローチャート、第3図は
保熱指数と冷却指数の層厚方向分布例のグラフ、第4図
は吸引風速分布の改善例のグラフ、第5図はコークス配
合比の改善例のグラ(9) (8) フ、第6図、第7図は、それぞれ第4図、第5図の改善
によって得た保熱指数と冷却指数の層厚方向分布改善例
のグラフである。 A、B・・・ヒートパターン、TP・・・最高温度、Q
90G ・・・保熱指数、CT、1゜。・・・冷却指数
、θ・・・時刻、Z・・・層厚、W・・・水分、We・
・・平衡水分値、C・・・収束判定値、L・・・パレッ
ト長さ、PS・・・パレット速度
Figure 1 is a graph illustrating the heat pattern of sintering;
The figure is a calculation flowchart of the mathematical model for sintering, Figure 3 is a graph of an example of the distribution of heat retention index and cooling index in the layer thickness direction, Figure 4 is a graph of an example of improved suction air velocity distribution, and Figure 5 is a graph of coke blending ratio. (9) (8) Figures 6 and 7 are graphs of examples of improved distribution of heat retention index and cooling index in the layer thickness direction obtained by the improvements in Figures 4 and 5, respectively. It is. A, B...Heat pattern, TP...Maximum temperature, Q
90G...Heat retention index, CT, 1°. ...Cooling index, θ...Time, Z...Layer thickness, W...Moisture, We.
...Equilibrium moisture value, C...Convergence judgment value, L...Pallet length, PS...Pallet speed

Claims (1)

【特許請求の範囲】[Claims] 1 数式モデル計算により保熱指数と冷却指数のパレッ
ト層厚方向の分布を求め、該分布が一定範囲内に収まる
ように吸引風速分布または炭材の層厚方向分布を調整す
ることを特徴とする焼結操業方法。
1 The distribution of the heat retention index and the cooling index in the pallet layer thickness direction is determined by mathematical model calculation, and the suction wind speed distribution or the carbon material layer thickness direction distribution is adjusted so that the distribution falls within a certain range. Sintering operation method.
JP2779282A 1982-02-23 1982-02-23 Operation for sintering Granted JPS58144432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2779282A JPS58144432A (en) 1982-02-23 1982-02-23 Operation for sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2779282A JPS58144432A (en) 1982-02-23 1982-02-23 Operation for sintering

Publications (2)

Publication Number Publication Date
JPS58144432A true JPS58144432A (en) 1983-08-27
JPS626619B2 JPS626619B2 (en) 1987-02-12

Family

ID=12230819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2779282A Granted JPS58144432A (en) 1982-02-23 1982-02-23 Operation for sintering

Country Status (1)

Country Link
JP (1) JPS58144432A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110484714A (en) * 2019-05-17 2019-11-22 宝钢湛江钢铁有限公司 A method of it improving sintered material proportion and promotes sinter quality

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110484714A (en) * 2019-05-17 2019-11-22 宝钢湛江钢铁有限公司 A method of it improving sintered material proportion and promotes sinter quality
CN110484714B (en) * 2019-05-17 2021-04-23 宝钢湛江钢铁有限公司 Method for improving quality of sinter by improving proportion of sinter materials

Also Published As

Publication number Publication date
JPS626619B2 (en) 1987-02-12

Similar Documents

Publication Publication Date Title
JPS58144432A (en) Operation for sintering
US4466825A (en) Process for blast furnace operation
JPS61261433A (en) Method for controlling temperature of heating furnace
JPS6241299B2 (en)
JPS58213836A (en) Method for determining optimum extent of operation under operational condition during operation of sintering apparatus
JPH0499135A (en) Method for controlling sintering of calcined lump ore
JPS62224608A (en) Operating method for bell-less type blast furnace
JPH0140094B2 (en)
JPS6013034A (en) Method for controlling heating-up gradient in sintering machine
JPS5934216B2 (en) How to operate DL sintering machine
JPH089740B2 (en) Operating method of sintering machine
JPS6223940A (en) Method for controlling sintering in continuous annealing machine
JPH08127822A (en) Operation of sintering
JPS629170B2 (en)
RU2229074C1 (en) Method for controlling pellets roasting process on conveying machine
JPS5837135A (en) Production of sintered ore
SU1048286A1 (en) Method of controlling process of firing bloating materials in rotating furnace
JPS58171533A (en) Operating method for sintering device
JPS5814856B2 (en) Heating furnace control method
JPH046777B2 (en)
JPS61250119A (en) Operating method for sintering
JPH0586443B2 (en)
CN114093442A (en) Method for predicting and optimizing fluxed balling performance
JPS6017007B2 (en) Method for detecting firing completion point in DL type sintering machine
JPH0860259A (en) Production of sintered ore