JPS61250119A - Operating method for sintering - Google Patents
Operating method for sinteringInfo
- Publication number
- JPS61250119A JPS61250119A JP9163585A JP9163585A JPS61250119A JP S61250119 A JPS61250119 A JP S61250119A JP 9163585 A JP9163585 A JP 9163585A JP 9163585 A JP9163585 A JP 9163585A JP S61250119 A JPS61250119 A JP S61250119A
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- moisture
- charging
- height
- packed bed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
この発明は、DL式焼結機による焼結操業方法に係り、
特に焼結鉱の生産性向上と品質安定化をはかるための焼
結操業方法に関する。[Detailed description of the invention] Industrial application field This invention relates to a sintering operation method using a DL type sintering machine,
In particular, it relates to sintering operation methods for improving the productivity and stabilizing the quality of sintered ore.
従来技術とその問題点
焼結操業における焼結鉱の生産性向上と品質安定化をは
かる方法として、例えば、焼結機パレット装入時の充填
層空隙率を焼結原料の粒径分散度等から算出し、これに
基づいて充填層通気度を安定化させる方法が知られてい
る(特開昭58−221238 )。しかし、充填層通
気度は焼結原料の温度、水分等によっても変化する水分
凝縮後の充填層空隙率忙よって大きな影響を受けること
、また、原料通気度の影響を考慮していないことにより
、制御精度は十分とは百い得ない。Conventional technology and its problems As a method for improving the productivity and stabilizing the quality of sintered ore in sintering operations, for example, the porosity of the packed bed when charging the sintering machine pallet, the particle size dispersion of the sintering raw material, etc. A method is known in which the air permeability of a packed bed is stabilized based on this calculation (Japanese Patent Laid-Open No. 58-221238). However, the air permeability of the packed bed is greatly affected by the porosity of the packed bed after moisture condensation, which changes depending on the temperature and moisture of the sintered raw material, and also because the influence of the air permeability of the raw material is not taken into account. Control accuracy is far from sufficient.
また、焼結機パレット装入時の焼結原料への添加水分率
を原料粒度、原料吸水率等から決定し、これに基づいて
原料通気度を算出し、この値に基づぐツイードフォワー
ド制御を行なって充填層通気度を安定化させる方法が知
られている(特開昭58−217644)。この方法は
原料通気度の影響を考慮している点では前記方法より好
ましい。しかし、この方法は充填層通気度と密接に関係
するパレット装入時の充填層空隙率が考慮されていない
ため、これも制御精度の向上効果は十分とは言い得ない
。In addition, the moisture content added to the sintering raw material when charging the sintering machine pallet is determined from the raw material particle size, raw material water absorption rate, etc., the raw material air permeability is calculated based on this, and the tweed forward control is based on this value. A method of stabilizing the air permeability of a packed bed by performing the following is known (Japanese Patent Laid-Open No. 58-217644). This method is preferable to the above method in that it takes into account the influence of raw material air permeability. However, since this method does not take into account the porosity of the packed bed at the time of loading the pallet, which is closely related to the air permeability of the packed bed, it cannot be said that the effect of improving control accuracy is sufficient.
発 明 の 目 的
この発明は、従来の前記事情を考慮することによりなさ
れたものであり、より一層の制御性向上がはかられる焼
結操業方法を提案することを目的とするものである。Purpose of the Invention The present invention has been made in consideration of the above-mentioned conventional circumstances, and an object thereof is to propose a sintering operation method that can further improve controllability.
発明の構成
この発明に係る焼結操業方法は、予め求めた焼結原料の
通気度、温度、水分および乾燥見掛密度と、焼結機パレ
ット装入時の充填層空隙率、充填層々高および主排風1
m吸引力とに基づいて燃焼速度を予測し、この予測値を
目標燃焼速度と一致させるべく焼結原料の水分および/
または装入嵩高および/または充填層々高および/また
は主排風機吸引力を調整することを特徴とするものであ
る。Structure of the Invention The sintering operation method according to the present invention is based on the air permeability, temperature, moisture content, and dry apparent density of the sintering raw material determined in advance, as well as the porosity of the packed bed, the height of the packed bed, and Main exhaust air 1
The combustion rate is predicted based on the suction force, and the moisture content of the sintering raw material and/or
Alternatively, it is characterized by adjusting the charging bulk and/or the filling bed height and/or the suction force of the main exhaust fan.
以下、この発明方法について詳細に説明する。The method of this invention will be explained in detail below.
燃焼速度(燃焼前線下降速度)は充填層通過風速と概ね
比例し、下記(1)式で近似できる。The combustion speed (combustion front descending speed) is approximately proportional to the wind speed passing through the packed bed, and can be approximated by the following equation (1).
71士C1・U ・・・・・・・・・・
・・・・・(1)vf:燃焼速度(m/m1n)
U:充填層通過風速(m/min )
C1:係数
点火炉から燃焼前線グレード到達位置(以下rFFPJ
と称す)間は、V7.Uは一定とし、また主排風機によ
る吸引ガス中の水分は無視すると、下記(2)式に示す
水分バランス式が成り立つ。71st Officer C1・U・・・・・・・・・・
・・・・・・(1) vf: Combustion speed (m/m1n) U: Packed bed passing wind speed (m/min) C1: Combustion front grade attainment position from coefficient ignition furnace (hereinafter referred to as rFFPJ)
) is V7. Assuming that U is constant and ignoring the moisture in the gas sucked by the main exhaust fan, the moisture balance equation shown in equation (2) below holds true.
Psml :パレット装入時の充填層見掛密度(1v/
ゴ)
x、: パレット装入時の原料含水率(wt%)h :
充填層々高<m>
ρg=ガスの密度(吻/ゴ)
Wg:排ガス(ドフィガス)中水分(ke/kf)上記
排ガス中水分Wgは飽和しているとすると下記(3)式
で表わされる。Psml: Apparent density of packed bed at the time of loading on pallet (1v/
(g) x: Moisture content of raw material (wt%) at the time of pallet charging h:
Packed bed height <m> ρg = gas density (rostrum/g) Wg: moisture in exhaust gas (doff gas) (ke/kf) Assuming that the moisture in the exhaust gas Wg is saturated, it is expressed by the following equation (3).
P * Pw:全圧と飽和蒸気圧(kt/d ”)また
、飽和蒸気圧Pwと温度の関係は蒸気表より例えば下記
(4)式で表わされる。P*Pw: Total pressure and saturated vapor pressure (kt/d'') Further, the relationship between the saturated vapor pressure Pw and temperature is expressed by the following equation (4), for example, from the steam table.
T、:水分#縮径の原料ガス温度(’C)水分凝縮後の
原料ガス温度T、は、水分凝縮熱はすべて原料の温度上
昇罠使われるとすると、下記(6)式から求めることが
できる。T: Moisture #Temperature of the raw material gas for diameter reduction ('C) The temperature of the raw material gas after moisture condensation, T, can be calculated from the following equation (6), assuming that all the heat of moisture condensation is used to trap the temperature rise of the raw material. can.
Cs(ρSBl”T’j”’J’S!11 j ’r、
)=(−jHw)・(/’Smfi @−−Pstl
・” ) ”””=(5)C5:焼結原料の比熱
(kcal/kf’c )T、:パレット装入時の原料
温度(’C)ρIm! :水分凝縮後の充填層見掛密度
(kqlrd )
z6:水分凝縮後の原料含水率(wt%)(−jHw)
:水分凝縮熱(kcaJ?A)充填層全体は体積変化が
なく、ま九水分は空隙を埋めるとすると、下記(6)〜
αQ式が成り立つ。Cs(ρSBl"T'j"'J'S!11 j 'r,
)=(-jHw)・(/'Smfi @--Pstl
・” ) “”” = (5) C5: Specific heat of sintering raw material (kcal/kf'c) T,: Raw material temperature at the time of pallet charging ('C) ρIm! : Apparent density of packed bed after water condensation (kqlrd) z6: Raw material water content after water condensation (wt%) (-jHw)
: Heat of condensation of water (kcaJ?A) Assuming that there is no volume change in the entire packed bed and water fills the voids, the following (6) ~
The αQ formula holds true.
PmyH=p、 ・(1−ε+ ) −−−
−−−−−−−−−(7)/’1m! = p、 ・(
1−1) ””−”(8)p:焼結原料の乾
燥見掛密度(kf/m’)C7:パレット装入時の充填
層空隙率予測値(−)
C!:水分凝縮後の充填層空隙率予測値(−)また、前
記(1)弐における充填層通過風速Uは、下記(2)式
で求める。PmyH=p, ・(1−ε+) −−−
----------(7)/'1m! = p, ・(
1-1) ""-" (8) p: Dry apparent density of sintered raw material (kf/m') C7: Predicted value of porosity of packed bed at the time of pallet charging (-) C!: After moisture condensation Packed bed porosity predicted value (-) Also, the packed bed passing wind speed U in the above (1) 2 is determined by the following equation (2).
Q :充填層通過風量(frI/min )A :充填
層吸引面積(−)
Pe二原料通気度(JPU)
ΔP:吸引圧力(m HxO)
C,、Cs、 tL:係数
以上より、原料通気度P、、パレット装入時の原料温度
T1.焼結原料の乾燥見掛密度j、パレット装入時の充
填層空隙率予測値ε3.h:充填層々高、吸引圧カッP
を与えると1、前記(1)〜αQ式およびα6式を連立
することKより焼焼速度予測値V/が算出できる。Q: Air flow rate passing through packed bed (frI/min) A: Filled bed suction area (-) Pe two raw material permeability (JPU) ΔP: Suction pressure (m HxO) C,, Cs, tL: Raw material permeability from the coefficient or higher P,, Raw material temperature at the time of pallet charging T1. Dry apparent density j of sintered raw material, predicted value of porosity of packed bed at the time of pallet charging ε3. h: Filling bed height, suction pressure cup P
Given 1, the predicted firing rate V/ can be calculated from K by simultaneously equations (1) to αQ and α6.
ここで、原料通気度P、は下記(2)〜α4式で求め′
1′4
Z、 = ye4− z口X (1−−)
−−−……−−−−−−α3Z4= Z、
−1−Z、 °°°°°°°°°°°°°°
°°°°…°°°°°“@−α4A+ Be Cs k
、、 k、、 kR+ k4 + ”S+ ”a ”係
数d:原料乾燥粒度(体積メディアン径)(ff)
x、:造粒水(wt%)
z、:バレット装入時のぶ料金水率(wt%)zo:原
料乾燥吸水率(wt%)
ffil:添加水分率(wt%)
z、:原料初期含水率(wt%)
wi:l原料ドライ量(ドライkl/hr)Wa、O:
添加水分食(呻/hr)
上記(2)式における原料乾燥吸水率x0は下記α・J
: l原料ドライ量(ドライに4/hr)”ai :
を原料吸水率(wt%)
1+、原料乾燥見掛密度1は下記Qη式で求める。Here, the raw material permeability P is calculated using the following formula (2) ~ α4'
1'4 Z, = ye4- z mouth X (1--)
−−−……−−−−−−α3Z4=Z,
−1−Z, °°°°°°°°°°°°°°
°°°°…°°°°°“@−α4A+ Be Cs k
,, k,, kR+ k4 + "S+ "a" coefficient d: Raw material dry particle size (volume median diameter) (ff) %) zo: Raw material dry water absorption rate (wt%) ffil: Added moisture rate (wt%) z,: Raw material initial moisture content (wt%) wi: l raw material dry amount (dry kl/hr) Wa, O:
Added water intake (moan/hr) In the above equation (2), the raw material dry water absorption x0 is as follows α・J
: 1 Dry amount of raw materials (4/hr for drying)”ai:
The raw material water absorption rate (wt%) 1+ and the raw material dry apparent density 1 are determined by the following Qη formula.
pI:l原料見掛密度−輪7yd> そして、ε、は下記(至)式で求められる。pI:l raw material apparent density - ring 7yd> Then, ε is determined by the following formula.
t、 = C1・Sd+C,・d+C4・A+C5・h
CL+CI+・・・・・・・・・・・・(至)
Sd:原料乾燥粒径分散度
d :原料乾燥粒度(体積メディアン径)(鱈)ACL
:装入嵩高(FFI)
C1〜C6:係数
上記(至)式における原料乾燥粒径分散度sdと原料乾
燥粒度dは、それぞれ下記α・式および(至)式で求め
る。t, = C1・Sd+C,・d+C4・A+C5・h
CL+CI+・・・・・・・・・・・・(To) Sd: Raw material dry particle size dispersity d: Raw material dry particle size (volume median diameter) (cod) ACL
: Charge bulk (FFI) C1 to C6: Coefficient The raw material dry particle size dispersity sd and the raw material dry particle size d in the above formula (to) are determined by the following α formula and (to) formula, respectively.
d=Σ(fvt−dt ) ・・・・・・
・・・・・・・・・・・・・・・・・・翰h、ヨ ft
/P11003000.660..106100006
0.@ΣCf、/ρi)
fi=w7/2Wi ・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・翰di
: i原料乾燥粒度Cm>
SI、に:i原料に乾燥粒径範囲の重量比率(−)
ρI:i原料見掛密度(Ton/m’)fvt:irg
、斜体積比率(−)
f、:i原料重量比率(−)
W7 : i厘料ドライ量(ドライ神/hr)dk C
k乾燥粒径範囲の平均粒径(fi)l :乾燥粒径範囲
の数
P = 1.0332・(1−ΔP/20 )cs=o
、2a
とする。d=Σ(fvt-dt) ・・・・・・
・・・・・・・・・・・・・・・・・・Kan h, yo ft
/P11003000.660. .. 106100006
0. @ΣCf, /ρi) fi=w7/2Wi ・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・
: i raw material dry particle size Cm> SI, to: i raw material to weight ratio of dry particle size range (-) ρI: i raw material apparent density (Ton/m') fvt: irg
, diagonal volume ratio (-) f, :i raw material weight ratio (-) W7: i raw material dry amount (dry volume/hr) dk C
k Average particle size of dry particle size range (fi)l: Number of dry particle size ranges P = 1.0332・(1-ΔP/20)cs=o
, 2a.
このようにして燃焼速度を予測すると、この予測値を目
標値と一致させるべく焼結原料の水分、装入嵩高、充填
層々高、主排風機吸引力を選択制御する。これらの制御
因子は所定操作範囲内で操作するが、主排風機吸引−力
は装入嵩高および充填層々高を操作範囲外としないと制
御できない時に操作する。Once the combustion speed is predicted in this manner, the moisture content of the sintering raw material, the charging bulk, the height of the packed beds, and the suction force of the main exhaust fan are selectively controlled in order to make the predicted value coincide with the target value. These control factors are operated within predetermined operating ranges, but the main exhaust fan suction force is operated when the charging bulk and packed bed height cannot be controlled without moving them out of the operating range.
な訃、(1)式の係数C3に関しては実積燃焼遠度V/
Mと06式で求めたUとを対応づけるか、または前記実
積V/と実測充填層通過風速Uとを対応づけて逆算して
求める。実績燃焼速度VfMは下記(至)式で求めるこ
とができる。Regarding the coefficient C3 of equation (1), the actual combustion distance V/
It is determined by associating M with U determined by Equation 06, or by associating the actual volume V/ with the actually measured wind speed U passing through the packed bed and calculating backwards. The actual combustion speed VfM can be determined using the following formula.
77M = Ps ・1vvp/h −−−−
−−−−−−−、、聞−、、−働P3:パレット速度(
m/分)
lνFデ:焼成距離Cm)
ここで、焼成距離は第2図に示すごとく排ガス温度パタ
ーンからその立上り点をFFPとして検出することによ
り、点火炉とFFP間の距離として求める。77M = Ps ・1vvp/h -----
−−−−−−−、、、、、-Working P3: Pallet speed (
m/min) lνFde: Firing distance Cm) Here, the firing distance is determined as the distance between the ignition furnace and the FFP by detecting the rising point as the FFP from the exhaust gas temperature pattern as shown in FIG.
次に、この発明の一実施例を第1図に基づいて説明する
。Next, an embodiment of the present invention will be described based on FIG.
第1図はこの発明方法を実施する九めの制御系統例を示
すもので、(1)は原料槽、(2)はミキサ、(3)は
サージホッパー、(4)はドラムフィーダ、(5)は給
鉱シュー) 、(6)は焼結機バレッ) 、 (7)は
点火炉、(8]は主排風機である。FIG. 1 shows the ninth example of a control system for implementing the method of this invention, in which (1) is a raw material tank, (2) is a mixer, (3) is a surge hopper, (4) is a drum feeder, and (5) is a surge hopper. ) is the ore feed shoe), (6) is the sintering machine barrel), (7) is the ignition furnace, and (8) is the main exhaust fan.
すなわち、各原料槽(1)から切出され九原料の切出し
量を原料乾燥見掛密度・原料乾燥粒度・原料乾燥粒径分
散度・原料乾燥吸水率演算装置αQに入力し、前記α9
式、翰式、翰式およびα・式にてそれぞれ原料乾燥見掛
密度も、原料乾燥粒度d、原料乾燥粒径分散度Sdおよ
び原料乾燥吸水率z0ヲ算出する。各原料槽(1)から
切出された各種焼結原料はミキサ(2)内において水分
と共に混合されるようになっている。その添加水分量は
、流量計(11−1)および制御弁(11−2)を備え
た添加水分量検出・調節装置■によって検出される。サ
ージホッパー(3)では、温度計(3−1)および水分
計(3−2)にてそれぞれパレット装入時の原料温度T
、および原料含水・率z4が測定される。サージホッパ
ー(3)内の[料はドラムフィーダ(4)の回転により
供給量が調整されて給[/ニート(5)を介して焼結機
パレット(6)上へ装入され、パレットの移動に伴って
充填層(9)が形成される。この原料装入時における装
入嵩高HcLは、嵩高計(12−1)の計測値に基づい
て装入嵩高調節計(2)にて調節される。また、充填層
(9)の層高りは、充填層々高検出・調節装置(至)に
ょる給鉱シュート(5)の傾斜角度、上下位置の調整に
よりrlI節され、またその検出され九層高りは充填層
空隙率演算装置@に入力される。そしてこの充填層(9
)は点火炉(7)にてその表面から点火される。吸引圧
力JPは(吸引圧力計(15−2)の計測mに基づいて
主排風機(8)の上流側圧設けたダンパー(15−1)
を吸引圧力調節器(至)にてダンパー開度および主排風
機回転速度を調節することにより制御される。That is, the amount of nine raw materials cut out from each raw material tank (1) is inputted to the raw material dry apparent density, raw material dry particle size, raw material dry particle size dispersity, and raw material dry water absorption calculation device αQ, and the α9
The raw material dry apparent density, raw material dry particle size d, raw material dry particle size dispersity Sd, and raw material dry water absorption rate z0 are calculated using the formula, Kan formula, Kan formula, and α formula, respectively. Various sintering raw materials cut out from each raw material tank (1) are mixed together with moisture in a mixer (2). The amount of added water is detected by an added water amount detection/adjustment device (2) equipped with a flow meter (11-1) and a control valve (11-2). In the surge hopper (3), a thermometer (3-1) and a moisture meter (3-2) measure the raw material temperature T at the time of charging the pallet.
, and the raw material moisture content/rate z4 are measured. The material in the surge hopper (3) is fed with the feed amount adjusted by the rotation of the drum feeder (4), and is charged onto the sintering machine pallet (6) via the neat (5), and the pallet is moved. Along with this, a filled layer (9) is formed. The charging bulk HcL at the time of charging the raw material is adjusted by the charging bulk height controller (2) based on the measured value of the bulk meter (12-1). In addition, the bed height of the packed bed (9) is adjusted by adjusting the inclination angle and vertical position of the ore feeding chute (5) by the packed bed height detection/adjustment device (to), and the height of the nine layers is The height is input to the packed bed porosity calculation device@. And this packed layer (9
) is ignited from its surface in an ignition furnace (7). The suction pressure JP is determined by the damper (15-1) provided with the upstream pressure of the main exhaust fan (8) based on the measurement m of the suction pressure gauge (15-2).
is controlled by adjusting the damper opening degree and main exhaust fan rotation speed using the suction pressure regulator (to).
原料初期水分率算出装置(1)では、各原料槽(1)か
ら切出された切出量w1と添加水分量検出・調節装置α
力から入力された添加水分量WH,GMと水分計(3−
2)から入力された原料含水率Z、 K基づき、下記(
財)式を用いて原料初期含水率2.を算出し、その結果
は燃焼速度制御装置(2)K入力される。The raw material initial moisture content calculation device (1) calculates the amount w1 cut out from each raw material tank (1) and the added moisture amount detection/adjustment device α.
Added water amount WH, GM input from power and moisture meter (3-
Based on the raw material moisture content Z and K input from 2), the following (
Initial moisture content of the raw material using the formula 2. is calculated, and the result is input to the combustion rate control device (2) K.
WH,OM : ye、測定原料の添加水分量検出値(
階/hr)
充填層空隙率演算装置α4では、原料乾燥見掛密度・原
料乾燥粒度・原料乾燥粒径分散度・原料乾燥吸水率演算
装置QOKで算出された原料乾燥粒度d、原料乾燥粒径
分散度Sdと、嵩高計(12−1)で計測された装入嵩
高ACLを用い、前記(至)式にて充填層空隙率演算装
置、が算出され、その結果は充填層通過風速演算装置α
Qに入力される。を九、燃焼速度演算装置(至)には充
填層通過風速演算装置α・にて算出された充填層通過風
速Uが入力される。WH, OM: ye, detected value of added moisture content of raw material to be measured (
The packed bed porosity calculation device α4 calculates the raw material dry apparent density, raw material dry particle size, raw material dry particle size dispersity, and raw material dry water absorption calculated by the raw material dry particle size d and raw material dry particle size calculated by the raw material dry water absorption calculation device QOK. Using the dispersion degree Sd and the charging bulk height ACL measured by the bulk meter (12-1), the packed bed porosity calculation device is calculated using the above formula (to), and the result is calculated by the packed bed passage wind speed calculation device. α
It is input to Q. 9. The packed bed passing wind speed U calculated by the packed bed passing wind speed calculating device α is inputted to the burning rate calculation device (to).
充填層通過風速演算装置(至)では、温度計(3−1)
から入力されたパレット装入時の原料温度T1、水分計
(3−2)から入力されたパレット装入時の原料含水率
21、原料乾燥見掛密度・原料乾燥粒度・原料乾燥粒径
分散度・原料乾燥吸水率演算装置(至)から入力された
焼結原料の乾燥見掛密度1、乾燥粒度d1乾燥吸水率z
0、充填層空隙率演算装置α◆から入力された空隙率予
測値ε1、充填層々高検出演算装置(至)から入力され
た実績燃焼速度V/Mが入力され、前記(2)〜(至)
式にて充填層通過風速Uが算出される。その結果は、C
3演算装置@に入力される。燃焼速度演算装置(至)は
、パレット速度検出器α力から入力されたパレット速度
PS、充填層々高検出・調節装置(至)から入力され九
充填層々高h、排ガス温度計りから入力された排ガス温
度が入力され、前記翰式にて実績燃焼速度Vfwが算出
される。In the packed bed passage wind speed calculation device (to), there is a thermometer (3-1)
Raw material temperature T1 at the time of pallet charging inputted from, raw material moisture content 21 at the time of pallet charging inputted from moisture meter (3-2), raw material dry apparent density, raw material dry particle size, raw material dry particle size dispersity・Dry apparent density 1, dry particle size d1, dry water absorption rate z of the sintering raw material input from the raw material dry water absorption calculation device (to)
0, the predicted porosity value ε1 inputted from the packed bed porosity calculation device α◆, and the actual combustion speed V/M inputted from the packed bed height detection calculation device (toward) are input, and the above (2) to (total) are input. )
The packed bed passing wind speed U is calculated using the formula. The result is C
3 is input to the arithmetic unit @. The combustion rate calculation device (to) calculates the pallet speed PS input from the pallet speed detector α force, the filling bed height h input from the packed bed height detection/adjustment device (to), and the exhaust gas input from the exhaust gas temperature meter. The temperature is input, and the actual burning rate Vfw is calculated using the Kan formula.
その結果はC1演算装置@に入力される。C1演算装置
(至)は、充填層通過風速演算装置α・から入力された
充填層通過風速U1燃燃焼度演算装置(至)から入力さ
れた実績燃焼速度V/Mが入力され、前記UとvfMを
同一原料に対するものに対応づけて前記(1)式にて係
数C1t−逆算する。燃焼速度制御装置(至)は、原料
初期水分率算出装置−から入力された原料初期含水率2
8、原料乾燥見掛密度・原料乾燥粒度・原料乾燥粒径分
散度・原料乾燥吸水率演算装置へQから入力された原料
乾燥見掛密度f、原料乾燥粒度d%原料乾燥粒径分散度
Sd、[料乾燥吸水率z6、C7演算装置(ハ)から入
力された係数01等が入力され、(1)〜(至)式にて
パレットへ装入前の原料の燃焼速度を予測し、装置α轄
臥力され、目標値V八と一致させるべく添加水分量検出
装置0により焼結原料の水分、装入嵩高調節計(2)に
より装入嵩高、充填層々高検出・調節装置(2)により
充填層々高、吸引圧力調節器(至)により主排風機吸引
力をそれぞれ選択制御する。The result is input to the C1 arithmetic unit @. C1 calculation device (to) receives the actual combustion speed V/M input from the packed bed passage wind speed U1 fuel burnup calculation device (to), which is input from the packed bed passage wind speed calculation device α. The coefficient C1t is calculated backwards using the above equation (1) by associating vfM with those for the same raw material. The combustion rate control device (to) calculates the raw material initial moisture content 2 inputted from the raw material initial moisture content calculation device.
8. Raw material dry apparent density f, raw material dry particle size d% raw material dry particle size dispersity Sd input from Q to the raw material dry apparent density, raw material dry particle size, raw material dry particle size dispersity, raw material dry water absorption calculation device , [Material drying water absorption rate z6, coefficient 01, etc. input from the C7 calculation device (c) are input, and the combustion rate of the raw material before charging to the pallet is predicted using equations (1) to (to), and the equipment In order to match the target value V8, the moisture content of the sintering raw material is detected by the added moisture amount detection device 0, the charging bulk is detected by the charging bulkiness controller (2), and the packed bed height detection/adjustment device (2) The height of each filling bed is selectively controlled, and the suction force of the main exhaust fan is selectively controlled by a suction pressure regulator (to).
実 施 例
第1表は、この発明方法を実施した場合の生産率、タン
ブラ強度、還元粉化率のそれぞれの平均値およびパフツ
キについて、従来の充填層空隙率を焼結原料の粒径分散
度等から算出し、これに基づいて充填層通気度を制御し
た場合と比較して示したものである。Table 1 of Examples shows the average values of production rate, tumbler strength, reduction powdering rate, and puffiness when the method of this invention is implemented, and the porosity of the conventional packed bed is compared with the particle size dispersion of the sintered raw material. This figure shows a comparison with the case where the air permeability of the packed bed is controlled based on the calculated values.
第 1 表
第1表より、この発明方法による場合は、従来法による
場合に比して生産率およびタンブラ強度が向上し、また
還元粉化率が小さく、さらにこれらのバラツキも小さい
ことが判明した。Table 1 From Table 1, it was found that the method of this invention improved the production rate and tumbler strength compared to the conventional method, and also had a smaller reduction and powdering rate, as well as smaller variations in these factors. .
発明の効果
この発明は上記のごとく、物質収支計算等により水分#
總後の充填層空隙率を算出するとともに、原料通気度を
も考慮し、生産率および品質との関係が強い燃焼速度を
制御するので、より高精度のフィードフォワード制御が
可能となる。従って、この発明によれば、前記実施例か
らも明らかなごとく、焼結操業における焼結鉱の生産性
向上および品質安定化に多大な効果を奏するものである
。Effects of the Invention As described above, this invention calculates moisture content by material balance calculation etc.
In addition to calculating the porosity of the packed bed after assembly, the combustion rate, which is closely related to production rate and quality, is controlled by taking into account the permeability of the raw material, making it possible to perform feedforward control with higher precision. Therefore, according to the present invention, as is clear from the examples described above, it is highly effective in improving the productivity and stabilizing the quality of sintered ore in sintering operations.
第1図はこの発明方法t−実施するための制御系統例を
示す図、第2図は同上における焼成距離を求める方法を
示す図である。
1・・・原料槽、2・・・ミキサ、3・・・サージホッ
パー、4・・・ドラムフィーダ、5・・・給鉱シュート
、6−・・焼結機パレット、7・・・点火炉、8・・・
主排風機、9・・・充填層、10・・・原料乾燥見掛密
度・原料乾燥粒度・原料乾燥粒径分散度・原料乾燥吸水
率演算装置、11・・・添加水分量検出・調節装置、1
2・・・装入嵩高調節計、13・・充填層々高検出・調
節装置、14・・・充填層空隙率演算装置、15・・・
吸引圧力調節器、16・・・充填層通過風速演算装置、
17・・・パレット速度検出器、18・・・燃焼速度演
算装置、19・・・燃焼速度制御装置、20・・・原料
初期水分率算出装置、21・・・C7演算装置、22・
・・排ガス温度計。
出願人 住友金属工業株式会社
代理人 押 1) 良 大工、“、1−
パノFIG. 1 is a diagram showing an example of a control system for carrying out the method of the present invention, and FIG. 2 is a diagram showing a method for determining the firing distance in the same method. 1... Raw material tank, 2... Mixer, 3... Surge hopper, 4... Drum feeder, 5... Ore feed chute, 6-... Sintering machine pallet, 7... Ignition furnace , 8...
Main exhaust fan, 9... Filled bed, 10... Raw material dry apparent density, raw material dry particle size, raw material dry particle size dispersity, raw material dry water absorption calculation device, 11... Added moisture amount detection/adjustment device ,1
2... Charging bulk height controller, 13... Packed bed height detection/adjustment device, 14... Packed bed porosity calculation device, 15...
Suction pressure regulator, 16... Packed bed passage wind speed calculation device,
17... Pallet speed detector, 18... Burning rate calculation device, 19... Burning rate control device, 20... Raw material initial moisture content calculation device, 21... C7 calculation device, 22.
・Exhaust gas thermometer. Applicant Sumitomo Metal Industries Co., Ltd. Agent 1) Ryo Carpenter, “,1-
Pano
Claims (1)
掛密度と、焼結機パレット装入時の充填層空隙率、充填
層々高および主排風機吸引力とに基づいて燃焼速度を予
測し、この予測値を目標値と一致させるべく焼結原料の
水分および/または装入嵩高および/または充填層々高
および/または主排風機吸引力を調整することを特徴と
する焼結操業方法。Predict the combustion rate based on the air permeability, temperature, moisture, and dry apparent density of the sintering raw material determined in advance, as well as the porosity of the packed bed, the height of the packed bed, and the suction force of the main exhaust fan when loading the sintering machine pallet. A sintering operation method characterized in that the moisture content of the sintering raw material and/or the charging bulk and/or the height of the packed bed and/or the suction force of the main exhaust fan are adjusted in order to make this predicted value coincide with the target value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9163585A JPS61250119A (en) | 1985-04-27 | 1985-04-27 | Operating method for sintering |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9163585A JPS61250119A (en) | 1985-04-27 | 1985-04-27 | Operating method for sintering |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61250119A true JPS61250119A (en) | 1986-11-07 |
Family
ID=14031991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9163585A Pending JPS61250119A (en) | 1985-04-27 | 1985-04-27 | Operating method for sintering |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61250119A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008031177A1 (en) * | 2006-09-11 | 2008-03-20 | Gerdau Açominas S/A | Process using artificial neural network for predictive control in sinter machine |
-
1985
- 1985-04-27 JP JP9163585A patent/JPS61250119A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008031177A1 (en) * | 2006-09-11 | 2008-03-20 | Gerdau Açominas S/A | Process using artificial neural network for predictive control in sinter machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3135892B2 (en) | Method of controlling the thermal power of an incinerator | |
JPS61250119A (en) | Operating method for sintering | |
US3249422A (en) | Method for proportioning the humidifying water in a finely divided moistened mixture undergoing agglomeration on a continuous grate, in order to obtain its best permeability, and an apparatus to embody said method | |
JPH06287647A (en) | Operation of sintering machine | |
JPS5934216B2 (en) | How to operate DL sintering machine | |
JPS61279633A (en) | Operation method for sintering machine | |
JPS58144432A (en) | Operation for sintering | |
SU985685A1 (en) | Method of automatic control of roasting process of raw mixture in rotating furnace | |
SU507660A1 (en) | Method for automatic control of fluid bed roasting | |
US3962904A (en) | Process for measuring, controlling and optimizing gas flow through a sinter mixture on travelling grates | |
JPS6013034A (en) | Method for controlling heating-up gradient in sintering machine | |
JPH1076101A (en) | Control method of spray dryer | |
JPS5938289B2 (en) | Method for producing sintered ore | |
JPS6013032A (en) | Method for controlling calcination point with sintering machine | |
SU483659A1 (en) | Moisture Control Device for Bulk Materials | |
SU929720A1 (en) | Control system for charge loading onto agglomeration belt | |
SU953415A1 (en) | Calcining process control method | |
SU456129A1 (en) | The method of automatic control of the firing process in fluidized bed furnaces | |
SU732220A1 (en) | Method of automatic control of material sintering in rotating furnace | |
SU1691411A1 (en) | Method for controlling conditions of pellet heat treatment | |
JPS58144433A (en) | Estimation and control in sintering machine | |
JPS6017007B2 (en) | Method for detecting firing completion point in DL type sintering machine | |
JPS60200080A (en) | Method of drying cereal, etc. | |
SU1018989A1 (en) | Method and apparatus for controlling cooling of material | |
JPS58151431A (en) | Operating method of sinter machine |