JPS6017007B2 - Method for detecting firing completion point in DL type sintering machine - Google Patents

Method for detecting firing completion point in DL type sintering machine

Info

Publication number
JPS6017007B2
JPS6017007B2 JP14242381A JP14242381A JPS6017007B2 JP S6017007 B2 JPS6017007 B2 JP S6017007B2 JP 14242381 A JP14242381 A JP 14242381A JP 14242381 A JP14242381 A JP 14242381A JP S6017007 B2 JPS6017007 B2 JP S6017007B2
Authority
JP
Japan
Prior art keywords
point
layer
completion point
sintering machine
firing completion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14242381A
Other languages
Japanese (ja)
Other versions
JPS5845337A (en
Inventor
俊治 安本
精佑 児子
隆茂 後藤
修 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14242381A priority Critical patent/JPS6017007B2/en
Publication of JPS5845337A publication Critical patent/JPS5845337A/en
Publication of JPS6017007B2 publication Critical patent/JPS6017007B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 この発明はDL式焼結機における焼成完了点検出方法に
関し、とくに燐結層層厚の変化から焼成完了点の位置を
正確に検出する方法についての提案である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting the firing completion point in a DL type sintering machine, and in particular, proposes a method for accurately detecting the position of the firing completion point from changes in the thickness of the phosphor layer.

一般に、DL式の屍結機にあって重要なことは、パレッ
ト上に装入した焼結原料層の点火後における焼成度を一
定に維持することである。
In general, what is important in a DL type carcasses is to maintain a constant degree of sintering after ignition of a layer of sintered raw material charged onto a pallet.

従来、そのために排鉱部分における排ガス温度パターン
からBmnThrou舞point(B.T.P.:焼
成完了点)を検出し、該焼成完了点が焼結機上の所定位
置になるように制御している。すなわち、焼結プロセス
が満足すべきものであるためには、装入物の焼成完了点
をパレット移動方向の一定場所にできるだけ正確に維持
する必要がある。
Conventionally, for this purpose, a BmnThrough point (B.T.P.: sintering completion point) was detected from the exhaust gas temperature pattern in the ore discharge section, and the sintering completion point was controlled to be at a predetermined position on the sintering machine. There is. That is, for the sintering process to be satisfactory, it is necessary to maintain the firing completion point of the charge at a constant location in the direction of pallet movement as precisely as possible.

焼成完了点が暁結すべき物質の取出し点に対応するパレ
ット末端にあまり近ずきすぎたり、まして、更に遅れて
取出し後の位置に釆るようでは、生成する物が未燃焼の
燃料や未焼成の混合物を部分的に含有することとなり品
質が悪くなる。反対に焼成完了点がこの末端から遠く離
れすぎて点火炉により近いと装置と能力が充分に利用さ
れないことになる。その結果、一定品質の製造には不都
合な不安定現象を起すことになる。従って、パレットに
沿って装入物の焼成完了点の位置を予定した場所すなわ
ち大抵の場合は焼結された物質の取出し末端の近くに維
持するのが望ましいのであり、この位置制御は通常パレ
ット下に設けた風箱内で吸引ガスの温度を測定し、その
温度分布の変化に応じて、パレットの移動速度を調節す
る方法が一般的であった。実際、装入物を載せているパ
レット下の風箱内ガスの温度は、焼成プロセスの初期の
大部分では一定に保たれ、つぎに極大値まで上昇し、そ
れからパレットの下流末端に到るまで減少する。
If the firing completion point is too close to the end of the pallet, which corresponds to the point at which material is taken out, or if it is delayed even further and reaches the position after taking out, the product will be contaminated with unburned fuel or unburned material. It will partially contain the baked mixture, resulting in poor quality. Conversely, if the firing completion point is too far from this end and closer to the ignition furnace, equipment and capacity will be underutilized. As a result, an unstable phenomenon occurs which is inconvenient for production of constant quality. Therefore, it is desirable to maintain the position of the completion point of the charge along the pallet at a predetermined location, often close to the discharge end of the sintered material, and this position control is usually carried out under the pallet. A common method was to measure the temperature of the suction gas in a wind box installed in a wind box, and adjust the pallet movement speed according to changes in the temperature distribution. In fact, the temperature of the gas in the windbox below the pallet containing the charges remains constant for most of the initial part of the firing process, then rises to a maximum value and then reaches the downstream end of the pallet. Decrease.

このような変化の様子は、パレットに接する物質の水分
が存在する間ではガスの温度はほぼ一定に維持され、乾
燥した後に当該温度は極大値まで上昇し、原理的にはこ
こで焼成完了点がパレット床(火格子)に達し、ついで
燃料が燃え尽きるために当該温度が下がるという機構で
説明できる。従釆、このような知見に対し、それぞれの
測定点の位置に対応する温度の値を図に表わして、温度
曲線をつくると、この線の最初はほぼ直線であるが、終
りの方では正の勾配の曲線の部分と極大と負の勾配の曲
線を有していることがわかる。ゆえにこの極大値の位置
を測定すればパレットの所定の位置に上記極大値を保つ
ようにパレットの移動速度を操作することが可能である
。実際他の条件は同じにしてこの速度を増加するとパレ
ットの下流末端に焼成点が近ずき、速度を減少すると逆
の効果が発生する。しかしながら、従釆のこのような競
結完了点検知にもとづく制御は、つぎのような理由で満
足すべきものとはいえない。
The reason for this change is that the temperature of the gas remains almost constant while the material in contact with the pallet contains moisture, and after drying, the temperature rises to its maximum value, and in principle, this is the point at which firing is completed. This can be explained by the mechanism in which the fuel reaches the pallet floor (grate) and then the temperature decreases as the fuel burns out. In response to this knowledge, if we plot the temperature values corresponding to the positions of each measurement point and create a temperature curve, the line will be almost straight at the beginning, but it will be straight towards the end. It can be seen that it has a curve with a slope of , a maximum, and a curve with a negative slope. Therefore, by measuring the position of this maximum value, it is possible to manipulate the moving speed of the pallet so as to maintain the maximum value at a predetermined position on the pallet. In fact, other things being equal, increasing this speed will move the firing point closer to the downstream end of the pallet, while decreasing the speed will have the opposite effect. However, such control based on the detection of the completion point of a subordinate follower is not satisfactory for the following reasons.

擬結機パレットに沿って生じている温度は、種々の菱入
物の成分に依存するので、温度曲線の軌跡は袋入物の通
気性とか組成のような制御できない因子の影響を受けや
すく、また測定されるガス温度の軌跡曲線の極大領城は
、火格子の熱容量が大きいため時間遅れを生じるととも
に温度が平滑化され非常にあいまし、となり、この軌跡
のに極大部を見出すのは困難である。
Since the temperature occurring along the pouch is dependent on the composition of the various pouches, the trajectory of the temperature curve is susceptible to uncontrollable factors such as the permeability and composition of the pouches. In addition, the maximum area of the measured gas temperature trajectory curve is delayed due to the large heat capacity of the grate, and the temperature is smoothed out, making it very difficult to find the maximum area. It is.

このことは測定点の数を増加しても同様である。さらに
、前に述べた不都合は、あいまいな極大部の位置を益々
大きく変化させることになるという点で顕著な欠点があ
った。この発明は、上述した従釆技術のもつ欠点に鑑み
それを有利に克服することを目的として案出したもので
、研究によれば、焼絹過程における点火炉後の焼結層層
厚の変化を精度よく測定したところ、その測定層厚の変
化量が目立って変化する位置則ち屈曲点があり、この屈
曲点が焼成完了点(B.T.P.)とよく対応している
ことを知見したので、この知見にもとづいて焼成完了点
の検出方法を完成したのである。
This holds true even when the number of measurement points is increased. Moreover, the previously mentioned disadvantages had the notable disadvantage that they led to increasingly large changes in the position of the ambiguous local maximum. This invention was devised to advantageously overcome the drawbacks of the above-mentioned secondary kiln technology.According to research, changes in the thickness of the sintered layer after the ignition furnace during the sintering process have been made. When measured with high precision, there was a bending point where the amount of change in the measured layer thickness changed noticeably, and it was found that this bending point corresponded well to the firing completion point (B.T.P.). Based on this knowledge, a method for detecting the firing completion point was completed.

その構成の要旨そするところは、DL式焼結機の操業に
際して、暁結機パレットの移動に伴って変化する機長方
向の焼給層層厚を測定し、その測定層厚の時間当りの減
少量が飛躍する屈曲点から焼成完了の位置を求めること
を特徴とするDL式焼結機における焼成完了点検出方法
にある。以下にその構成の詳細を図面の参照のもとに説
明する。本発明は、かかる要旨構成に関し、次のような
手段を講じたのである。
The gist of its configuration is that during operation of a DL type sintering machine, the thickness of the firing layer in the longitudinal direction of the machine, which changes as the sintering machine pallet moves, is measured, and the decrease in the measured layer thickness per hour is measured. A method for detecting a firing completion point in a DL type sintering machine, which is characterized by determining the firing completion position from a bending point where the amount jumps. The details of the configuration will be explained below with reference to the drawings. The present invention has taken the following measures regarding this gist and configuration.

その第1点は、層厚測定器1を使って、暁結機パレット
2の長手方向:則ち機長方向における点火炉3を出た後
の焼結層4のその層厚変化量○を測定し、そして層厚減
少量Diを算出する。
The first point is to measure the layer thickness change ○ of the sintered layer 4 after leaving the ignition furnace 3 in the longitudinal direction of the sintering machine pallet 2, that is, in the machine length direction, using the layer thickness measuring device 1. Then, the layer thickness reduction amount Di is calculated.

その層厚減少量Diの具体的な算出法を第2図にもとづ
き説明するDi=Li−Lo ここで、 山:層厚測定器走査範囲の給鱗側端のレ ベル(基準レベル) Li:層厚測定器走査範囲内の位置iでのレノく1/し
但し、この場合Lo測定後、層厚測定器が位置iまで速
度Vで走行移動するし、また、競結層自体もパレット速
度PSで移動するので、位置iの基準点から距離X′は
次式:X′=×−X/V×PSにもとづいて補正する必
要がある。
A specific method for calculating the amount of decrease in layer thickness Di will be explained based on Fig. 2. Di = Li - Lo where, Mountain: Level at the feed scale side end of the scanning range of the layer thickness measuring device (reference level) Li: Layer However, in this case, after measuring Lo, the layer thickness measuring device travels to position i at a speed V, and the layer itself also moves at a pallet speed PS. Therefore, the distance X' from the reference point at position i needs to be corrected based on the following equation: X'=x-X/VxPS.

第2に、上記の層厚減少量Diの測定値から焼成完了点
を検出する。
Second, the firing completion point is detected from the measured value of the layer thickness reduction amount Di.

第1図に示すように、一般に孫給層の断面は、大きく分
類して原料1、赤熱層2、暁結完了層3に区別できるこ
とが知られている。
As shown in FIG. 1, it is generally known that the cross section of the Sunkei layer can be broadly classified into a raw material 1, a red-hot layer 2, and a dawning layer 3.

競結機の操業においては、特に赤熱層(帯)2を適当な
大きさと位置にすることが重要であり、各種の方法(前
記排ガス温度測定など)によって赤熱帯2形状を推定す
ることが行われているが、本発明は暁結過程で発生する
層厚の収縮を正確に測定することによって前記赤熱帯2
の形状、とくに焼成完了点(B.T.P.)を検出する
ようにしたのである。第1図のbは収縮に伴う層厚減少
量Diについて、それが機長方向でどのように変化する
かを示すもので、第1図のaで示すように赤熱帯2がパ
レット床4に達した焼成完了の位置では、該層厚減少量
Diの曲線は目立って変化する屈曲点Xをつくり、その
位置が焼成完了点となることが明らかに判る。そして、
この点Xを境として該曲線は排鉱部に向ってゆるやかに
なることから、この点×の検出は容易でしかも正確であ
る。大体、実施例によると、前記層厚減少量Diの度合
が1.0〜2.G舷/min曲線を描くときである。要
するに、上述のような層厚減少量の屈曲点×は、始めの
原料層1のうちはその収縮作用がコークスの燃焼による
体積減少と赤熱帯2における溶着、部分的溶融を伴なう
蟻縞反応によって発生するのに対し、B.T.P.つま
り焼成完了点X以降においては冷却による熱収縮のみに
なるので収縮速度は大中に4・さくなり、はっきりした
屈曲点×を作るのである。
In the operation of a bidding machine, it is particularly important to set the red hot layer (zone) 2 to an appropriate size and position, and the shape of the red hot layer 2 can be estimated by various methods (such as the above-mentioned exhaust gas temperature measurement). However, the present invention aims to improve the red tropical 2
The shape, especially the firing completion point (B.T.P.), was detected. Figure 1b shows how the layer thickness reduction Di due to shrinkage changes in the longitudinal direction. It is clearly seen that at the firing completion position, the curve of the layer thickness reduction amount Di forms a bending point X that changes noticeably, and that position becomes the firing completion point. and,
Since the curve becomes gentler toward the ore discharge area with this point X as a boundary, detection of this point X is easy and accurate. Generally, according to the embodiment, the degree of the layer thickness reduction amount Di is 1.0 to 2. Now is the time to draw the G/min curve. In short, the inflection point x of the amount of layer thickness reduction as described above is the point where the shrinkage of the initial raw material layer 1 is accompanied by volume reduction due to coke combustion and welding and partial melting in the red zone 2. B. T. P. In other words, after the firing completion point X, only thermal shrinkage occurs due to cooling, so the shrinkage rate decreases by 4.0%, creating a clear bending point x.

前述の層厚減少量Diの測定は、パレット上の原料表面
上にその移動方向と同じ向きに往復走行して走査できる
超音波距離計5や、マイクロ波、赤外線、レーザ距離計
を利用して、競鯖層表面層のレベルLo,Liの推移を
測定することによって算出する。
The above-mentioned layer thickness reduction amount Di is measured using an ultrasonic distance meter 5 that can scan the surface of the raw material on the pallet by reciprocating in the same direction as the moving direction, or a microwave, infrared, or laser distance meter. , is calculated by measuring the changes in the levels Lo and Li of the surface layer of the competitive mackerel layer.

以下に実際のDiの測定例について説明する。An example of actual measurement of Di will be explained below.

【1ー 超音波レベル計を走行させて、機長方向の競結
層表面のレベルの推移を測定してDiを得た。(2}
測定位置の補正を簡単にするめに、前記超音波レベル計
はパレット速度と同一の速度で走行させた。
[1- Di was obtained by running the ultrasonic level meter and measuring the level transition on the surface of the competitive layer in the longitudinal direction. (2}
To facilitate correction of the measurement position, the ultrasonic level meter was run at the same speed as the pallet speed.

すなわち、この方法によると同一の原料層の経時変化を
測定できるので、測定位置の補正が不要となる。第3図
にその場合の測定結果を示す。図中の真のB.T.P.
位置は、暁結原料層下部に熱伝対温度計を埋込んで、実
際の温度を計測することにより求めたものである。
That is, according to this method, it is possible to measure changes over time in the same raw material layer, so there is no need to correct the measurement position. Figure 3 shows the measurement results in that case. True B. T. P.
The position was determined by embedding a thermocouple thermometer in the lower part of the material bed and measuring the actual temperature.

この実測方法によって求めたB.T.P.の位置を、上
記しベル計測定による層厚減少曲線上にプロットすると
、いずれの測定ケースでもB.T.P.の位置は減少量
Diの速度が1.5肌/min以下と大きく変節した位
置と−致しており、層厚の減少曲線の屈曲点からB.T
.P.が精度よく推定できることが立証された。以上説
明したように本発明によれば、正確に焼成完了点が検出
でき、暁絹機の操業が安定するという顕著な効果が得ら
れる。
B. obtained by this actual measurement method. T. P. When the position of B. T. P. The position corresponds to the position where the rate of decrease Di is significantly changed to less than 1.5 skins/min, and B. T
.. P. It has been proven that it can be estimated with high accuracy. As explained above, according to the present invention, the firing completion point can be accurately detected and the remarkable effect of stabilizing the operation of the Akatsuki Silk Machine can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図のaは焼結層における層厚と距離との関係、bは
層厚減少量と距離との関係を示す線図、第2図は暁精機
の略線図、第3図は層厚減少量の推移を示す線図である
。 第1図 第2図 第3図
In Figure 1, a is a diagram showing the relationship between layer thickness and distance in the sintered layer, b is a diagram showing the relationship between layer thickness reduction and distance, Figure 2 is a schematic diagram of Akatsuki Seiki, and Figure 3 is a diagram showing the relationship between layer thickness and distance. FIG. 3 is a diagram showing changes in the amount of thickness reduction. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 DL式焼結機の操業に際して、焼結機パレツトの移
動に伴つて変化する機長方向の焼結層層厚を測定し、そ
の測定層厚の時間当りの減少量が飛躍する屈曲点から焼
成完了の位置を求めることを特徴とするDL式焼結機に
おける焼成完了点検出方法。
1. When operating a DL type sintering machine, the thickness of the sintered layer in the machine length direction, which changes as the sintering machine pallet moves, is measured, and the sintering is started from the bending point where the amount of decrease in the measured layer thickness per hour increases dramatically. A method for detecting a firing completion point in a DL type sintering machine, the method comprising determining the firing completion position.
JP14242381A 1981-09-11 1981-09-11 Method for detecting firing completion point in DL type sintering machine Expired JPS6017007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14242381A JPS6017007B2 (en) 1981-09-11 1981-09-11 Method for detecting firing completion point in DL type sintering machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14242381A JPS6017007B2 (en) 1981-09-11 1981-09-11 Method for detecting firing completion point in DL type sintering machine

Publications (2)

Publication Number Publication Date
JPS5845337A JPS5845337A (en) 1983-03-16
JPS6017007B2 true JPS6017007B2 (en) 1985-04-30

Family

ID=15314977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14242381A Expired JPS6017007B2 (en) 1981-09-11 1981-09-11 Method for detecting firing completion point in DL type sintering machine

Country Status (1)

Country Link
JP (1) JPS6017007B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106381382B (en) * 2016-09-12 2018-08-03 鞍钢股份有限公司 Method for judging sintering end point of ultra-thick material layer by adopting presintering

Also Published As

Publication number Publication date
JPS5845337A (en) 1983-03-16

Similar Documents

Publication Publication Date Title
JP2006307259A (en) Method for controlling pallet speed in sintering machine
JPS6017007B2 (en) Method for detecting firing completion point in DL type sintering machine
JP4311197B2 (en) Pallet speed control method in sintering machine
JP2720653B2 (en) Sinter production method
JP6107461B2 (en) Sintering raw material sintering method
JPH055589A (en) Operating method for sintering machine
JPS5934216B2 (en) How to operate DL sintering machine
CN107726869B (en) The stable residual heat recovery method of unstable residual heat resources is improved in a kind of sintering process
JP4231459B2 (en) Coke oven coal level control method
JPS5845325A (en) Furnace temperature setting method of continuous heating furnace
JPH089740B2 (en) Operating method of sintering machine
JP7099433B2 (en) Sintered ore manufacturing method
JPH03211241A (en) Operating method for sintering machine
JPH06287647A (en) Operation of sintering machine
RU2139482C1 (en) Method of control of raw material roasting process in rotary furnace
JPH0288724A (en) Method for operating sintering machine
JPS6126731A (en) Method for measuring heat pattern during sintering
JPS586898B2 (en) Temperature detection method of sintered raw material layer
JPS58144432A (en) Operation for sintering
JP2658745B2 (en) Operating method of sintering machine
JPS6013034A (en) Method for controlling heating-up gradient in sintering machine
JPS6013032A (en) Method for controlling calcination point with sintering machine
SU881503A1 (en) Method of automatic control of ceramic article drying and firing process in conveyer line
JPH0145511B2 (en)
JPS5920633Y2 (en) sintering machine ignition furnace