JPS58213836A - Method for determining optimum extent of operation under operational condition during operation of sintering apparatus - Google Patents

Method for determining optimum extent of operation under operational condition during operation of sintering apparatus

Info

Publication number
JPS58213836A
JPS58213836A JP9797182A JP9797182A JPS58213836A JP S58213836 A JPS58213836 A JP S58213836A JP 9797182 A JP9797182 A JP 9797182A JP 9797182 A JP9797182 A JP 9797182A JP S58213836 A JPS58213836 A JP S58213836A
Authority
JP
Japan
Prior art keywords
wind
speed
sintering
pallet
air volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9797182A
Other languages
Japanese (ja)
Other versions
JPS626620B2 (en
Inventor
Haruo Kokubu
国分 春生
Akira Sasaki
晃 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9797182A priority Critical patent/JPS58213836A/en
Publication of JPS58213836A publication Critical patent/JPS58213836A/en
Publication of JPS626620B2 publication Critical patent/JPS626620B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To allow a sintering apparatus to rapidly cope with a change in the volume of wind and to stabilize quality by determining the optimum extent of operation with respect to the speed of the pallet or the thickness of a layer from the estimated desired volume of wind in a sintering model based on the operational state of the sintering apparatus such as the measured values of the speed of wind. CONSTITUTION:The measured values of the speed of wind obtd. from wind gauges placed at four or more positions of the wind box section of a Dwight- Lloyd type sintering apparatus or the surface of the apparatus, the speed of the pallet, the thickness of a layer and negative pressure by suction are inputted in a sintering model, the desired volume of wind to be sucked is estimated by calculation, and the optimum extent of operation for attaining the desired volume of wind with respect to the speed of the pallet or the thickness of the layer is determined to control the operational conditions of the sintering machine. Thus, the desired volume of wind is accurately attained in a short time, and quality can be stabilized.

Description

【発明の詳細な説明】 本発明は焼結機操業における操業条件の最適操作量を決
定する方法に関し、詳しくは通気変動を抑制するために
、焼結モデルに基づいて予測した目標吸引風量ご達成す
るためのパレットスピードまたは層厚の最適操作量を決
定する方法の提案を目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for determining the optimum operation amount for operating conditions in sintering machine operation, and more specifically, in order to suppress ventilation fluctuations, the present invention relates to a method for achieving a target suction air volume predicted based on a sintering model in order to suppress ventilation fluctuations. The purpose of this study is to propose a method for determining the optimal operating amount of pallet speed or layer thickness.

ドワイトロイド式焼結機(以後単に焼結機と称す)を用
いた焼結機操業における通気変動は主に原料粒度、コー
クス配合比の変動に起因しており、焼結鉱強度、還元崩
壊性など焼結鉱品質のバラツキをもたらす。それ故、焼
結鉱品質の安定化の意味から通気変動を抑制するために
様々の操作がなされている。これらの中で特に頻繁に用
いられるのが、層厚及びパレットスピードの変更操作で
ある。一般に通気が良過ぎる場合には、層厚あるいはパ
レットスピードを増す方向に、また逆に通気が悪い場合
には、層厚、パレットスピードは低下する方向に操作し
て、吸引風量、負圧管定められた一定の範囲内に収め、
設備の保守、品質の安定化を行なっている。従来は濁厚
変更揶の操作後J吸引風量がどの程度変化するかを予測
することが不可能であった。それ故、パレットスピード
または層厚の変更操作幅を犬きくとることが出来ず、操
業の変動に対して操作が遅れがちであった。
Fluctuations in ventilation during sintering machine operation using a Dwight Lloyd type sintering machine (hereinafter simply referred to as sintering machine) are mainly caused by fluctuations in raw material particle size and coke blending ratio, and the changes in sintered ore strength and reduction disintegration properties etc., leading to variations in the quality of sintered ore. Therefore, in order to stabilize the quality of the sintered ore, various operations have been carried out to suppress the air permeability fluctuations. Among these, operations for changing layer thickness and pallet speed are particularly frequently used. In general, if the ventilation is too good, increase the layer thickness or pallet speed, and if the ventilation is poor, decrease the layer thickness or pallet speed to adjust the suction air volume and negative pressure pipe. within a certain range,
We maintain equipment and stabilize quality. Conventionally, it has been impossible to predict how much the J suction air volume will change after the operation of changing the thickness. Therefore, the pallet speed or layer thickness cannot be changed within a certain range, and the operation tends to be delayed in response to operational fluctuations.

本発明は上述のように、従来は不可能であった層厚、パ
レットスピードの変更操作後の吸引風量の予測を可能な
らしめ、速やかにその予測目標風量に到達させることを
目的とするものであって、風速測定値とパレットスピー
ド、層厚および吸引負圧を焼結モデルに入方して予測し
、この予測目標風量に到達するための最適な変更操作量
を求めて実施することによって、焼結機操業の変更に迅
速に対志して、上記目的を達成するに至った。
As mentioned above, the present invention aims to make it possible to predict the suction air volume after changing the layer thickness and pallet speed, which was previously impossible, and to quickly reach the predicted target air volume. By inputting the measured wind speed, pallet speed, layer thickness, and suction negative pressure into the sintering model and predicting them, and determining and implementing the optimal change operation amount to reach the predicted target air volume, By quickly changing the operation of the sintering machine, we were able to achieve the above objectives.

次に本発明の方法について詳細に説明する。Next, the method of the present invention will be explained in detail.

本発明者らは、先に焼結層内部の焼結進行状況の検出方
法について、特願昭56−16291号をもって提案し
たが、本発明では上記発明を更に発展させて、通気変動
を抑制するために最適吸引風量を予測し、予測したこの
目的風量を、速かに達成し得る最適なパレットスピード
あるいは層厚の操作jtを決定する方法ご提供するもの
である。
The present inventors previously proposed a method for detecting the progress of sintering inside a sintered layer in Japanese Patent Application No. 16291/1982, but the present invention further develops the above invention to suppress airflow fluctuations. The present invention provides a method for predicting the optimum suction air volume and determining the optimum pallet speed or layer thickness operation to quickly achieve the predicted target air volume.

上記特願昭56−141291号公報の詳細な説明の中
で、焼結機長手方向の風速分布式を次の(1)お1び(
2)式で示した。即ち X<L  のとき、=  0 x)L 二  〇 ここで 1.714・A−KB・ΔP・ B=H−Hoオ             (6)””
 R8HO”HEN             (7)
D−n ′RNKN                
(8)QF、QB:焼結層通過風速(m、/a+in 
)PS:パレットスピード(m/m1n)ΔP:吸引負
圧(閣H20) X 二点人位置から機長方向への距離(rn)H=層厚
(?)L) RGIN ” 原料帯の通気抵抗指数(mmH,o−m
1n”y、、L4)”HEN ” 燃焼帯の通気抵抗指
数 R8HO”焼結帯の通気抵抗指数 に、KB:風速係数(へ) Lo:焼結完了位置(m) 前記特願昭56−16291号公報「焼結層内部の焼結
進行状況検出方法」では、このモデルを基礎にして、モ
デルのパラメータであるRGEN 。
In the detailed explanation of the above-mentioned Japanese Patent Application No. 56-141291, the wind speed distribution formula in the longitudinal direction of the sintering machine is described as follows (1), 1 and (
2) It is shown by the formula. That is, when X<L, = 0
R8HO”HEN (7)
D-n'RNKN
(8) QF, QB: Wind speed passing through the sintered layer (m, /a+in
) PS: Pallet speed (m/m1n) ΔP: Negative suction pressure (Kaku H20) (mmH, o-m
1n"y,, L4)"HEN" Ventilation resistance index of combustion zone R8HO" Ventilation resistance index of sintering zone, KB: Wind speed coefficient (to) Lo: Sintering completion position (m) Said patent application 1982-16291 In the publication ``Method for detecting sintering progress inside a sintered layer'', based on this model, the parameter RGEN of the model is calculated.

R□N、 R8HO,KF 、 KB ′ft焼結機長
手方向4点の風速測定値から連続的に求める方法を示し
たが、本発明については以下に説明する。
Although the method of continuously obtaining R□N, R8HO, KF, KB'ft from the wind speed measurements at four points in the longitudinal direction of the sintering machine has been shown, the present invention will be explained below.

(1)、 (g)式から、全吸引風ji (’I’Q)
は(9)式で表わすことができる ここでMLは焼結機の長さく7FL)である◇TQのパ
ラメータはps、ΔP、H’ RGEN 、 RNEW
From equations (1) and (g), the total suction wind ji ('I'Q)
can be expressed by equation (9), where ML is the length of the sintering machine (7FL) ◇The parameters of TQ are ps, ΔP, H' RGEN , RNEW
.

R8Ho、KF、KBからなり、すべて既知の値である
It consists of R8Ho, KF, and KB, all of which are known values.

それ故、ある時点においてパレットスピードの変更操作
を行なう場合、ΔPを除く他のパラメータは一定と考え
ることができ、結局吸引風量(T’Q)は(1G)式で
与えられる。
Therefore, when changing the pallet speed at a certain point in time, the other parameters except ΔP can be considered constant, and the suction air volume (T'Q) is ultimately given by equation (1G).

TQ=f(ps、ΔP )            (
10)一方プロアー特性から、(U)式の関係が常に成
立するO TQ’=ム・ΔP’ + B            
 (ll)ココ”t’ A 、 B !;j 7’ o
アー固有の値である。
TQ=f(ps, ΔP) (
10) On the other hand, from the Proer characteristic, the relationship of equation (U) always holds O TQ' = Mu・ΔP' + B
(ll) here "t' A, B!; j 7' o
This is a unique value.

また焼結機操業におhて’I’Q−TQI、ΔP=ΔP
′が成立し%  (10) 、 (11)式の連立方程
式を解くことにより任意のパレットスピード(PSIで
の負圧(6) (ΔP)、および風IN (TQ)を計算することがで
きる。
In addition, when operating a sintering machine, 'I'Q-TQI, ΔP = ΔP
' is established, and by solving the simultaneous equations of equations (10) and (11), it is possible to calculate an arbitrary pallet speed (negative pressure (6) (ΔP) at PSI) and wind IN (TQ).

添付図面の第1図は、以上に説明した方法で求めたパレ
ットスピードと吸引風量との関係の一例を示したグラフ
であって、ある目標風量が示された場合、その風量を達
成し得るパレットスピードを、この第1図のグラフから
求めることができる。
Figure 1 of the attached drawings is a graph showing an example of the relationship between the pallet speed and the suction air volume determined by the method explained above. When a certain target air volume is indicated, it shows the pallet that can achieve that air volume. The speed can be determined from the graph in FIG.

また同様にして、与えられた目標風量に到達するために
層厚(H)を変更操作する場合には、層厚と吸引風量と
の関係の一例を示した第2図のグラフから、該目標風景
に対応する層厚を求めることができる。
Similarly, when changing the layer thickness (H) in order to reach a given target air volume, use the graph in FIG. The layer thickness corresponding to the landscape can be determined.

このようにして、本発明に基づいてパレットスピードの
変更操作を行なった時の全吸引風量の経時変化を第8図
に示したが、図面によれば操作後80分内に目標風量に
達することが示されている0同様にして第4図には、本
発明に基づく層厚変更操作を行なった時の、全吸引風量
の経時変化が示されているが、この場合も同様に80分
以内に目標風量に達しており、本発明に基づくパレット
スピード、層厚の変更操作が、極めて予測精度の高いも
のであることがわかる〇 また第5図には、従来の方法に基づいてパレットスピー
ド変更操作を行なった場合の、全吸引風量の経時変化が
示されている。図面では目標風量到達に60分間以上の
時間を要している。これらのことから、本発明の方法に
よれば、風量変動に対して迅速に対処することができ、
品質の安定化に寄与する効果は極めて顕著なものである
Figure 8 shows the change over time in the total suction air volume when the pallet speed is changed according to the present invention. According to the drawing, the target air volume is reached within 80 minutes after the operation. 0Similarly, Figure 4 shows the change over time in the total suction air volume when the layer thickness changing operation based on the present invention is performed, but in this case as well, within 80 minutes. It is clear that the pallet speed and layer thickness changing operation based on the present invention has extremely high prediction accuracy. Figure 5 also shows that the pallet speed changing operation based on the conventional method is highly accurate. It shows the change over time in the total suction air volume when the operation is performed. In the drawing, it takes more than 60 minutes to reach the target air volume. For these reasons, according to the method of the present invention, it is possible to quickly respond to air volume fluctuations,
The effect of contributing to quality stabilization is extremely significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法で得られたパレットスビドm/wi
n、と風量Nm”7m1nとの関係の1例を示したグラ
フ、 第2図は同様に層厚と風量との関係を示したグラフ、 第8図は本発明により計算されたパレットスピードに変
更した時の風量の経時変化を示したグラフ、 第4図は本発明に工す計算された層高に変更操作を行な
った場合の全吸引風量の経時変化を示したグラフ、 第6図は従来方法でパレットスピード変更操作3行なっ
た場合の全吸引風量の経時変化を示した図面である。 特許出願人 川崎製鉄株式会社 (u7シーN)1面 (u7ut/EutN)Il (υγw/EuLN)1遺 (””%uLN)’1M
Figure 1 shows the pallet substrate m/wi obtained by the method of the present invention.
Figure 2 is a graph showing an example of the relationship between layer thickness and air volume, Figure 8 is a graph showing an example of the relationship between layer thickness and air volume, and Figure 8 is changed to the pallet speed calculated according to the present invention. Figure 4 is a graph showing the change in total suction air volume over time when the calculated bed height is changed according to the present invention. Figure 6 is a graph showing the change in the total suction air volume over time when This is a drawing showing the change in total suction air volume over time when three pallet speed changing operations are performed using the method. Remains (””%uLN)'1M

Claims (1)

【特許請求の範囲】 1 ドワイトロイド式焼結機のウィンドボックス部もし
くは焼結機上面の4箇所以上に設置I。 した風速計から得られる風速測定値とパレットスピード
、層厚ならびに吸引負圧を焼結モデルに入力し計算させ
て目標風量な求め、該目標風量に到達しうる最適なパレ
ットスピードあるいは層厚の操作量を決定すること【特
徴とする焼結機操業における操業条件の最適操作量決定
方法。
[Claims] 1. Installed in the wind box part of a Dwight Lloyd sintering machine or at four or more locations on the top surface of the sintering machine. Input the wind speed measurement value obtained from the anemometer, pallet speed, layer thickness, and suction negative pressure into the sintering model and calculate it to find the target air volume, and operate the optimal pallet speed or layer thickness to reach the target air volume. [Characteristics] Method for determining the optimum operating amount for operating conditions in sintering machine operation.
JP9797182A 1982-06-08 1982-06-08 Method for determining optimum extent of operation under operational condition during operation of sintering apparatus Granted JPS58213836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9797182A JPS58213836A (en) 1982-06-08 1982-06-08 Method for determining optimum extent of operation under operational condition during operation of sintering apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9797182A JPS58213836A (en) 1982-06-08 1982-06-08 Method for determining optimum extent of operation under operational condition during operation of sintering apparatus

Publications (2)

Publication Number Publication Date
JPS58213836A true JPS58213836A (en) 1983-12-12
JPS626620B2 JPS626620B2 (en) 1987-02-12

Family

ID=14206552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9797182A Granted JPS58213836A (en) 1982-06-08 1982-06-08 Method for determining optimum extent of operation under operational condition during operation of sintering apparatus

Country Status (1)

Country Link
JP (1) JPS58213836A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230858A1 (en) * 2021-04-28 2022-11-03 Jfeスチール株式会社 Method for manufacturing sintered ore and device for manufacturing sintered ore

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230858A1 (en) * 2021-04-28 2022-11-03 Jfeスチール株式会社 Method for manufacturing sintered ore and device for manufacturing sintered ore
JP2022169935A (en) * 2021-04-28 2022-11-10 Jfeスチール株式会社 Method for manufacturing sintered ore

Also Published As

Publication number Publication date
JPS626620B2 (en) 1987-02-12

Similar Documents

Publication Publication Date Title
CN110030683A (en) Control method for air conditioner
JPS58213836A (en) Method for determining optimum extent of operation under operational condition during operation of sintering apparatus
JP6311482B2 (en) Estimation method of gas flow rate and reduction load of blast furnace block.
CN103045855B (en) Method and system for predicting thickness of sintered ore bed
WO2021014923A1 (en) Method for controlling process, operation guidance method, method for operating blast furnace, method for manufacturing molten iron, and device for controlling process
JPS58144432A (en) Operation for sintering
JPH0913110A (en) Method for evaluating ventilation of charged material layer in vertical type furnace
CN113699291A (en) Method for calculating blast furnace material distribution drop point based on laser measurement data
WO2022009617A1 (en) Method for controlling hot metal temperature, operation guidance method, method for operating blast furnace, method for producing hot metal, device for controlling hot metal temperature, and operation guidance device
JPH03177787A (en) Reduction of sintering nonuniformity of sintered ore
JPH05186811A (en) Method for operating blast furnace
JPH08127822A (en) Operation of sintering
KR950012396B1 (en) Control method of blast f&#39;ce gas distribution
JPS58171533A (en) Operating method for sintering device
JPS6223940A (en) Method for controlling sintering in continuous annealing machine
JPH0711349A (en) Method for estimating strength of sintered ore for blast furnace and its control method
JPS629170B2 (en)
JPS57140836A (en) Controlling method for volume distribution of blast gas in sintering machine
JPS5952693B2 (en) DL sintering method
JPS5942734B2 (en) Control method of sintering operation
JP2000320978A (en) Control method of charging sintered material
JPH06256862A (en) Method for controlling pallet velocity in sintering machine
CN114626232A (en) Method for evaluating air permeability of blast furnace reflow zone
JP2617850B2 (en) Blast furnace operation method
JP2020094283A (en) Operation method of blast furnace