JPS5952693B2 - DL sintering method - Google Patents

DL sintering method

Info

Publication number
JPS5952693B2
JPS5952693B2 JP11078277A JP11078277A JPS5952693B2 JP S5952693 B2 JPS5952693 B2 JP S5952693B2 JP 11078277 A JP11078277 A JP 11078277A JP 11078277 A JP11078277 A JP 11078277A JP S5952693 B2 JPS5952693 B2 JP S5952693B2
Authority
JP
Japan
Prior art keywords
raw material
segregation
moisture
sintering
pallet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11078277A
Other languages
Japanese (ja)
Other versions
JPS5443802A (en
Inventor
清太 上川
宏 江塚
洋一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11078277A priority Critical patent/JPS5952693B2/en
Publication of JPS5443802A publication Critical patent/JPS5443802A/en
Publication of JPS5952693B2 publication Critical patent/JPS5952693B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は移動火格子型のドワイトロイド式(以下、DL
と言う)焼結設備における焼結方法に関するものであり
、その目的は、焼結鉱の焼むらを防止し、その品質並び
に生産性の効果的な向上を可能とする焼結法を提供する
ことにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes a moving grate type Dwight Lloyd type (hereinafter referred to as DL).
The purpose is to provide a sintering method that prevents uneven sintering of sintered ore and effectively improves its quality and productivity. It is in.

周知の如く、DL焼結設備においては、鉄鉱石、石灰、
コークス等の粉粒体を適当な水分配合のもとに混錬して
疑似粒塊とした焼結原料をパレットに装入し、然る後そ
の表層に点火し、排風機で下方へ吸引しつつ、パレット
を移動せしめることによって焼結が行われ焼結鉱の製造
が行われている。
As is well known, in DL sintering equipment, iron ore, lime,
The sintering raw material, which is made by kneading coke or other powder with an appropriate moisture content and forming pseudo-granules, is charged into a pallet, then the surface layer is ignited, and an exhaust fan is used to suck it downward. At the same time, sintering is performed by moving pallets to produce sintered ore.

ところで該焼結鉱の製造にお−いて、前記焼結原料のパ
レットへの装入方法は、その生産能率および品質等を向
上させるための重要な因子であり、而して、該焼結原料
の効果的な装入方法として、例えば、パレット上に装入
された粒度分布が、その高さ方向、即ち上下層間で、下
層が粗粒に、また上層が細粒となるようにドラムフィー
ダーの下方部にスローピングシュートおよび、もしくは
圧力気体噴射ノズルを配設し、焼結原料を前記スローピ
ングシュート上を転動させるか、あるいは風力分級させ
ながら装入させる技術手段が従来より周知であった。
By the way, in the production of the sintered ore, the method of charging the sintered raw material into the pallet is an important factor for improving the production efficiency and quality. As an effective charging method, for example, using a drum feeder so that the particle size distribution charged on the pallet is in the height direction, that is, between the upper and lower layers, the lower layer is coarse particles and the upper layer is fine particles. Technological means have heretofore been known in which a sloping chute and/or a pressurized gas injection nozzle is arranged in the lower part, and the sintering raw material is charged while being rolled on the sloping chute or classified by wind.

ところが前記従来の粒度分布の調整、即ち粒度偏析を生
ぜしめながら行う装入制御では、その粒度偏析状態を確
実に検出する手段がなかったことから操業中における粒
度偏析状態の把握が困難であり、例えば所定の粒度偏析
が得られなかったり、あるいは表層部が細粒となり過ぎ
る偏析過多となり、通気性が悪化したり、焼結鉱の品質
低下を招く等の問題が屡々発生し、該問題が生じた場合
においても前記従来法では迅速に、かつ適確な装入制御
変更等の処置を講することは極めて困難であった。
However, in the conventional particle size distribution adjustment, that is, charging control that is performed while causing particle size segregation, there is no means to reliably detect the particle size segregation state, so it is difficult to grasp the particle size segregation state during operation. For example, problems such as not being able to obtain the desired grain size segregation, or the surface layer becoming too fine and causing excessive segregation, resulting in poor air permeability and deterioration in the quality of sintered ore, often occur. Even in such cases, it is extremely difficult to take prompt and appropriate measures such as changing the charging control using the conventional method.

本発明は前記従来の問題点の積極的な解決を計るために
種々実験検討を繰返した結果なされたもので、その要旨
は、焼結原料の焼成前の水分偏析度と、炭素含有量偏析
度間に存在する相関関係に基いて、当該焼結原料につい
て実測して得た平均水分と表面水分から水分偏析度を求
め、ついで前記水分偏析度から炭素含有量偏析度を算定
し、当該炭素含有量偏析度が1.05〜2.0になるよ
うに焼結原料をパレットに装入する際に、原料層中の炭
素(以下単にCと言う)の高さ方向およびもしくは幅方
向の分布を調節し、焼結することを特徴とするものであ
る。
The present invention was made as a result of repeated various experimental studies in order to proactively solve the above-mentioned conventional problems. Based on the correlation that exists between the two, the moisture segregation degree is determined from the average moisture content and surface moisture obtained by actually measuring the sintered raw material, and then the carbon content segregation degree is calculated from the moisture segregation degree, and the carbon content segregation degree is calculated from the moisture segregation degree. When charging the sintering raw material into the pallet so that the degree of segregation is 1.05 to 2.0, the distribution of carbon (hereinafter simply referred to as C) in the raw material layer in the height direction and/or width direction is checked. It is characterized by conditioning and sintering.

以下、実施例に基づき、本発明の詳細な説明する。Hereinafter, the present invention will be described in detail based on Examples.

さて、本発明者等は、前述のように種々実験検討を繰返
した結果、パレットに装入された焼結原料の前記粒度偏
析は、原料層中のCの分布状態即ち、C偏析と密接な関
係があり、がつ該C偏析は、焼結原料の焼成前の水分偏
析と相関関係を有していると言う新知見を得た。
Now, as a result of repeated various experimental studies as described above, the present inventors have found that the particle size segregation of the sintered raw material charged into the pallet is closely related to the distribution state of C in the raw material layer, that is, the C segregation. We have obtained new knowledge that the C segregation has a correlation with the moisture segregation of the sintering raw material before firing.

第1図、第2図、第3図は、本発明に基づく一実験結果
を示すもので、後述する第4図に示すDL焼結設備にお
いて、焼結原料に圧力気体を噴射し、粒度偏析を生ぜし
め、それに対応するC偏析状態および水分偏析状態を調
査したもので、原料層の高さ方向を表面よ゛す、底面の
間で7分割(最上層は後述する表層部とし、他は高さ方
向にそれぞれ等分割して示した)して縦軸に表わし、そ
のそれぞれの点における焼結原料の平均粒度(第1図)
とC濃度(第2図)および水分(第3図)を横軸に示し
たものである。
FIGS. 1, 2, and 3 show the results of an experiment based on the present invention. In the DL sintering equipment shown in FIG. This study investigated the corresponding C segregation state and water segregation state, and the height direction of the raw material layer was divided into seven parts between the surface and the bottom (the top layer is the surface layer, which will be described later, and the other parts are The average particle size of the sintering raw material at each point is shown on the vertical axis (Fig. 1).
, C concentration (Fig. 2), and water content (Fig. 3) are shown on the horizontal axis.

該第1図、第2図、第3図から圧力気体の噴射風量が大
きくなると粒度偏析は当然大きくなり、これに伴って、
定量的な相関関係は明確でないが、はは゛一定のパター
ンに基いたC偏析並びに水分偏析が生じ、特にC偏析と
水分偏析との間には密接な関係を有しており、加えて表
面C含有量および表面水分(本発明において表面C含有
量および表面水分とは原料層表面より10〜30mm程
度までの深さの表層部における平均C含有量および水分
を言う。
From FIGS. 1, 2, and 3, as the pressure gas injection volume increases, the particle size segregation naturally increases, and along with this,
Although the quantitative correlation is not clear, C segregation and moisture segregation occur based on a certain pattern, and there is a particularly close relationship between C segregation and moisture segregation. Content and surface moisture (In the present invention, the surface C content and surface moisture refer to the average C content and moisture in the surface layer at a depth of approximately 10 to 30 mm from the surface of the raw material layer.

)を把握すれば原料層の高さ方向におけるC偏析状態お
よび水分偏析状態等が正確に推定でき、さらに粒度偏析
状態もほぼ確実に推定でき、把握することができること
を確認できた。
), it was confirmed that the C segregation state, water segregation state, etc. in the height direction of the raw material layer can be accurately estimated, and the particle size segregation state can also be almost certainly estimated and understood.

尚第4図は、本発明を説明するための、DL焼結設備給
鉱部の一実施例を示す部分断面図である。
FIG. 4 is a partial cross-sectional view showing one embodiment of the DL sintering equipment feed section for explaining the present invention.

該第4図において、1は造粒ドラムであり、2は前記造
粒ドラム1で疑似粒塊とされた焼結原料である。
In FIG. 4, 1 is a granulation drum, and 2 is a sintered raw material that has been made into pseudo-granule agglomerates in the granulation drum 1.

造粒ドラム1がら排出された焼結原料2は装入コンベア
3、オシレーテイングコンベア4等を介して、ホッパー
5に供給され、一旦貯留された後、ドラムフィーダー6
で定量ずつ切出され、パレッI−7に装入される。
The sintered raw material 2 discharged from the granulation drum 1 is supplied to a hopper 5 via a charging conveyor 3, an oscillating conveyor 4, etc., and is stored once in a drum feeder 6.
It is cut out in fixed amounts and loaded into pallet I-7.

また本実施例においては、ドラムフィーダー6とパレッ
ト7との間にスローピングシュート8および圧力気体噴
射ノズル9を併設し、ドラムフィーダー6から落下する
焼結原料2をスローピングシュート8上で転勤せしめ、
かつ圧力気体で風力分級せしめつつ装入することを可能
とした。
Further, in this embodiment, a sloping chute 8 and a pressure gas injection nozzle 9 are provided between the drum feeder 6 and the pallet 7, and the sintered raw material 2 falling from the drum feeder 6 is transferred on the sloping chute 8.
It also made it possible to charge while performing wind classification using pressurized gas.

さらに該第4図において、10は点火炉である。Furthermore, in FIG. 4, 10 is an ignition furnace.

さて、第5図は前記第2図および第3図との間に密接な
関係があるとの知見に基づいて第4図のDL焼結設備で
焼成前の焼結原料2の水分偏析とC偏析との関係を調査
した一実験結果を示すもので、水分偏析を焼結原料2の
平均水分Psiと表面水分PS2との比CPs□/Ps
□) (以下水分偏析度Xと言う)として横軸に表わし
、また、C偏析を焼結原料2の平均C含有量C5Iと表
面C含有量C5゜との比(Cs□/C5,) (以下
C偏析度yと言う)として縦軸に表わし、その相関関係
を調べたものである。
Now, FIG. 5 shows the moisture segregation and carbon content of the sintered raw material 2 before firing in the DL sintering equipment of FIG. This shows the results of an experiment investigating the relationship between moisture segregation and water segregation, which is determined by the ratio of the average moisture Psi of the sintering raw material 2 to the surface moisture PS2, CPs□/Ps.
□) (hereinafter referred to as water segregation degree The C segregation degree (hereinafter referred to as y) is expressed on the vertical axis, and the correlation therebetween was investigated.

尚本実験例において平均水分Psiは装入コンベア3の
中間部で、表面水分PS2はドラムフィーダー6と点火
炉10との中間部のパレット7上でそれぞれ焼結原料2
のサンプリングを行い、乾燥重量法でその水分含有量を
検出し、また、平均C含有量は、焼結原料2の配合割合
実績より算出し、表面C含有量は前記表面水分と同様に
、ドラムフィーダー6と点火炉10との中間部のパレッ
ト7上でサンプリング行いそのC含有量を測定したもの
である。
In this experimental example, the average water content Psi is measured at the middle part of the charging conveyor 3, and the surface water content PS2 is measured at the sintered raw material 2 on the pallet 7 at the middle part between the drum feeder 6 and the ignition furnace 10.
The moisture content was detected using the dry weight method, and the average C content was calculated from the actual blending ratio of sintering raw material 2. Samples were taken on the pallet 7 in the middle between the feeder 6 and the ignition furnace 10, and the C content was measured.

該第5図より、焼結原料2の平均水分の差異に拘らず水
分偏析度とC偏析度には、下記(1)式に示す相関関係
含有していることが明確になった。
From FIG. 5, it is clear that irrespective of the difference in the average moisture content of the sintering raw material 2, the degree of water segregation and the degree of C segregation have a correlation shown in the following equation (1).

ただし、y:炭素含有量偏析度(C偏析度)C5□:焼
結原料の平均炭素含有量 C5゜:点火炉到達前のパレット上の焼 結原料表面炭素含有量 X:水分偏析度 P5、:造粒ドラム以降で点火炉到達前 までの任意工程における焼結原料 の平均水分 P、2:点火炉到達前のパレット上の焼 結原料表面水分 a、l):原料条件、設備条件等によっ て定まる定数(本実施例ではaが 3.66、bが−2,66となり、従って(1)式はV
=3,66X−2,66となった。
However, y: Carbon content segregation degree (C segregation degree) C5□: Average carbon content of sintered raw material C5゜: Carbon content on the surface of sintered raw material on the pallet before reaching the ignition furnace X: Moisture segregation degree P5, : Average moisture content P of the sintered raw material in any process after the granulation drum and before reaching the ignition furnace, 2: Surface moisture of the sintered raw material on the pallet before reaching the ignition furnace a, l): Depending on raw material conditions, equipment conditions, etc. Constants to be determined (in this example, a is 3.66 and b is -2,66, so equation (1) is V
=3,66X-2,66.

)而してスローピングシュート8あるいは噴射ノズル9
等の装入設備条件あるいは配合原料条件等に応じて定数
a、 l)をあらかじめ求めておくと共にパレット7に
装入される焼結原料2の平均水分P5□を造粒ドラム1
から点火炉10到達前までの任意工程、例えば装入コン
ベア3、オシレーテイングコンベア4上、あるいはホッ
パー5内あるいはドラムフィーダー6からの落下時、ま
た場合によってはパレット7に装入された後の原料層の
ほぼ中央部等で実測し、また表面水分P5□を点火炉1
0到達前のパレット7上、即ちC偏析を生じた後のドラ
ムフィーダー6から点火炉10の間で実測して、その比
、即ち、水分偏析度Xを求め、然る後、該水分偏析度X
を前記(1)式に代入することによって当該焼結原料の
C偏析度yを算出することが可能である。
) and the sloping chute 8 or injection nozzle 9
The constants a and l) are determined in advance according to the charging equipment conditions or blended raw material conditions, etc., and the average moisture content P5□ of the sintered raw material 2 charged to the pallet 7 is calculated from the granulation drum 1.
Any process from before reaching the ignition furnace 10, such as on the charging conveyor 3, the oscillating conveyor 4, or when falling from the hopper 5 or the drum feeder 6, or in some cases after being charged to the pallet 7. The surface moisture P5□ was measured at approximately the center of the layer, and the surface moisture P5
It is actually measured on the pallet 7 before reaching 0, that is, between the drum feeder 6 and the ignition furnace 10 after C segregation has occurred, and the ratio, that is, the degree of moisture segregation X is determined. X
By substituting y into the equation (1), it is possible to calculate the C segregation degree y of the sintering raw material.

また必要に応じては、焼結原料2の平均C含有量を例え
ば配合原料の切出し量を実測し、その配合割合より算出
するか、あるいは、焼結原料2をサンプリングし、実測
して求める等によって、前記(1)式の相関関係より当
該焼結原料2の表面C含有量をも容易に推定することが
可能である。
In addition, if necessary, the average C content of the sintered raw material 2 can be calculated by, for example, actually measuring the cut-out amount of the blended raw material and its blending ratio, or by sampling the sintered raw material 2 and actually measuring it. Accordingly, it is possible to easily estimate the surface C content of the sintered raw material 2 from the correlation of equation (1).

尚前記平均水分Psiおよび表面水分Ps2の検出は、
前記実施例のようにそれぞれに対応する焼結原料2をサ
ンプリングして測定することでも勿論支障はないが、例
えば赤外線水分計、あるいは中性子水分計等を有効に活
用し必要に応ヒてはパレット7の巾方向複数測定点で、
然も操業中に連続的に、あるいは設定周期毎にその検出
を行うことも可能である。
Note that the detection of the average moisture Psi and surface moisture Ps2 is as follows:
Of course, there is no problem in sampling and measuring the corresponding sintered raw materials 2 as in the above embodiment, but if necessary, it is possible to make effective use of an infrared moisture meter or a neutron moisture meter, etc. At multiple measurement points in the width direction of 7,
However, it is also possible to perform the detection continuously during operation or at every set period.

前記第4図には前記赤外線水分計を利用した水分検出装
置11の一実施例を示している。
FIG. 4 shows an embodiment of a moisture detection device 11 using the infrared moisture meter.

即ち装入コンベア3の中間部およびドラムフィーダー6
と点火炉10の中間部にそれぞれ検出端11a1,11
a2を配設し、検出端11a1ではC偏析を生じていな
い装入コンベア3上においてカットオフプレート11C
で原料層の表面を平滑にし、かつ新しい面を露出せしめ
た直後の水分検出を、また検出端11a2では、C偏析
の生じた後のパレット7上における原料表層部の水分検
出を行わしめ、それぞれの検出値は検出信号として水分
検出器11b1,11b2に入力させ、表示せしめた。
That is, the middle part of the charging conveyor 3 and the drum feeder 6
and detection ends 11a1 and 11 at the middle part of the ignition furnace 10, respectively.
cut-off plate 11C on the charging conveyor 3 where C segregation has not occurred at the detection end 11a1.
The detection end 11a2 detects moisture immediately after smoothing the surface of the raw material layer and exposing a new surface, and the detection end 11a2 detects moisture in the surface layer of the raw material on the pallet 7 after C segregation has occurred. The detected value was input as a detection signal to the moisture detectors 11b1 and 11b2 and displayed.

又本実施例では、前記検出端11a1,11a2よりの
検出信号を水分検出器11b1゜]1b2を介して演算
制御装置12に入力せしめる構造とした。
Further, in this embodiment, the detection signals from the detection ends 11a1 and 11a2 are inputted to the arithmetic and control unit 12 via the moisture detectors 11b1[deg.]1b2.

而して該演算制御装置12に、前記(1)式をあらかじ
め記憶せしめておくと共に、平均C含有量の算出機能を
付与せしめておけば、前記検出端11a1,11a2か
らの検出信号および焼結、見料2の配合割合(該配合割
合は、各配合原料の切出実績、あるいは切出指令信号の
いずれを使用しても差支えない。
If the arithmetic and control unit 12 is pre-stored with the formula (1) and is provided with a function of calculating the average C content, the detection signals from the detection ends 11a1 and 11a2 and the sintering , the blending ratio of sample 2 (the blending ratio may be determined using either the cutting results of each blended raw material or the cutting command signal).

)を入力せしめることによって、C偏析度yの算出は勿
論、必要に応じて表面C含有量をも自動的に算出するこ
とが可能であり、さらに演算制御装置12に後述する種
々の装入制御機能を付与せしめておけば、前記C偏析度
yを算出すると共に、その算出結果に基づいて、常に最
適な装入状態が維持されるよう必要に応じ、迅速に、か
つ適確な装入制御を自動的に行わせることも可能であり
非常に効果的である。
), it is possible to not only calculate the degree of C segregation y but also automatically calculate the surface C content as needed, and furthermore, the arithmetic and control unit 12 can perform various charging controls as described below. If this function is provided, it will be possible to calculate the C segregation degree y and, based on the calculation result, to quickly and accurately control charging as necessary so that the optimum charging condition is always maintained. It is also possible to have this done automatically, which is very effective.

さて、次に、下記第1表はC偏析度yを種々変化させて
焼結鉱を製造した時の生産性と焼結鉱強度との関係を調
査した一実施結果を示すものである。
Next, Table 1 below shows the results of an investigation into the relationship between productivity and sintered ore strength when sintered ore was produced by varying the C segregation degree y.

該第1表においてC偏析度yが1の時はC偏析の全く生
じていない状態であり、表面C含有量が平均C含有量よ
り多くなり、C偏析が生ずるとC偏析度は1より徐々に
大きくなるが、該C偏析度yが1.05未満では充分な
C偏析ではないために、その生産性は極めて低い。
In Table 1, when the C segregation degree y is 1, there is no C segregation at all, and the surface C content becomes higher than the average C content, and when C segregation occurs, the C segregation degree gradually decreases from 1. However, if the C segregation degree y is less than 1.05, the C segregation is not sufficient and the productivity is extremely low.

ところが1.05以上となると、生産性および強度とも
著しく向上し、特に1.1〜1.5の範囲では、その効
果が極めて顕著である等、C偏析が焼結鉱製造において
重要な影響を与えていることが明瞭に示されている。
However, when the value is 1.05 or more, both productivity and strength are significantly improved, and this effect is particularly significant in the range of 1.1 to 1.5, indicating that C segregation has an important influence on sintered ore production. What is being provided is clearly shown.

しかしながらC偏析度yが2.0を超えると偏析過多と
なり、焼結層表面部が過溶融状態となって、通気性を悪
化させることから生産性が逆に低下し、また焼結鉱強度
も上層部が非晶質となり脆化すると共に下層部は熱不足
で焼結不良となる等、その品質上においても、悪影響の
生じることが確認された。
However, if the C segregation degree y exceeds 2.0, there will be excessive segregation, and the surface of the sintered layer will be in an over-molten state, which will worsen the permeability, resulting in a decrease in productivity, and the strength of the sintered ore will also decrease. It was confirmed that the upper layer became amorphous and became brittle, while the lower layer suffered from poor sintering due to lack of heat, which adversely affected its quality.

本発明においてC偏析度yを1.05〜2.0の範囲に
限定したのは係る理由からである。
This is the reason why the C segregation degree y is limited to a range of 1.05 to 2.0 in the present invention.

ところでC偏析度yが前記所定の範囲になるよう焼結原
料2をパレット7に装入せしめるための具体的な手段と
しては、まず前記第4図に示すようにドラムフィーダー
6の下方部に噴射ノズル9を配設し、スローピングシュ
ート8、あるいはドラムフィーダー6よりパレット7に
落下する焼結原料2に適度な風速に調整された空気、不
活性ガス、水蒸気等の圧力気体を吹付け、風力分級を行
いながら装入せしめることによって所望するC偏析を生
せしめることが可能である。
By the way, as a specific means for charging the sintering raw material 2 into the pallet 7 so that the C segregation degree y falls within the predetermined range, first, as shown in FIG. A nozzle 9 is installed to spray pressurized gas such as air, inert gas, or water vapor adjusted to an appropriate wind speed onto the sintered raw material 2 falling from the sloping chute 8 or the drum feeder 6 onto the pallet 7, resulting in wind classification. By charging while carrying out the above steps, it is possible to produce the desired C segregation.

第6図は第4図に示すスローピングシュート8および噴
射ノズル9を併設した装入設備において、噴射ノズル9
より空気を噴射せしめ、その風量と表面C含有量との関
係を調査した一実験結果を示す図表であり、本実施例に
おけるスローピングシュート8の傾斜角は55度、パレ
ット7の巾は3000mm、原料層高さは450mm、
焼結原料2の供給量は300T/Hである。
FIG. 6 shows the injection nozzle 9 in the charging equipment equipped with the sloping chute 8 and the injection nozzle 9 shown in FIG.
This is a chart showing the results of an experiment in which the relationship between the air volume and the surface C content was investigated by injecting more air. The layer height is 450mm,
The supply amount of the sintering raw material 2 is 300 T/H.

該第6図から、噴射ノズル9より噴射される風量、即ち
落下する原料層に対する衝突風速を種々変化させること
によって、表面C含有量を任意に調節することが可能で
あることが判明し、而して、該表面C含有量を調節する
ことによって、前述の如く原料層高さ方向のC偏析状態
を適宜調節することが可能となる。
From FIG. 6, it has been found that the surface C content can be arbitrarily adjusted by varying the amount of air injected from the injection nozzle 9, that is, the speed of the impinging wind against the falling raw material layer. By adjusting the surface C content, it becomes possible to appropriately adjust the C segregation state in the height direction of the raw material layer as described above.

第7図は、風量調整が容易で、かつパレット7の幅方向
の風量調整が可能な圧力気体噴射装置の一実施例を示す
平面配置図である。
FIG. 7 is a plan layout diagram showing an embodiment of a pressure gas injection device in which the air volume can be easily adjusted and the air volume can be adjusted in the width direction of the pallet 7.

該第7図において13は圧力気体供給管であり、14は
ヘッダーである。
In FIG. 7, 13 is a pressure gas supply pipe, and 14 is a header.

噴射ノズル9aはパレッl−7の幅方向に、複数個分割
され、該分割された噴射ノズル9aは、風量調節弁15
を介してヘッダー14に連接されている。
The injection nozzle 9a is divided into a plurality of pieces in the width direction of the pallet l-7, and the divided injection nozzle 9a is connected to the air volume control valve 15.
It is connected to the header 14 via.

而して、例えばパレット7の巾方向に複数個の検出端1
1a2を有する水分検出装置11によって表面水分P5
゜を検出し、その結果前記表面C含有量がパレット7の
幅方向で一定でなく、バラツキを生じている場合には、
該バラツキに応じて風量調節弁15の開度をそれぞれ制
御することにより、圧力気体の風量をパレット7の幅方
向で任意に調整でき、原料層中の高さ方向のみでなく、
幅方向のC偏析をも適宜コントロールすることが可能で
ある。
Thus, for example, a plurality of detection ends 1 are arranged in the width direction of the pallet 7.
The surface moisture P5 is detected by the moisture detection device 11 having 1a2.
° is detected, and as a result, if the surface C content is not constant in the width direction of the pallet 7 and has variations,
By controlling the opening degree of the air volume control valve 15 according to the variation, the air volume of the pressurized gas can be arbitrarily adjusted in the width direction of the pallet 7, and not only in the height direction in the raw material layer.
It is also possible to appropriately control C segregation in the width direction.

尚第7図の実施例において、両端部の噴射ノズル9a1
の噴射方向を変化させたのは、圧力気体の自由噴流の両
端効果等によってパレット7の両端部近傍のC偏析が充
分でなかったり、あるいは、パレット7外への発塵が著
しい等の場合に対処させるもので、例えば噴射ノズル9
a1と風量調節弁15とを伸縮管16を介して連結すれ
ば、その方向変換は任意に、かつ容易に可能である。
In the embodiment shown in FIG. 7, the injection nozzles 9a1 at both ends
The reason for changing the injection direction is when the C segregation near both ends of the pallet 7 is not sufficient due to the both end effect of the free jet of pressurized gas, or when there is significant dust generation outside the pallet 7. For example, the injection nozzle 9
If a1 and the air volume control valve 15 are connected via the telescopic pipe 16, the direction can be changed arbitrarily and easily.

勿論パレット7の幅方向におけるC偏析の調整が特に必
要のない場合には噴射ノズル9の構造を例えば幅方向に
一様な風速、あるいは、中央部と両端部が設定風速割合
で圧力気体の噴射が行われるよう、連続したスリブI・
状の開口部、あるいは一定間隔毎にノズルを有するよう
な簡単なものとすることでも差支えないことは当然であ
る。
Of course, if there is no particular need to adjust C segregation in the width direction of the pallet 7, the structure of the injection nozzle 9 may be changed so that, for example, the air velocity is uniform in the width direction, or the central part and both ends inject pressurized gas at a set air velocity ratio. Continuous sleeve I.
Of course, it is also possible to use something as simple as a shaped opening or a nozzle at regular intervals.

また場合によっては噴射ノズル9を設置せず、例えば単
にスローピングシュート8の傾斜角を任意に変化させ得
る構造とすることや、図示はしないけれどもスローピン
グシュート8と同様な形状に多数の回転ローラーを配設
し、該回転ローラーを焼結原料2の降下方向あるいは降
下方向と逆方向に回転させるか、または該回転ローラー
の配設ピッチを上下方向で変化させ、それぞれ相隣わる
ローラー外表面との隙間を上部は狭く、下部は広くする
等の手段によってもC偏析を生せしめることは充分可能
である。
In some cases, the injection nozzle 9 may not be installed and, for example, the slope angle of the sloping chute 8 may be simply changed arbitrarily, or a large number of rotating rollers may be arranged in the same shape as the sloping chute 8, although not shown. The rotating roller is rotated in the descending direction of the sintering raw material 2 or in the opposite direction to the descending direction, or the arrangement pitch of the rotating roller is changed in the vertical direction to increase the gap between the outer surface of each adjacent roller. It is quite possible to cause C segregation by making the upper part narrower and the lower part wider.

而して、焼結原料2の装入条件、および前記設備条件等
に応じて、第2図および第5図に対応するようなスロー
ピングシュート8、あるいは回転ローラーの外表面の傾
斜角、あるいは回転ローラーの回転速度、配設ピッチ等
と表面C含有量の変化割合、および原料層高さ方向のC
偏析状態等をあらかじめ調査し、把握すると共に前記(
1)式の定数a、 l)を求めておくことによって本発
明の効果的な適用が充分可能である。
Therefore, depending on the charging conditions of the sintering raw material 2 and the equipment conditions, etc., the sloping chute 8 corresponding to FIGS. 2 and 5, the inclination angle of the outer surface of the rotating roller, or the rotation Roller rotation speed, arrangement pitch, etc., change rate of surface C content, and C in the height direction of the raw material layer
In addition to investigating and understanding the segregation state etc. in advance, the above (
1) The present invention can be applied effectively by determining the constants a and l) in the equation.

しかしながら本発明者等の経験では、前述の第3図およ
び゛第7図に示すようなスローピングシュ=1・8およ
び噴気ノズル9aを併設し活用する手段がC偏析度合の
調整が原料層の高さ方向および幅方向に任意に、かつ精
度良く行え、その調整範囲も極めて広い上に、その制御
も容易であることから前述の如き自動化も容易に行え非
常に効果的であった。
However, in the experience of the present inventors, the method of installing and utilizing the sloping shoes = 1, 8 and the jet nozzle 9a as shown in the above-mentioned Fig. 3 and Fig. This adjustment can be carried out arbitrarily and accurately in the width direction and the width direction, the adjustment range is extremely wide, and the control is easy, so automation as described above can be performed easily and is very effective.

以上詳述したように本発明は、焼結原料2の焼成前の水
分偏析とC偏析間に前記(1)式に示す相関関係が存在
するという新知見に基いて、当該焼結原料2の平均水分
P5□と表面水分P5゜を実測することによりC偏析度
yを算出し推定して該C偏析度yが1.05〜2.0あ
るいは1.05〜2.0の範囲内の設定範囲になるよう
に圧力気体の噴射風量、あるいはスローピングシュート
8の傾斜角等を調整し、原料層中のC偏析、即ちCの高
さ方向および、もしくは幅方向の分布を調節しながら焼
結原料2のパレット7への装入を行い、然る後焼結を行
うものである。
As described in detail above, the present invention is based on the new finding that there is a correlation shown in equation (1) between the moisture segregation and C segregation of the sintered raw material 2 before firing. The C segregation degree y is calculated and estimated by actually measuring the average moisture P5□ and the surface moisture P5゜, and the C segregation degree y is set within the range of 1.05 to 2.0 or 1.05 to 2.0. The sintering raw material is sintered by adjusting the amount of pressurized gas jet or the inclination angle of the sloping chute 8 so that the sintering material is sintered while adjusting the C segregation in the raw material layer, that is, the distribution of C in the height direction and/or width direction. 2, and then sintered.

以上の如く本発明によって焼結原料2の最適な装入制御
が操業中においても連続的にあるいは必要に応じて適宜
、迅速にかつ適確に行えるようになったことから、焼結
鉱の生産能率、およびその品質は著しく向上し、加えて
原料表層の着火性が良好となったことから点火炉10に
おける燃料消費量も大巾に低減でき、その省エネルギー
効果も極めて大なるものであった。
As described above, according to the present invention, optimal charging control of the sintered raw material 2 can be carried out continuously during operation or as needed, quickly and appropriately, so that production of sintered ore can be achieved. The efficiency and quality were significantly improved, and in addition, the ignitability of the surface layer of the raw material was improved, so the fuel consumption in the ignition furnace 10 was significantly reduced, and the energy saving effect was also extremely large.

以上のように本発明の工業的、実用的効果は非常に大で
ある。
As described above, the industrial and practical effects of the present invention are very large.

【図面の簡単な説明】[Brief explanation of the drawing]

各図は本発明の実施例を示すもので第1図は、焼結原料
に圧力気体を噴射せしめつつ装入した実施例における粒
度偏析状態を示す線図、第2図はそれに対応するC偏析
状態を示す線図、第3図は同水分偏析状態を示す線図、
第4図はDL焼結設備の給鉱部の一実施例を示す部分断
面図、第5図は水分偏析とC偏析との相関関係を調査し
た結果を示す図表、第6図は圧力気体の風量と表面C含
有量との関係を示す線図、第7図は圧力気体噴射装置の
一実施例を示す平面配置図である。 1・・・・・・造粒ドラム、2・・・・・・焼結原料、
3・・・・・・装入コンベヤ、4・・・・・・オシレー
テイングコンベア、5・・・・・・ホッパー、6・・・
・・・ドラムフィーダー、7・・・・・・パレット、8
・・・・・・スローピングシュート、9゜9a、9a’
・・・・・・圧力気体噴射ノズル、10・・・・・・点
火炉、11・・・・・・水分検出装置、12・・・・・
・演算制御装置、13・・・・・・圧力気体供給管、1
4・・・・・・ヘッダー、15・・・・・・風量調節弁
、16・・・・・・伸縮管。
Each figure shows an example of the present invention. Figure 1 is a diagram showing the particle size segregation state in an example in which the sintering raw material is charged while injecting pressurized gas, and Figure 2 is a diagram showing the corresponding C segregation state. A diagram showing the state, Figure 3 is a diagram showing the water segregation state,
Figure 4 is a partial sectional view showing an example of the ore feed section of DL sintering equipment, Figure 5 is a chart showing the results of investigating the correlation between moisture segregation and C segregation, and Figure 6 is a diagram showing the results of an investigation of the correlation between water segregation and C segregation. A diagram showing the relationship between air volume and surface C content, and FIG. 7 is a plan layout diagram showing one embodiment of the pressure gas injection device. 1... Granulation drum, 2... Sintering raw material,
3...Charging conveyor, 4...Oscillating conveyor, 5...Hopper, 6...
...Drum feeder, 7...Pallet, 8
・・・・・・Sloping shoot, 9°9a, 9a'
... Pressure gas injection nozzle, 10 ... Ignition furnace, 11 ... Moisture detection device, 12 ...
- Arithmetic control device, 13... Pressure gas supply pipe, 1
4... Header, 15... Air volume control valve, 16... Telescopic pipe.

Claims (1)

【特許請求の範囲】 I DL焼結方法において、焼結原料の焼成前の水分
偏析度と、炭素含有量偏析度間に存在する下記(1)式
に示す相関関係に基いて、当該焼結原料について実測し
て得た平均水分Psiと表面水分Ps□から水分偏析度
(Ps□/PS、)を求め、ついで前記水分偏析度(S
s□/Ps、)から炭素含有量偏析度yを算定し、当該
炭素含有量偏析度yが1.05〜2.0になるように、
焼結原料をパレットに装入する際に原料層中の炭素の高
さ方向およびもしくは幅方向の分布を調節し、焼結する
ことを特徴とするDL焼結方法。 ただし、y:炭素含有量偏析度 C5□:焼結原料の平均炭素含有量 C5□:点火炉到達前のパレット上の焼 結原料表面炭素含有量 P5、:造粒ドラム以降で点火炉到達前 までの任意工程における焼結原料 の平均水分 P8□:点火炉到達前のパレット上の焼 結原料表面水分 a、l):原料条件、設備条件等によっ て定まる定数。
[Claims] In the IDL sintering method, the sintering process is performed based on the correlation shown in the following equation (1) between the moisture segregation degree of the sintering raw material before firing and the carbon content segregation degree. The moisture segregation degree (Ps□/PS,) is determined from the average moisture content Psi and the surface moisture Ps□ obtained by actually measuring the raw material, and then the moisture segregation degree (S
Calculate the carbon content segregation degree y from s□/Ps,) so that the carbon content segregation degree y is 1.05 to 2.0.
A DL sintering method characterized by adjusting the distribution of carbon in the height direction and/or width direction in the raw material layer when charging the sintering raw material into a pallet, and sintering the raw material. However, y: Carbon content segregation degree C5□: Average carbon content of the sintered raw material C5□: Carbon content on the surface of the sintered raw material on the pallet before reaching the ignition furnace P5: After the granulation drum and before reaching the ignition furnace Average moisture content of the sintered raw material in any process up to P8□: Surface moisture of the sintered raw material on the pallet before reaching the ignition furnace a, l): Constant determined by raw material conditions, equipment conditions, etc.
JP11078277A 1977-09-14 1977-09-14 DL sintering method Expired JPS5952693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11078277A JPS5952693B2 (en) 1977-09-14 1977-09-14 DL sintering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11078277A JPS5952693B2 (en) 1977-09-14 1977-09-14 DL sintering method

Publications (2)

Publication Number Publication Date
JPS5443802A JPS5443802A (en) 1979-04-06
JPS5952693B2 true JPS5952693B2 (en) 1984-12-21

Family

ID=14544469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11078277A Expired JPS5952693B2 (en) 1977-09-14 1977-09-14 DL sintering method

Country Status (1)

Country Link
JP (1) JPS5952693B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134662U (en) * 1984-07-31 1986-03-03 ジューキ株式会社 magnetic disk cooling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134662U (en) * 1984-07-31 1986-03-03 ジューキ株式会社 magnetic disk cooling device

Also Published As

Publication number Publication date
JPS5443802A (en) 1979-04-06

Similar Documents

Publication Publication Date Title
CA2009814C (en) Method for manufacturing agglomerates of sintered pellets
JP4598882B2 (en) Raw material charging method and apparatus for sintering machine
JPS5952693B2 (en) DL sintering method
US7811086B2 (en) Feeding device for a belt-type sintering machine
US4871393A (en) Apparatus and method for feeding sintering raw mix
KR100530081B1 (en) A Method for Controlling the Supply of Sinter Cake for Furnace
JP5633121B2 (en) Method for producing sintered ore
JPH055589A (en) Operating method for sintering machine
KR100413821B1 (en) Method for manufacturing sintered ore by controlling the ventilation in the sintered layer
JPH0814007B2 (en) Agglomerated ore manufacturing method
JPH046777B2 (en)
JPS5938289B2 (en) Method for producing sintered ore
KR100396073B1 (en) Sintered ore manufacturing system
JPH08127822A (en) Operation of sintering
CN107504813A (en) Sintering feed segregation distribution method
JPH05272872A (en) Control device for feed amount of sintering material
JPH01191751A (en) Operating method of sintering machine
JPH0819487B2 (en) Sintering raw material charging method
JPH08134554A (en) Granulation of raw material for sinter
JPH03177787A (en) Reduction of sintering nonuniformity of sintered ore
JP2000320978A (en) Control method of charging sintered material
JPH02294437A (en) Method for operating sintering machine
JPS63183133A (en) Method for controlling sintering point in sintering machine and said sintering machine
JPH0288724A (en) Method for operating sintering machine
JPH08285467A (en) Charging method and device of sintering ore raw material