JPS5837918A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5837918A
JPS5837918A JP56135729A JP13572981A JPS5837918A JP S5837918 A JPS5837918 A JP S5837918A JP 56135729 A JP56135729 A JP 56135729A JP 13572981 A JP13572981 A JP 13572981A JP S5837918 A JPS5837918 A JP S5837918A
Authority
JP
Japan
Prior art keywords
island
film
insulating film
polycrystalline
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56135729A
Other languages
Japanese (ja)
Inventor
Haruhide Fuse
玄秀 布施
Koichi Kugimiya
公一 釘宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56135729A priority Critical patent/JPS5837918A/en
Publication of JPS5837918A publication Critical patent/JPS5837918A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02689Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using particle beams

Abstract

PURPOSE:To obtain a good crystalline semiconductor layer with no pattern deformation by irradiating an energy beam to a non-singlecrystal Si island surrounded by an insulating film. CONSTITUTION:After forming on a semiconductor substrate 1 an insulating film 2 such as of SiO2, a polycrystalline Si is deposited thereupon, which is etched to form a polycrystalline Si island 3. An insulating film 4 such as of an oxide film is formed on the surface of the island. After melting that the polycrystalline Si 3 is single-crystallized by the irradiation of an energy beam such as a laser. Thus, an Si crystal island 3' having large diameter grains, which is analogous to a singlecrystal Si in structure, is obtained. In this process the insulating film 4 on the even parts of the polycrystalline Si 3 may be removed by etching before the energy beam irradiation with the film 4 at the sides of the island left intact. This prevents the molten polycrystal Si from flowing out in a lateral direction.

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法とくに絶縁膜−1−に形
成された多結晶又は非晶質の島状シリコン膜の粒径を増
大する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of increasing the grain size of a polycrystalline or amorphous silicon island film formed in an insulating film-1-.

従来より、絶縁膜又は軸絶縁基板上に結晶1′1の良い
(粒径の大きい)シリコン層を形成出来れば、この層中
に動作速度の早い素子を形成出来ることが知られており
、絶縁膜上に粒径の大きいシリコン層を形成する方法が
強く望まれている。このためこれを可能にしようとして
いるのが、レーザを用いてSiO2や5isN4の絶縁
膜」二で良い結晶を形成する方法である。レーザ、電子
ビーム等のエネルギー密度の高いビームは、Si表面の
みを溶融することが可能で、例えば、S i O2J−
に堆積したポリシリコ/(多結晶シリコン)のみを溶か
してダレイン成長をおこし粒径を増大するものである。
It has been known that if a silicon layer with good crystal 1'1 (large grain size) can be formed on an insulating film or a shaft insulating substrate, an element with high operating speed can be formed in this layer. A method of forming a silicon layer with large grain size on a film is strongly desired. Therefore, an attempt is being made to make this possible by using a laser to form a crystal that can be formed using an insulating film of SiO2 or 5isN4. Beams with high energy density such as lasers and electron beams can melt only the Si surface; for example, SiO2J-
The grain size is increased by melting only the polysilico/(polycrystalline silicon) deposited on the surface to cause dalein growth.

この場合に、基板全体に堆積したポリシリコンにレーザ
の照射を行なうと溶融層の歪み発生により、十分均一な
シリコン層を形成することは難かしい。
In this case, if polysilicon deposited over the entire substrate is irradiated with a laser beam, distortion will occur in the molten layer, making it difficult to form a sufficiently uniform silicon layer.

そこで、シリコン層を数+71 mのオーダーの島状に
形成しておくことによって、これらの歪みをやわらげる
ことが行なわれている。現に471 m X20 /1
mの島状の多結晶シリコンにレーザ照射を行うと、完全
な単結晶になったという報告がある。
Therefore, these distortions are alleviated by forming a silicon layer in the form of an island on the order of several +71 m. Actually 471 m x 20 /1
There is a report that when laser irradiation is applied to island-shaped polycrystalline silicon of m, it becomes a perfect single crystal.

しかし、このように島状のポリシリコンをこのま一4v
−ザで溶融すると、AppL、Phys、Lett38
(3)1981 P2S5でり、に、Biegelse
n等が報告しているように、ポリシリコンが流れ出して
バター7がくずれてしまう。そこで、この流れ出しを防
ぐ為に、LOGO3(loc&l oxidation
 ofSi)法を用いて、島状のポリシリコン以外をす
べて酸化してしまう方法が考えられるがこの方法は酸化
と同時に島状のシリコンを形成するものであり、5is
N4 形成に伴なう複雑な工程の増加や厚いSiO2を
形成する必要がある為、高温、長時間の酸化が必要とな
る。この為、この様な複雑化したプロセスは高密度化さ
れたLSIのプロセスに対しては、不純物拡散等の現象
が大きく変動する為、好ましくない。
However, if the island-shaped polysilicon is
- AppL, Phys, Lett38 when melted in the
(3) 1981 P2S5, Biegelse
As reported by N et al., the polysilicon flows out and the butter 7 crumbles. Therefore, in order to prevent this outflow, LOGO3 (loc&l oxidation
One possible method is to oxidize all but the island-shaped polysilicon using the 5is of Si method, but this method forms island-shaped silicon at the same time as the oxidation.
Since the number of complicated steps associated with N4 formation increases and it is necessary to form thick SiO2, high temperature and long oxidation are required. Therefore, such a complicated process is not preferable for a high-density LSI process because phenomena such as impurity diffusion vary greatly.

本発明は上記欠点にかんがみなされたもので、簡単な方
法でもって、この島状の多結晶(又は非結晶)シリコン
膜の流れ出しを防止する方法を提供するものである。す
なわち、本発明はあらかじめ島状に形成したポリシリコ
ンのまわりを酸化膜によりとり囲んだ状態で、レーザ又
は電r−ビームによるポリシリコンの溶融をおこなうも
のでちる。
The present invention has been made in view of the above-mentioned drawbacks and provides a method for preventing the island-shaped polycrystalline (or amorphous) silicon film from flowing out using a simple method. That is, the present invention involves melting polysilicon with a laser or an electric r-beam while surrounding the polysilicon which has been formed in the form of an island in advance with an oxide film.

次に、実際の工程図にそって本発明の説明を行なう。第
1図〜第3図は、3種類の本発明の一丁二程を示すもの
である。まず第1図(A)においてンリコン半導体基板
1の1−に絶縁膜としての5iO22を形成後、多結晶
シリコンを堆積し、数+71 m〜数百μmの島にエツ
チングして多結晶シリコンの島3を形成する。次に第1
図(B)に示すように、多結晶シリコン3を熱酸化して
その表面に酸化1q(SiO2)4を1000A以上形
成する。条件としては、We to 2 酸化で900
″02時間程度で100OAの酸化膜4の形成が可能で
ある。第1図(C)において、高いエネルギー密度をも
つレーザ等ノビ−ムロを照射して多結晶シリコ/3を(
R融するこの酸化膜4ば、レーザのパワーヲホとんど吸
収せずしかも融点が高い為ポリシリコン3が溶融シても
溶けることはなく、ポリシリコン3の流れ出しの壁とな
る。こうして、第1図(D)に示す様に粒径の大きな単
結晶に近いシリコン結晶の島3′をつくる。ここで用い
るレーザば、5102や5isNa にはほとんど吸収
されずSiに強く吸収されるArレーザ、 Krレーザ
、YAGレーザ等域 の連絡発振型のものが好ましい。そしてこの島3′の部
分に様々な半導体素子を作り込むことにより、半導体集
積回路が作成できる。尚、半導体基板1中にも第1層目
の半導体素子を作り込んであるもこに半導体素子を形成
することにより多層構造の半導体ICを形成することが
可能である。
Next, the present invention will be explained along with actual process diagrams. Figures 1 to 3 show three types of the present invention. First, in FIG. 1(A), after forming 5iO22 as an insulating film on 1- of the silicon semiconductor substrate 1, polycrystalline silicon is deposited and etched into islands of several +71 m to several hundred μm to form islands of polycrystalline silicon. form 3. Next, the first
As shown in Figure (B), polycrystalline silicon 3 is thermally oxidized to form oxide 1q(SiO2)4 of 1000 A or more on its surface. The conditions are We to 2 oxidation at 900
It is possible to form an oxide film 4 of 100 OA in about 2 hours. In FIG.
This R-melting oxide film 4 does not absorb much of the laser power and has a high melting point, so it does not melt even if the polysilicon 3 is melted, and becomes a wall against which the polysilicon 3 flows. In this way, as shown in FIG. 1(D), islands 3' of silicon crystals having large grain sizes and close to single crystals are formed. The laser used here is preferably a coupled oscillation type laser such as an Ar laser, a Kr laser, or a YAG laser, which is hardly absorbed by 5102 or 5isNa but strongly absorbed by Si. A semiconductor integrated circuit can be created by building various semiconductor elements into this island 3'. Note that it is possible to form a multilayered semiconductor IC by forming semiconductor elements in the semiconductor substrate 1 where the first layer of semiconductor elements is built.

第2図は、第1図と(A) 、 (B)の工程は同様で
あるが、同図(C)工程でポリシリコン3の平担部上の
酸化膜4をフォトエツチング法にてエツチング除去し、
ポリシリコン3の側面にのみ酸化膜6を残しテ、高エネ
ルギービーム6でポリシリコン3を溶融させて粒径の大
きな結晶とするものである。この酸化膜6は、ポリシリ
コン3の溝方向の流れ出しを防ぐために必要な為壁の部
分のみあればこの目的が達せられる。
In FIG. 2, the steps in (A) and (B) are the same as those in FIG. remove,
An oxide film 6 is left only on the side surfaces of the polysilicon 3, and the polysilicon 3 is melted with a high-energy beam 6 to form crystals with large grain sizes. This oxide film 6 is necessary to prevent the polysilicon 3 from flowing out in the trench direction, so this purpose can be achieved if only the wall portion is provided.

第3図は、第1図では熱酸化を行なって酸化膜4を形成
するのに対して、CV D (chemicalvap
our deposition)法によって酸化膜を形
成するものである。まず、第3図(A)の如く、第1図
In FIG. 3, the oxide film 4 is formed by thermal oxidation in FIG.
The oxide film is formed using the oxidation method. First, as shown in FIG. 3(A), FIG.

第2図(A)と同様に島状のポリシリコン膜3形成後5
102又は5isNa 膜8を全面に形成する。(同図
B)そして同図(C”lの様に写真食刻法により、9に
示すポリシリコン膜3上の絶縁膜8を工・ノチ/グしで
し捷う。そしてその上から、高エネノ棗、ギー密度ビー
ム6によって照射を行ない、島状ポリシリコン膜3を溶
融させてシリコン粒径の大きい島状のシリコン領域3′
を形成する。
5 after forming the island-shaped polysilicon film 3 as in FIG. 2(A).
A 102 or 5isNa film 8 is formed over the entire surface. (B in the same figure) Then, as shown in the same figure (C''l), the insulating film 8 on the polysilicon film 3 shown in 9 is etched/cutted by photolithography. Irradiation is performed with a high-energy, high-density beam 6 to melt the island-like polysilicon film 3 and form an island-like silicon region 3' with a large silicon grain size.
form.

尚、本実施例(第1図〜第3図)の場合、171m波長
以下の光やレーザを用いているので8102や5i3N
a  にはエネルギーが吸収されず、ポリシリコノ膜3
の部分のみで吸収される。特に、第3図の実施例の場合
、エネルギーは厚い=絶縁膜9があるので減衰し、半導
体基板1の溶融は全く起きない。また、高エネルギービ
ーム金電子ビームを用いる場合には物質により吸収係数
がほとんど変わらない為表面で吸収され、半導体基板1
の影響はより少ない。
In the case of this example (Figures 1 to 3), since light or laser with a wavelength of 171 m or less is used, 8102 or 5i3N
No energy is absorbed in a, and the polysilicon film 3
It is absorbed only in the . In particular, in the case of the embodiment shown in FIG. 3, the energy is attenuated due to the presence of the thick insulating film 9, and no melting of the semiconductor substrate 1 occurs. In addition, when using a high-energy gold electron beam, the absorption coefficient hardly changes depending on the material, so it is absorbed at the surface of the semiconductor substrate 1.
is less affected.

実際に、1/1mの酸化膜2上に、0.6IlIQノホ
島 リンリコンを堆積して約30/l m X 40/i 
mの昔にのこし、それに100OAのWe to 2 
酸化を行なって酸化膜4を形成する。そのまま、GW−
Arレーザ8〜9Wの出力で焦点距離5mのレンズで絞
って360’Cの試料台にのせて、一方向へ30mm1
sec、他方向へ1011 mピンチに送ることにより
、多結晶7リコン3の部分を完全に溶融した。
Actually, 0.6IlIQ Noho Island phosphorus was deposited on the 1/1m oxide film 2 to form a film of approximately 30/l m x 40/i.
Leftover from the past of m, and 100OA's We to 2
Oxidation is performed to form an oxide film 4. Just like that, GW-
Ar laser has an output of 8~9W, is focused with a lens with a focal length of 5m, is placed on a 360'C sample stage, and is 30mm1 in one direction.
sec and 1011 m in the other direction, the polycrystalline 7 recon 3 part was completely melted.

その結果、酸化膜4部分は溶融せずに、横方向の流れに
よるバター7くずれは、酸化膜によって全く生じること
なく、ポリシリコン粒が大きく成長し、島がほぼ1グレ
イ/の領域ゴになった。第2図、第3図に示す方法を用
いても、辛く(・・1縁の効果があり、この形成された
島3′に能動半導体素子を作成してンノグルンリコン並
の特性を得ることにおいて、加工上程におけるパターン
くすitか小さい為に微細JJn工が可能となり、かつ
高温、長時間の熱処理も不安で積層形高密度LSIの形
成に大きく寄与するものである。
As a result, the oxide film 4 did not melt, the oxide film did not cause any collapse of the butter 7 due to the lateral flow, and the polysilicon grains grew to a large size, resulting in an island with an area of approximately 1 Gy/Gy. Ta. Even if the method shown in FIGS. 2 and 3 is used, there is a single edge effect, and in producing an active semiconductor element on the formed island 3' and obtaining characteristics comparable to that of the non-conducting silicon. Since the pattern size in the processing process is small, fine JJN processing is possible, and high-temperature, long-term heat treatment is also unstable, which greatly contributes to the formation of laminated high-density LSIs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)〜(D)、第2図(A)〜(C)、第3図
(A)〜(C)はそれぞれ本発明の実施例の島状シリコ
ンの製造工程断面図である。 2・・・・・・絶縁膜、3・・・・・・島状ポリシリコ
ンllか、3′・・・・・・島状ンリコノ領域、4,5
.9・・・・・・酸化膜、6・・・・・・高エネルギー
ビーム。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第 2図
FIGS. 1(A) to (D), FIGS. 2(A) to (C), and FIGS. 3(A) to (C) are sectional views of the manufacturing process of island-shaped silicon according to the embodiments of the present invention, respectively. . 2... Insulating film, 3... Island-like polysilicon ll, 3'... Island-like silicon region, 4,5
.. 9... Oxide film, 6... High energy beam. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)絶縁膜上に非晶質又は多結晶のシリコン膜を島状
に形成する第1の工程と、前記島状シリコン膜の少なく
とも側面に絶縁膜を形成する第2の工程と、エネルギー
ビームを前記島状シリコン膜に照射して、シリコンの粒
径を大きくする第3の工程とを備えたことを特徴とする
半導体装置の製造方法。
(1) A first step of forming an island-like amorphous or polycrystalline silicon film on an insulating film, a second step of forming an insulating film on at least the side surfaces of the island-like silicon film, and an energy beam step. and a third step of increasing the grain size of the silicon by irradiating the island-like silicon film with.
(2)  第2の工程が、シリコン膜を熱酸化樗して島
状シリコン膜表面にシリコン酸化膜を形成する工程より
なることを特徴とする特許請求の範囲第1項記載の半導
体装置の製造方法。
(2) Manufacturing a semiconductor device according to claim 1, wherein the second step comprises a step of thermally oxidizing the silicon film to form a silicon oxide film on the surface of the island-like silicon film. Method.
(3)第2の工程が、島状シリコン膜を含む表面上にC
VD絶縁膜を形成し、しかる後フォトエッチによシ前記
島状シリコン膜側面にのみCVD絶縁膜を残存させる工
程よりなることを特徴とする特許請求の範囲第1項に記
載の半導体装置の製造方法。
(3) The second step is to apply C on the surface including the island-like silicon film.
Manufacturing a semiconductor device according to claim 1, comprising the steps of forming a VD insulating film and then photo-etching to leave the CVD insulating film only on the side surfaces of the island-like silicon film. Method.
JP56135729A 1981-08-28 1981-08-28 Manufacture of semiconductor device Pending JPS5837918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56135729A JPS5837918A (en) 1981-08-28 1981-08-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56135729A JPS5837918A (en) 1981-08-28 1981-08-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5837918A true JPS5837918A (en) 1983-03-05

Family

ID=15158507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56135729A Pending JPS5837918A (en) 1981-08-28 1981-08-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5837918A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184517A (en) * 1983-04-05 1984-10-19 Agency Of Ind Science & Technol Manufacture of lamination-type semiconductor device
US6638800B1 (en) 1992-11-06 2003-10-28 Semiconductor Energy Laboratory Co., Ltd. Laser processing apparatus and laser processing process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184517A (en) * 1983-04-05 1984-10-19 Agency Of Ind Science & Technol Manufacture of lamination-type semiconductor device
JPH0136972B2 (en) * 1983-04-05 1989-08-03 Kogyo Gijutsuin
US6638800B1 (en) 1992-11-06 2003-10-28 Semiconductor Energy Laboratory Co., Ltd. Laser processing apparatus and laser processing process
US7179726B2 (en) 1992-11-06 2007-02-20 Semiconductor Energy Laboratory Co., Ltd. Laser processing apparatus and laser processing process
US7799665B2 (en) 1992-11-06 2010-09-21 Semiconductor Energy Laboratory Co., Ltd. Laser processing apparatus and laser processing process

Similar Documents

Publication Publication Date Title
JPH0454370B2 (en)
JPS5821319A (en) Annealing by laser
US4549064A (en) Laser treatment of silicon nitride
JPH0343769B2 (en)
JPS63102265A (en) Manufacture of semiconductor device
JPS5837918A (en) Manufacture of semiconductor device
JP3321890B2 (en) Method of forming semiconductor crystal and semiconductor element
JPS6342417B2 (en)
JPH02864B2 (en)
JPS5814525A (en) Manufacturing semiconductor device
JPS5880831A (en) Manufacture of substrate for semiconductor device
JPS6159820A (en) Manufacture of semiconductor device
JPS5837934A (en) Manufacture of semiconductor device
JPS6017911A (en) Manufacture of semiconductor device
JPS5837919A (en) Manufacture of semiconductor device
JPS5918629A (en) Manufacture of semiconductor device
JPS60189218A (en) Manufacture of semiconductor integrated circuit substrate
JPS63265464A (en) Manufacture of semiconductor device
JPS6380521A (en) Manufacture of semiconductor thin film crystal layer
JPH0472615A (en) Manufacture of semiconductor device
JPH07131029A (en) Fabrication of thin film transistor
JPS6066416A (en) Manufacture of semiconductor integrated-circuit base body
JPH01138749A (en) Manufacture of semiconductor device
JPH0297012A (en) Manufacture of single crystal semiconductor thin film
JPS6038809A (en) Manufacture of semiconductor device