JPS5837835A - Magneto-resistance effect type magnetic head - Google Patents

Magneto-resistance effect type magnetic head

Info

Publication number
JPS5837835A
JPS5837835A JP56135327A JP13532781A JPS5837835A JP S5837835 A JPS5837835 A JP S5837835A JP 56135327 A JP56135327 A JP 56135327A JP 13532781 A JP13532781 A JP 13532781A JP S5837835 A JPS5837835 A JP S5837835A
Authority
JP
Japan
Prior art keywords
magnetic field
film
conductor layer
layer
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56135327A
Other languages
Japanese (ja)
Inventor
Hideo Suyama
英夫 陶山
Yutaka Hayata
裕 早田
Hiroshi Takino
浩 瀧野
Shigemi Imakoshi
今越 茂美
Hiroyuki Uchida
裕之 内田
Junkichi Sugita
杉田 順吉
Tetsuo Sekiya
哲夫 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP56135327A priority Critical patent/JPS5837835A/en
Publication of JPS5837835A publication Critical patent/JPS5837835A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures

Abstract

PURPOSE:To facilitate the control of a bias magnetic field and to stabilize the characteristics for a magneto-resistance effect type magnetic head, by setting a permanent magnet film and a conductor layer holding a thin film magneto- resistance effect element between them on a substrate. CONSTITUTION:An insulated layer 29 or SiO2, etc. is coated when necessary on a substrate 21, and at the same time an insulated permanent magnet film 22 of about 2,000-3,000Angstrom thickness is formed on the substrate 21 to generate a bias magnetic field. A thin film magneto-resistance effect element 23 is formed on the film 22 via an Fe-Ni alloy, etc. of about 300-500Angstrom . In addition, a conductor layer 24 for generation of bias magnetic field is formed on the element 23 with about 500-1,500Angstrom thickness via a Ta-Si group alloy, etc. A terminal conductor layer 30 is coated and led out from the upper parts of both ends of the layer 24. With use of such magnetic head, a magnetic field obtained by synthesizing a magnetic field generated from the layer 24 and a magnetic field produced from the film 22 flows to the element 23 to avoid the oxidation of the element 23.

Description

【発明の詳細な説明】 本発明は磁気抵抗(以下MRという)効果製磁気ヘッド
に係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetoresistive (hereinafter referred to as MR) effect magnetic head.

MR効果瀝磁気ヘッドによる再生磁気ヘッドは、通常一
般の電磁誘導型の再生磁気ヘッドに比し、狭トラック再
生、短波長再生、超低速再生和すぐれていることが知ら
れている。
It is known that a reproducing magnetic head using an MR effect magnetic head is superior in narrow track reproducing, short wavelength reproducing, and ultra-low speed reproducing compared to a general electromagnetic induction type reproducing magnetic head.

MR効果製磁気ヘッドの例としては、例えば第1図に示
すように、基体(1)上に、バイアス磁界発生用の永久
磁石膜(2)が被着され、これの上にバイアス磁界発生
用の導体層(3)が被着され、更にこれの上に絶縁層(
4)を介して、薄gMR素子(51が被着されてなるも
のがある。この穐MR効果証磁気ヘッドは、永久磁界I
I (2) Kよる磁界と、−導体層(3)に電流を通
ずるととによって発生される磁界との合成−磁界によっ
て薄ji1MR素子(5)k所要の向きと大ぎさのバイ
アス磁界を与えて薄膜MR$子(5)が高い感度とすぐ
れた直線性を示す状態で動作するよ5になされている。
As an example of a magnetic head made of MR effect, as shown in FIG. A conductor layer (3) is deposited on top of which an insulating layer (3) is applied.
There is a device in which a thin gMR element (51) is adhered through a permanent magnetic field I
I (2) Combination of the magnetic field due to K and the magnetic field generated by passing a current through the conductor layer (3) - The magnetic field gives the thin MR element (5) a bias magnetic field of the required direction and magnitude. The thin film MR device (5) is designed to operate with high sensitivity and excellent linearity.

(6)は磁気媒体との対接面で、この対接面(6)K薄
11MR素子(5)の端面が臨み、この薄j[MR素子
(51の厚さ方向に磁気媒体との相対的移行方向が選ば
れる。
(6) is the surface in contact with the magnetic medium, and the end face of the K thin 11 MR element (5) faces this surface, and the surface facing the magnetic medium in the thickness direction of this thin J [MR element (51) The direction of target migration is selected.

ところがこのような構成によるMR効果型磁気ヘッドは
、薄i[MR素子(51と、これにバイアス磁界を与え
るための導体層(3)との間には、絶縁層(4)が介在
され、また薄膜MR$子(5)と、これに同様にバイア
ス磁界を与えるための永久磁石膜(2)との関には、導
体層(3)と絶縁層(4)とが介在されているので導体
層(3)と永久磁石II(23において比較的大きな磁
界を発生させる必要があり、導体層(3)には大電流を
通ずる必要が生じ、またこれら絶縁層(4)及び導体層
(3)が介在されることによってMR素子T5jに与え
る両磁界の合成磁界、すなわちバイアス磁界の調整が難
しく、安定且つ均一な特性を有する磁気ヘッドを得るこ
とが比較的面倒である。
However, in the MR effect magnetic head with such a configuration, an insulating layer (4) is interposed between the thin i[MR element (51) and the conductor layer (3) for applying a bias magnetic field thereto. Furthermore, a conductive layer (3) and an insulating layer (4) are interposed between the thin film MR element (5) and the permanent magnet film (2) for similarly applying a bias magnetic field. It is necessary to generate a relatively large magnetic field in the conductor layer (3) and the permanent magnet II (23), and it is necessary to pass a large current through the conductor layer (3). ), it is difficult to adjust the composite magnetic field of both magnetic fields, that is, the bias magnetic field, applied to the MR element T5j, and it is relatively troublesome to obtain a magnetic head with stable and uniform characteristics.

本発明は、このような欠点を解消したこの種MR効果証
磁気ヘッドを提供するものである。
The present invention provides an MR effect magnetic head of this type that eliminates these drawbacks.

第2図を参照して本発明の詳細な説明する。The present invention will be described in detail with reference to FIG.

本発明においては、基体Qυを設け、これの上にバイア
ス磁界発生用の絶縁性永久磁石膜のと、薄膜MR素子の
と、バイアス磁界発生用の導体層(ロ)とを順次配置す
る。
In the present invention, a base Qυ is provided, and an insulating permanent magnet film for generating a bias magnetic field, a thin film MR element, and a conductor layer (b) for generating a bias magnetic field are sequentially arranged on this.

図示の例は殊気シールド瀝構成を採った場合で、この場
合、基体3Dは、高透磁率磁性体、例えばNi−Zn系
、或いはMn −Zn系フェライトより構成され、この
基体3Dがこれらフェライトのように導電性を有する場
合、これの上Ksto!等の絶縁層(2)が3QOO1
〜5000Xの厚さに被着される。
The example shown is a case where a specially shielded structure is adopted, and in this case, the base 3D is made of a high magnetic permeability magnetic material, such as Ni-Zn-based or Mn-Zn-based ferrite, and this base 3D is made of these ferrites. If it has conductivity like Ksto! The insulating layer (2) is 3QOO1
Deposited to a thickness of ~5000X.

基体3〃上に形成するバイアス磁界発生用の永久磁石膜
のは、20001〜30UOX程度の厚さとされ、その
磁気特性は、飽和磁束密度Bsが300tl〜4000
ガウス、保磁力Hcが80000e 、角渥比Rsがo
、s程度で、固有抵抗値の高い酸化鉄系磁性膜、例えば
r−Fe20z、Pez04 icよって構成され着磁
されて成る。尚、この酸化鉄系磁性膜の形成は、アルゴ
ンとiIl累の混合ガスでスパッタ或いは蒸着によって
形成し得るものであり、この場合、このような方法によ
って形成しても、これの下には薄膜MR素子が存在して
いないので、この磁性膜、すなわち磁石膜Ωの形成に際
してその酸素によってMR素子t’s化させてその磁気
的特性に影響を与えるおそれはない。
The permanent magnet film for generating a bias magnetic field formed on the base body 3 has a thickness of about 20001 to 30 UOX, and its magnetic properties include a saturation magnetic flux density Bs of 300 tl to 4000 tl.
Gauss, coercive force Hc is 80000e, angle ratio Rs is o
, s, and is made of an iron oxide magnetic film having a high specific resistance value, such as r-Fe20z, Pez04 ic, and is magnetized. Note that this iron oxide magnetic film can be formed by sputtering or vapor deposition using a mixed gas of argon and IIl, and in this case, even if it is formed by such a method, there is a thin film underneath. Since no MR element is present, there is no risk of the MR element becoming t's due to oxygen during the formation of this magnetic film, that is, the magnet film Ω, and affecting its magnetic properties.

そして、この永久磁石膜@上に、薄膜MR素子cat/
、300X 〜500X程度の厚さのFe−Ni合金、
或いはN1−Go金合金F・−An−8i合金等によっ
て形成する。
Then, on this permanent magnet film @, a thin film MR element cat/
, Fe-Ni alloy with a thickness of about 300X to 500X,
Alternatively, it may be formed from N1-Go gold alloy, F.-An-8i alloy, or the like.

更に、この薄膜MR素子の上に、バイアス磁界発生用の
導体層(ロ)を被着するものであり、この導体層(至)
は化学的に安定で、薄膜MR素素子への拡散が小さく、
且つその固有抵抗値が薄膜MR素子(ハ)のそれに近い
金属膜、例えばTa、Nb、St 、1ldo、W等の
金属単体、或いはこれらの2種以上の金属の合金、例え
ばTa=8i系合金、或いはMo、Wと、Ta、Nb。
Furthermore, a conductor layer (b) for generating a bias magnetic field is deposited on this thin film MR element, and this conductor layer (to)
is chemically stable and has low diffusion into thin film MR elements.
In addition, a metal film whose specific resistance value is close to that of the thin film MR element (c), such as a single metal such as Ta, Nb, St, 1ldo, W, etc., or an alloy of two or more of these metals, such as a Ta=8i alloy. , or Mo, W, Ta, Nb.

81等の合金によって形成し得、その厚さは、これらの
抵抗体によって500x〜1500X K選ばれる。
81, and its thickness is selected from 500x to 1500xK depending on these resistors.

尚、これら絶縁性永久磁石膜@f1膜MR素子(ハ)及
び導体層(至)は、基体なυ上に順次全面的に被着して
後、ドライエツチング法、例えばイオンエツチングによ
って同時に例えば帯状の同一パターンにパターニングし
得る。
The insulating permanent magnet film @f1 film MR element (c) and the conductor layer (to) are sequentially deposited on the entire surface of the substrate υ, and then simultaneously etched into a strip shape, for example, by a dry etching method, for example, ion etching. can be patterned into the same pattern.

そして、バイアス磁界発生用の導体層(至)上を含んで
、例えば全面的K 3000X〜500(IXQ度の厚
さの絶縁層四例えば8i02層を周知の技術によって被
着する。そし【、これの上に接着剤(至)Kよって他方
の補強基体となり且つ磁気シールド効釆七有する基体(
3)、すなわち高透磁率の例えばNi−Zn系フェライ
ト、或いはMn−Zn系フェライト基体を接合し、両基
体(21)及び@関において、薄膜MRg子のと、これ
を挾んで配されたバイアス磁界発生用の永久磁石膜@と
導体層(至)とを挾持した構成とする。
Then, an insulating layer, e.g., 8i02 layer, having a thickness of, for example, K 3000X to 500 (IXQ degrees) is deposited by a known technique on the entire surface including the conductor layer for generating the bias magnetic field. The other reinforcing base is placed on top of the adhesive (to) K, and the base has a magnetic shielding effect (7).
3), that is, a high magnetic permeability substrate such as Ni-Zn ferrite or Mn-Zn ferrite is bonded, and a thin film MR element and a bias placed between them are bonded to both substrates (21) and @seki. It has a structure in which a permanent magnet film for generating a magnetic field and a conductor layer are sandwiched.

尚、第3図に示すように導体層@の両端上からは端子導
体層ctlt/被層導出し得る。
Incidentally, as shown in FIG. 3, the terminal conductor layer ctlt/coating layer can be led out from both ends of the conductor layer @.

京た*2図においで(至)は、鏡面研摩仕上げされた磁
気媒体との対接面で、この対!1面(至)に薄膜MR素
子(ハ)の端面が臨み、この薄膜MR素子Ωの厚み方向
に磁気媒体の相対的移行方向が選定される。
Kyota*2 In the figure, (to) is the mirror-polished surface that faces the magnetic medium, and this pair! The end face of the thin film MR element (c) faces one surface (to), and the direction of relative movement of the magnetic medium is selected in the thickness direction of this thin film MR element Ω.

また、上述の構成において、両基体31J及び(3)間
の間隔dは、薄膜MR素子のと基体(211との間、及
び導体層c!4と基板(5)との間の絶縁性が確保でき
る程度に絶縁層(至)及び(ハ)の厚さを選定し得、し
かも磁気シールド効果を期し得る間隔の1〜1.5μm
に選定することが望ましい。
In addition, in the above configuration, the distance d between both substrates 31J and (3) is such that the insulation between the thin film MR element and the substrate (211) and between the conductor layer c!4 and the substrate (5) is The thickness of the insulating layers (to) and (c) can be selected to the extent that it can be ensured, and the spacing is 1 to 1.5 μm to ensure a magnetic shielding effect.
It is desirable to select

尚、A上述した例では基体3υ及び鰭が高透磁率磁性体
によって構成された場合であるが、云う迄もなくこれら
基体(211及び鰭は非磁性体上に高透磁率磁性層、例
えば厚さ2μmのFe−Ni (パーマロイ)の蒸着層
が被着された構成とすることもできる。
In the example A mentioned above, the base body 3υ and the fin are made of a high permeability magnetic material, but it goes without saying that these base materials (211 and the fin are made of a non-magnetic material with a high permeability magnetic layer, for example, a thick It is also possible to have a structure in which a vapor-deposited layer of Fe--Ni (permalloy) with a thickness of 2 μm is deposited.

そして、上述の本発明構成による磁気ヘッドにおいては
端子導体層(至)関に電流工を通じる。この時、導体層
(財)と、薄膜M几木子(ハ)とはその固有抵抗がほぼ
同等に選らばれているので、両者に電流が流れ、導体層
G!41に通ずる電流によって、磁界が発生し、これが
MR素子q#C与えられる。すなわちこの磁界と永久磁
石膜のよりの磁界との合成された磁界がMR素子c23
#/c与えられる。一方、薄膜MR素子(23に通ずる
電流によって磁気媒体から与えられる信号磁界による抵
抗変化を検出する。この場合、その出力電圧は、MR素
子のの抵抗のみでなく、これに並列に導体層C24)K
よる抵抗が挿入されることになる。したがって導体層■
の抵抗を大きくすれば、出力電圧に有利となるが、この
場合導体層(2)の発熱が大となり、またこれにより得
るバイアス磁界が小さくなるので、この導体層(至)は
MR素子(ハ)と同程度の固有抵抗値ないしはこれより
適当に大であることが望ましい。
In the magnetic head according to the above-described structure of the present invention, a current wire is connected to the terminal conductor layer. At this time, since the conductor layer (G) and the thin film M-layer (C) are selected to have almost the same specific resistance, current flows through both, and the conductor layer G! The current flowing through 41 generates a magnetic field, which is applied to MR element q#C. That is, the combined magnetic field of this magnetic field and the magnetic field of the permanent magnet film is the magnetic field of the MR element c23.
#/c given. On the other hand, the resistance change due to the signal magnetic field applied from the magnetic medium by the current flowing through the thin film MR element (23) is detected. In this case, the output voltage is determined not only by the resistance of the MR element but also by the conductor layer C24 in parallel with it. K
A resistor will be inserted. Therefore, the conductor layer■
Increasing the resistance of the conductor layer (2) will be advantageous for the output voltage, but in this case, the heat generation of the conductor layer (2) will increase, and the bias magnetic field obtained will thereby become smaller. It is desirable that the resistivity value be approximately the same as or appropriately larger than this value.

尚、必l!に応じて永久磁石膜@上にはその表面を平坦
化する目的のみが達せられれば良い程度に薄い厚さ、例
えば厚さ200X程度の絶縁層を植種することができる
In addition, it is a must! Depending on the situation, an insulating layer with a thickness of about 200×, for example, about 200× can be seeded on the permanent magnet film so that only the purpose of flattening the surface thereof is achieved.

上述したように、本発明によるMRfi磁気ヘッドは、
薄1[MR素子のを挾んで殆んど直接的に接触してこれ
にバイアス磁界を与えるための永久磁石HcQと導体層
@とが配置された構成を採るので、効果的にこれらの磁
界QMR素子c3に与えることができる。また、前述し
たように永久磁石膜■の形成に当ってMR素子−が存在
しない状態でその形成ができるので、素子g3k、これ
を酸化させるような不都合も回避できる。また、シール
ド基体3g及び(財)間の間隔を小とすることができる
効果もある。
As mentioned above, the MRfi magnetic head according to the present invention has the following features:
Since a permanent magnet HcQ and a conductor layer @ are arranged to sandwich the MR element and almost directly contact it to apply a bias magnetic field to it, the magnetic field QMR is effectively It can be applied to element c3. Furthermore, as described above, since the permanent magnet film (1) can be formed in the absence of the MR element, the inconvenience of oxidizing the element g3k can be avoided. There is also the effect that the distance between the shield base 3g and the product can be made small.

因みに、従来、第4図にその要部、の断面を示すよ5に
、基体CIJ上に、磁気シールド効果を有する磁性層■
v1#成し、これの上に絶縁層−を介して導電性永久磁
石膜e4t−形成し、更忙これの上に絶縁層−を介して
薄膜MR素子(至)を被着し、これの上に絶縁層(9)
を介してa気シールド効果!を有する磁性層(至)が被
着された構成を有するものがある。
Incidentally, conventionally, as shown in FIG. 4, a cross section of the main part of which is shown, a magnetic layer 1 having a magnetic shielding effect is placed on the base CIJ.
v1#, a conductive permanent magnet film e4t is formed on this via an insulating layer, and then a thin film MR element (total) is deposited on this via an insulating layer. Insulating layer (9) on top
Through the a-ki shield effect! Some have a structure in which a magnetic layer (to) having .

この場合、MR素子(至)には、永久磁石膜−自体の磁
界と、これKtfiを通ずることによって発生する磁界
との合成磁界によるバイアス磁界が与えられるものであ
るが、このような構成による磁気ヘッドにおいても絶縁
層−としては例えば厚さ3000X程度の5to2EJ
のよ5にピンホール等のない厚い絶縁層を必要とするの
で磁石*G41とMR素子(至)との距離は大となり、
その反面、磁気媒体との摺動に際しては両者間を電気的
に短絡させるということになる。しかも、磁界発生手段
の磁石膜(2)とMR素子(至)とが、第1図で説明し
た従来の例と同様に離間されているので、磁気シールド
効果な得るための磁性層、或いは磁性基体を上下両11
に配置する場合、これにバイアス磁界が逃げることがな
いようにする上から、磁石膜と磁気シールドの磁性層或
いは基体との距離を充分大とする必要が生じ、これに伴
って基体間の間隔が大となるなどの欠点がある。
In this case, the MR element (to) is given a bias magnetic field by a composite magnetic field of the magnetic field of the permanent magnet film itself and the magnetic field generated by passing this through Ktfi. In the head, the insulating layer is, for example, 5to2EJ with a thickness of about 3000X.
Since a thick insulating layer with no pinholes etc. is required, the distance between the magnet *G41 and the MR element (to) is large.
On the other hand, when sliding with a magnetic medium, the two are electrically short-circuited. Moreover, since the magnet film (2) of the magnetic field generating means and the MR element (to) are spaced apart as in the conventional example explained in FIG. Both the upper and lower parts of the base are 11
In order to prevent the bias magnetic field from escaping, it is necessary to make the distance between the magnet film and the magnetic layer or base of the magnetic shield sufficiently large. There are disadvantages such as a large amount of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の磁気抵抗効果型磁気ヘッドの要部の拡大
断面図、II2図は本発明による磁気抵抗効果ffi磁
気ヘッドの要部の拡大断面図、第3図はその要部の拡大
斜視図、第4図は従来の!気抵抗効果型磁気ヘッドの他
の例の要部の拡大断面−である。 01)は基体、(2)はこれの上の絶縁層、のはバイア
ス−磁界発生用の絶縁性永久磁石膜、儲は薄膜磁気抵抗
効果素子、(至)はバイアス磁界発生用の導体層である
。 第1頁の続き 0発 明 者 関谷哲夫 厚木市旭町4丁目14番1号ソニ ー株式会社厚木工場内
FIG. 1 is an enlarged sectional view of the main part of a conventional magnetoresistive magnetic head, FIG. II2 is an enlarged sectional view of the main part of the magnetoresistive ffi magnetic head according to the present invention, and FIG. Figure, Figure 4 is the conventional! 2 is an enlarged cross-section of a main part of another example of a pneumatic resistive magnetic head. 01) is the base, (2) is the insulating layer on top of it, is an insulating permanent magnet film for bias magnetic field generation, is the thin film magnetoresistive element, and (to) is the conductor layer for bias magnetic field generation. be. Continued from page 1 0 Inventor Tetsuo Sekiya 4-14-1 Asahimachi, Atsugi City Sony Corporation Atsugi Factory

Claims (1)

【特許請求の範囲】[Claims] 基体上にバイアス磁界発生用の絶縁性永久磁石膜と、磁
気抵抗効果素子膜と、バイアス磁界発生用の導体層とが
順次積層されて成る磁気抵抗効果型磁気ヘッド。
A magnetoresistive magnetic head in which an insulating permanent magnet film for generating a bias magnetic field, a magnetoresistive element film, and a conductor layer for generating a bias magnetic field are sequentially laminated on a substrate.
JP56135327A 1981-08-28 1981-08-28 Magneto-resistance effect type magnetic head Pending JPS5837835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56135327A JPS5837835A (en) 1981-08-28 1981-08-28 Magneto-resistance effect type magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56135327A JPS5837835A (en) 1981-08-28 1981-08-28 Magneto-resistance effect type magnetic head

Publications (1)

Publication Number Publication Date
JPS5837835A true JPS5837835A (en) 1983-03-05

Family

ID=15149163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56135327A Pending JPS5837835A (en) 1981-08-28 1981-08-28 Magneto-resistance effect type magnetic head

Country Status (1)

Country Link
JP (1) JPS5837835A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60157713A (en) * 1984-06-20 1985-08-19 Hitachi Ltd Magneto-resistance effect element and magnetic head using it
JPS6192413A (en) * 1984-10-12 1986-05-10 Hitachi Ltd Magnetoresistance effect type magnetic converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60157713A (en) * 1984-06-20 1985-08-19 Hitachi Ltd Magneto-resistance effect element and magnetic head using it
JPS6192413A (en) * 1984-10-12 1986-05-10 Hitachi Ltd Magnetoresistance effect type magnetic converter

Similar Documents

Publication Publication Date Title
JP3022023B2 (en) Magnetic recording / reproducing device
CA1281132C (en) Magnetic transducer head utilizing magnetoresistance effect
US4686472A (en) Magnetic sensor having closely spaced and electrically parallel magnetoresistive layers of different widths
US4489357A (en) Magnetic sensor having multilayered flux conductors
GB2146482A (en) Thin film magnetic head
JPH09185809A (en) Magnetic head
JPH05275769A (en) Magnetic field sensor
JPH07192227A (en) Magneto-resistance effect type magnetic head
JPS5837835A (en) Magneto-resistance effect type magnetic head
JPH0845030A (en) Magneto-resistive magnetic head
JPS6064484A (en) Ferromagnetic magnetoresistance effect alloy film
KR920001129B1 (en) Magnetic resistance effect magnetic head
JP2718242B2 (en) Magnetoresistive head
JP2508475B2 (en) Magnetoresistive magnetic head
JPS6258411A (en) Magnetoresistance effect type magnetic head
JPS61134913A (en) Magnetoresistance type thin film head
JP2806549B2 (en) Magnetoresistance effect element
JP2596010B2 (en) Magnetoresistive magnetic head
JPH026490Y2 (en)
JPS6154012A (en) Magneto-resistance effect head
JP2661068B2 (en) Magnetoresistive magnetic head
JP2642923B2 (en) Magnetoresistive magnetic head
JP2000156317A (en) Magnetic recording and reproducing device
JPH05258248A (en) Multilayer magnetoresistance effect film, magnetic head, and magnetic recording and reproducing device
JPH09180133A (en) Spin valve type magnetic head