JPS5837271B2 - Method for manufacturing high-density silicon carbide sintered body - Google Patents

Method for manufacturing high-density silicon carbide sintered body

Info

Publication number
JPS5837271B2
JPS5837271B2 JP55148477A JP14847780A JPS5837271B2 JP S5837271 B2 JPS5837271 B2 JP S5837271B2 JP 55148477 A JP55148477 A JP 55148477A JP 14847780 A JP14847780 A JP 14847780A JP S5837271 B2 JPS5837271 B2 JP S5837271B2
Authority
JP
Japan
Prior art keywords
silicon carbide
weight
parts
sintered body
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55148477A
Other languages
Japanese (ja)
Other versions
JPS5771867A (en
Inventor
康博 愛場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP55148477A priority Critical patent/JPS5837271B2/en
Publication of JPS5771867A publication Critical patent/JPS5771867A/en
Publication of JPS5837271B2 publication Critical patent/JPS5837271B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は高密度炭化珪素焼結体の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing a high-density silicon carbide sintered body.

高密度炭化珪素焼結体は当初炭化珪素粉末に硼素、アル
ミニウム等の焼結助剤を添加しホットプレスして製造さ
れていた。
Initially, high-density silicon carbide sintered bodies were manufactured by adding sintering aids such as boron and aluminum to silicon carbide powder and hot pressing the mixture.

最近は主]こ焼結助剤として硼素または炭化硼素と炭素
を添加することによりホットプレス1こよらないで焼結
する方法が開発されでいる。
Recently, a method of sintering without using a hot press has been developed by adding boron or boron carbide and carbon as sintering aids.

高密度炭化珪素焼結体はガスタービン部材、熱交換器部
材、ポップ部材、その他高温構造材料、耐食材料として
の用途が期侍されている。
High-density silicon carbide sintered bodies are expected to be used as gas turbine parts, heat exchanger parts, pop-up parts, other high-temperature structural materials, and corrosion-resistant materials.

しかし無加圧で焼結したものは炭化珪素粉末の粒径が平
均粒径で1.0μ屈程度以下、最適には0.5μm程度
でなければ理論密度(3.21g〆劫の98%程寒まで
容易に焼結できない問題がある。
However, if the silicon carbide powder is sintered without pressure, the average particle size must be about 1.0 μm or less, optimally about 0.5 μm, or about 98% of the theoretical density (3.21 g). There is a problem that it cannot be easily sintered until it gets cold.

また焼結助剤は数%以下の量であるので炭化珪素粉末の
粒径よりもさらに小さくなければ均一に分散することが
困難で0.1μmよりも小さい粒径でなければ均一に分
散しない。
Further, since the amount of the sintering aid is several percent or less, it is difficult to disperse the sintering aid uniformly unless the particle size is even smaller than that of the silicon carbide powder, and it is not uniformly dispersed unless the particle size is smaller than 0.1 μm.

しかし通常の方法でこのような超微粉を得ることは不可
能である。
However, it is impossible to obtain such ultrafine powder using conventional methods.

本発明の目的は焼結助剤を均一に分散し、理論密度(
3.2 1 El/cat’)の96%程度できれば9
8%まで焼結した高密度の炭化珪素焼結体を製造する方
法を提供することにある。
The purpose of the present invention is to uniformly disperse the sintering aid and to
3.2 1 El/cat') about 96%, preferably 9
An object of the present invention is to provide a method for manufacturing a high-density silicon carbide sintered body sintered to 8%.

本発明は炭化珪素粉末、ハロゲン化硼素のアミン錯体、
ハロゲン化硼素酸のアミン塩またはこれらの混合物から
なる焼結助剤および熱硬化性脂肪を混合、成形し、つい
で真空中、窒素雰囲気中または不活性ガス雰囲気中で焼
結することを特徴とする高密度炭化珪素焼結体の製造方
法に関する。
The present invention comprises silicon carbide powder, an amine complex of boron halide,
It is characterized by mixing and molding a sintering aid consisting of an amine salt of a halogenated boric acid or a mixture thereof and a thermosetting fat, and then sintering in a vacuum, a nitrogen atmosphere, or an inert gas atmosphere. The present invention relates to a method for producing a high-density silicon carbide sintered body.

なお本発明1こおいでハロゲン化硼素化合物は溶媒1こ
溶け溶液の形となるため混合によって炭化珪素粉の表面
を容易に均−1こ被覆できる点で従来の溶解しない粉末
状の焼結助剤1こ比較して優れており、比較的高密度化
が容易に達或できる特徴がある。
In the present invention, the boron halide compound dissolves in one solvent and becomes a solution, so it can easily coat the surface of silicon carbide powder evenly by mixing, compared to conventional non-dissolving powdered sintering aids. It has the advantage of being superior in comparison to the previous one, and has the feature that relatively high density can be achieved easily.

ハロゲン化硼素のアミン錯体とはBX3・Aであらわさ
れ、またハロゲン化硼素酸のアミン塩はH B X4・
Aで表わされるものでBは硼素、Xはフッ素、塩素、臭
素、沃素のハロゲン元素、Aはアニリン、モノエチルア
ミントリエチルアミン、ピペリジン、P一トルイジン、
N−メチルアニリン、N一エチルアニリン、2.4−ジ
メチルアニリン、N,N−ジメチルアニリン、トリエタ
ノールアミンその他のアミン類である。
The amine complex of halogenated boron is represented by BX3・A, and the amine salt of halogenated boron acid is represented by H B
It is represented by A, where B is boron, X is a halogen element such as fluorine, chlorine, bromine, or iodine, and A is aniline, monoethylamine triethylamine, piperidine, P-toluidine,
These include N-methylaniline, N-ethylaniline, 2,4-dimethylaniline, N,N-dimethylaniline, triethanolamine, and other amines.

また熱硬化性樹脂にはフェノール系樹脂、クレゾール系
樹月Lフラン系樹脂、エポキシ系樹脂等が使用され特1
こ制限はない。
In addition, phenolic resins, cresol-based Jugetsu L furan-based resins, epoxy-based resins, etc. are used as thermosetting resins.
There is no limit.

この熱硬化性樹脂は焼結助剤がハロゲン化硼素ガスとし
で飛散するのを防止し、分解反応を熱硬化性樹指中で行
なわせ、原子状態に近い硼素あるいは炭化硼素として遊
離するために添加される。
This thermosetting resin prevents the sintering aid from scattering as halogenated boron gas, and allows the decomposition reaction to take place in the thermosetting resin, liberating it as boron or boron carbide in a near atomic state. added.

さらに本発明で使用される炭化珪素粉末の粒径は最大粒
径10μ瓶以下、平均粒径で1.0μm以下が好ましい
Further, the particle size of the silicon carbide powder used in the present invention is preferably 10 μm or less in maximum particle size and 1.0 μm or less in average particle size.

ハロゲン化硼素化合物は硼素量が炭化珪素粉末100重
量部1こ対じ0.2〜3重量部1こ相当する量が好まし
い。
The amount of boron in the boron halide compound is preferably 0.2 to 3 parts by weight per 100 parts by weight of silicon carbide powder.

また熱硬化性樹脂量は焼結{こより炭化珪素粉末100
重量部に対し0.5〜5重量部の炭素量に相当する量が
好ましい。
In addition, the amount of thermosetting resin is sintered {from silicon carbide powder 100
An amount corresponding to 0.5 to 5 parts by weight of carbon is preferred.

なお上記成分を混合する際、水、アルコール類、エーテ
ル類、ベンゼン等の溶媒を加えて混合する事が好ましく
、成形は前記混合物を型に流して成形するか、または乾
燥粉砕後金型で成形する。
When mixing the above components, it is preferable to add a solvent such as water, alcohols, ethers, benzene, etc., and mold the mixture by pouring it into a mold, or by drying and pulverizing it and then molding it with a mold. do.

この場合、この成形粉を賦形剤で造粒し金型で或形した
り、適当な分散剤を用いてスリップをつくり注型する等
一般的な或形方法が採用できる。
In this case, a general shaping method can be employed, such as granulating the molded powder with an excipient and shaping it in a mold, or creating a slip using an appropriate dispersant and casting it.

また焼結は、真空中、窒素雰囲気中または不活性ガス雰
囲気中で行なうことが必要である。
Further, the sintering must be performed in a vacuum, a nitrogen atmosphere, or an inert gas atmosphere.

焼結温度は1900〜2300℃が適しでいる。A suitable sintering temperature is 1900 to 2300°C.

以下実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

実施例 1 純度99.5%の硅石粉と炭素分99.0%のコークス
粉を1900℃で処理して得た純度99.4%のB
SiC粉末100重量部、三フッ化硼素モノエチルアミ
ン錯体(BF3−C2H5NH2)10重量部(ホウ素
量として0.958重量部)、ノボラツク型フェノール
樹脂(三菱ガス化学KK製、商品名SM−P 107
A)6重量部(炭素量として3重量部)、エチルアルコ
ール100重量部を配合し、ボールミルで30分間混合
後80℃で10時間乾燥し、粉砕した。
Example 1 B with a purity of 99.4% obtained by processing silica powder with a purity of 99.5% and coke powder with a carbon content of 99.0% at 1900°C
100 parts by weight of SiC powder, 10 parts by weight of boron trifluoride monoethylamine complex (BF3-C2H5NH2) (0.958 parts by weight as boron amount), novolac type phenol resin (manufactured by Mitsubishi Gas Chemical KK, trade name SM-P 107)
A) 6 parts by weight (3 parts by weight as carbon content) and 100 parts by weight of ethyl alcohol were mixed in a ball mill for 30 minutes, dried at 80° C. for 10 hours, and pulverized.

さらに賦形剤として10%のポリビニルアルコール水溶
液10重量部を加えて撹拌し、36メッシュの篩を通し
成形品得た。
Further, 10 parts by weight of a 10% aqueous polyvinyl alcohol solution was added as an excipient, stirred, and passed through a 36 mesh sieve to obtain a molded product.

次に戒形粉を1000kg/一の圧力で成形し、外径5
0rIt4高さ10mmの成形物を得た。
Next, the powder was molded at a pressure of 1000 kg/1, and the outer diameter was 5
A molded product having a height of 10 mm was obtained.

この戒形物を80℃で乾燥後0.04Torrの真空中
で5000G/時間の速度で2000℃まで昇温し、4
5分間焼結した。
After drying this precept at 80°C, the temperature was raised to 2000°C at a rate of 5000G/hour in a vacuum of 0.04 Torr.
Sintered for 5 minutes.

この結果3.0 8 g/一の密度で理論密度(3.z
1g/i)の96.0%の高密度炭化硅素焼結体が得ら
れた。
As a result, the theoretical density (3.z
A 96.0% high-density silicon carbide sintered body of 1 g/i) was obtained.

比較例 1 実施例1と同様のB−SiC粉末100重量部、平均粒
径15μmの硼素粉末0.5重量部、実施例1と同様の
ノボラツク型フエール樹脂(三菱ガス化学KK製、商品
名SM−P 107A)6重量部(炭素量として3重
量部)、エチルアルコール100重量部を配合し、以下
実施例と同様な工程を経て焼結体を得た。
Comparative Example 1 100 parts by weight of the same B-SiC powder as in Example 1, 0.5 parts by weight of boron powder with an average particle size of 15 μm, novolak-type ferresin (manufactured by Mitsubishi Gas Chemical KK, trade name: SM) as in Example 1. -P 107A) 6 parts by weight (3 parts by weight as carbon content) and 100 parts by weight of ethyl alcohol were mixed, and a sintered body was obtained through the same steps as in the examples.

この結果密度は2.99/一で理論密度の93.1%で
あった。
The resulting density was 2.99/1, which was 93.1% of the theoretical density.

実維例 2 常法で製造された炭化珪素粉末を粉砕しで得た最大粒径
3μm1平均粒径0.5μm1純度95,O%のa−S
iC粉末100重量部、三塩化硼素モノエチルアミン(
BCl3−C2H5NH2)1 5重量部(硼素量とし
て1重量部)、ノボラツク型フェノール樹脂(三菱ガス
化学KK製、商品名SM−P 107A)6重量部(
炭素量として3重量帥,メチルアルコール100重量部
を配合しボールミミルで30分間混合後実施例1と同様
な方法で処理し、成形後実維例1と同様な方法で焼結し
た。
Actual fiber example 2 A-S with a maximum particle size of 3 μm, an average particle size of 0.5 μm, and a purity of 95.0% obtained by crushing silicon carbide powder manufactured by a conventional method.
100 parts by weight of iC powder, boron trichloride monoethylamine (
BCl3-C2H5NH2) 15 parts by weight (1 part by weight as boron amount), 6 parts by weight of novolac type phenol resin (manufactured by Mitsubishi Gas Chemical KK, trade name SM-P 107A) (
3 parts by weight of carbon and 100 parts by weight of methyl alcohol were mixed, mixed in a ball mill for 30 minutes, treated in the same manner as in Example 1, and after molding, sintered in the same manner as in Example 1.

この結果3.16g/cI11.の密度で理論密度の9
8.4%の高密度炭化珪素焼結体が得られた。
The result was 3.16g/cI11. The theoretical density is 9 with the density of
A high-density silicon carbide sintered body having a density of 8.4% was obtained.

比較例 2 実施例2と同様のa−SiC粉末1.00重量部,平均
粒径15μmの炭化硼素1.3重量部(硼素量として1
重量部)、実施例2と目様のノボラツクフエ/−ル樹脂
6重量部(炭素量として3重量部へメチルアルコール1
00重量部を配合し、ボールミルで30分間混合後、実
施例1と同様な工程を経て焼結体を得た。
Comparative Example 2 1.00 parts by weight of a-SiC powder similar to Example 2, 1.3 parts by weight of boron carbide with an average particle size of 15 μm (1.00 parts by weight as boron amount)
(parts by weight), Example 2 and 6 parts by weight of eye-like novolac fiber resin (1 part by weight as carbon content, 1 part by weight of methyl alcohol)
After mixing in a ball mill for 30 minutes, the same steps as in Example 1 were carried out to obtain a sintered body.

この結果密度は3.05g/iで理論密度の95.0%
であった。
The resulting density was 3.05g/i, 95.0% of the theoretical density.
Met.

実施例 3 緑色炭化珪素研磨材を粉砕して得た最大粒径5 1tm
,平均粒径0.7μmのa − S i C粉末100
重量部、フツ化硼素酸アニリン(HBF4Ca H5
NH2 ) 2 0重量部(硼素量として1.2重量部
)、ノボラツク型フェノール樹脂(三菱ガス化学KK製
、商品名SM−P,1 07A)4重量部(炭素量とし
て2重量部)、メチルアルコール15重量部を配合し、
捕潰機で混合しながらメチルアルコール自然蒸発させた
後、賦形剤として10%ポリビニルアルコール水溶液1
0重量部を加えてさらに混合し、36メッシュの篩を通
し或形粉を得た。
Example 3 Maximum particle size obtained by crushing green silicon carbide abrasive material 5 1tm
, a-SiC powder 100 with an average particle size of 0.7 μm
Parts by weight, aniline fluoroborate (HBF4Ca H5
NH2) 20 parts by weight (1.2 parts by weight as boron content), 4 parts by weight of novolac type phenol resin (manufactured by Mitsubishi Gas Chemical KK, trade name SM-P, 107A) (2 parts by weight as carbon content), methyl Blended with 15 parts by weight of alcohol,
After naturally evaporating methyl alcohol while mixing with a crusher, add 10% polyvinyl alcohol aqueous solution 1 as an excipient.
0 parts by weight was added, further mixed, and passed through a 36 mesh sieve to obtain a shaped powder.

次に成形粉を1000kg/CTLの圧力で或形し、外
径50順高さ10mmの成形物を得た。
Next, the molded powder was molded under a pressure of 1000 kg/CTL to obtain a molded product with an outer diameter of 50 mm and a height of 10 mm.

この戒形物を80℃で乾燥後、0. 2 T o r
rの真空中で400°C/時間の速度で2100℃まで
昇温し、30分間焼結した。
After drying this precept at 80°C, 2 T or
The temperature was raised to 2100° C. at a rate of 400° C./hour in a vacuum of 30° C., and sintered for 30 minutes.

この結果3.15の密度で理論密度の98.4%の高密
度炭化珪素焼結体が得られた。
As a result, a high-density silicon carbide sintered body having a density of 3.15 and 98.4% of the theoretical density was obtained.

本発明1こよれば従来の粉末状の焼結助剤に比べて高密
度の炭化珪素焼結体を容易に製造することができる。
According to the present invention, a high-density silicon carbide sintered body can be easily produced compared to conventional powdered sintering aids.

Claims (1)

【特許請求の範囲】[Claims] 1 炭化珪素粉末、ハロゲン化硼素のアミン錯体、ハロ
ゲン化硼素酸のアミン塩またはこれらの混合物からなる
焼結助剤および熱硬化性樹脂を混合、或形し、ついで真
空中、窒素雰囲気中または不活性ガス雰囲気中で焼結す
ることを特徴とする高密度炭化珪素焼結体の製造方法っ
1. A sintering aid consisting of silicon carbide powder, an amine complex of boron halide, an amine salt of halogenated boric acid, or a mixture thereof, and a thermosetting resin are mixed and shaped, and then heated in a vacuum, in a nitrogen atmosphere, or in a nitrogen atmosphere. A method for producing a high-density silicon carbide sintered body characterized by sintering in an active gas atmosphere.
JP55148477A 1980-10-22 1980-10-22 Method for manufacturing high-density silicon carbide sintered body Expired JPS5837271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55148477A JPS5837271B2 (en) 1980-10-22 1980-10-22 Method for manufacturing high-density silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55148477A JPS5837271B2 (en) 1980-10-22 1980-10-22 Method for manufacturing high-density silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JPS5771867A JPS5771867A (en) 1982-05-04
JPS5837271B2 true JPS5837271B2 (en) 1983-08-15

Family

ID=15453623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55148477A Expired JPS5837271B2 (en) 1980-10-22 1980-10-22 Method for manufacturing high-density silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JPS5837271B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335190U (en) * 1986-08-25 1988-03-07

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168568A (en) * 1985-01-23 1986-07-30 日産自動車株式会社 Manufacture of silicon carbide sintered body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335190U (en) * 1986-08-25 1988-03-07

Also Published As

Publication number Publication date
JPS5771867A (en) 1982-05-04

Similar Documents

Publication Publication Date Title
JPS58104068A (en) Silicon carbide sintered ceramic body and manufacture
JP2013500227A (en) Method for forming sintered boron carbide
JPS6240317B2 (en)
CA1125316A (en) Sinterable powders and methods of producing sintered ceramic products using such powders
JPH0251863B2 (en)
JPS6350310B2 (en)
JPH0380749B2 (en)
JPS5837271B2 (en) Method for manufacturing high-density silicon carbide sintered body
JPS63315515A (en) Granulated magnesia substance and production thereof
JP3533532B2 (en) Large particle size aluminum nitride powder and method for producing the same
JPS6081064A (en) Manufacture of silicon carbide sintered body
JPH0755861B2 (en) Method for forming high density metal boride-aluminum nitride composite article
JPH0621140B2 (en) Method for producing graphite / phenol resin granules
JPH0253388B2 (en)
JPS61132509A (en) Production of silicon carbide
JPH06211574A (en) Production of silicon carbide sintered compact for producing semiconductor
JPS5891019A (en) Manufacture of aluminum nitride-base powder
JPS5817146B2 (en) Method for manufacturing high-density silicon carbide sintered body
JPH01131069A (en) Complex compact calcined under ordinary pressure
JPS6212668A (en) Constitutional member for semiconductor diffusion oven
JPS61168514A (en) Production of easily sinterable silicon carbide
JPS6033262A (en) Manufacture of silicon carbide sintered body
JPS62275065A (en) Manufacture of silicon carbide sintered body
JPH0597518A (en) Production of silicon carbide sintered compact
JPS6256370A (en) Manufacture of silicon carbide sintered body