JPS5817146B2 - Method for manufacturing high-density silicon carbide sintered body - Google Patents

Method for manufacturing high-density silicon carbide sintered body

Info

Publication number
JPS5817146B2
JPS5817146B2 JP54167976A JP16797679A JPS5817146B2 JP S5817146 B2 JPS5817146 B2 JP S5817146B2 JP 54167976 A JP54167976 A JP 54167976A JP 16797679 A JP16797679 A JP 16797679A JP S5817146 B2 JPS5817146 B2 JP S5817146B2
Authority
JP
Japan
Prior art keywords
weight
parts
density
powder
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54167976A
Other languages
Japanese (ja)
Other versions
JPS5692167A (en
Inventor
康博 愛場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP54167976A priority Critical patent/JPS5817146B2/en
Publication of JPS5692167A publication Critical patent/JPS5692167A/en
Publication of JPS5817146B2 publication Critical patent/JPS5817146B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は本質的にβ形炭化珪素(以下β−8iCとする
)からなる炭化珪素(SiC)粉、硼素(B)または炭
化硼素(B4C)、及び炭素を含有する混合物を無加圧
で焼結し、3.0g/i以上の密度(相対密度93%以
上)を有する高密度炭化珪素焼結体の製造方法に関する
Detailed Description of the Invention The present invention comprises silicon carbide (SiC) powder consisting essentially of β-type silicon carbide (hereinafter referred to as β-8iC), boron (B) or boron carbide (B4C), and carbon. The present invention relates to a method for producing a high-density silicon carbide sintered body having a density of 3.0 g/i or more (relative density of 93% or more) by sintering a mixture without pressure.

最近高密度な炭化珪素焼結体が得られるようになり、耐
高温構造材料、摺動材料等に使用され始めている。
Recently, high-density silicon carbide sintered bodies have become available and are beginning to be used for high-temperature-resistant structural materials, sliding materials, etc.

製造方法としては反応焼結法、ホットプレス法、無加圧
焼結法等がある。
Manufacturing methods include reaction sintering, hot pressing, and pressureless sintering.

これらの方法のうち反応焼結法は珪素(Si)が過剰と
なりやすく、耐薬品性、高温強度が不足する欠点がある
Among these methods, the reaction sintering method tends to contain excess silicon (Si) and has the disadvantage of lacking chemical resistance and high temperature strength.

またホットプレス法は理論密度が100%程度の密度を
有し、最も高強度なものが得られる反面、複雑な形状の
焼結体を得ることは極めて困難である。
Further, although the hot pressing method has a density of about 100% of the theoretical density and can obtain the highest strength, it is extremely difficult to obtain a sintered body with a complicated shape.

これに反し、無加圧焼結法は種々の成形方法を用いれば
相当複雑な形状の成形品を得ることができ、これを無加
圧で焼結できる利点がある。
On the other hand, the pressureless sintering method has the advantage that it is possible to obtain a molded article with a considerably complicated shape by using various molding methods, and that it can be sintered without applying pressure.

しかし種々検討した結果β−8iC粉末を用いた場合、
β−8iC粉末中の酸素含量が多いと従来の方法では3
.OgZc11未満の密度までしか焼結できない欠点が
あることがわかった。
However, as a result of various studies, when using β-8iC powder,
If the oxygen content in β-8iC powder is high, the conventional method
.. It was found that there is a drawback that it can only be sintered to a density of less than OgZc11.

従来の方法例えば特開昭50−78609号公報はβ−
8iC粉に0.3〜3.0重量%の硼素と0.1〜1.
0重量%の炭素を含む出発原料を成形、焼結するもので
ある。
The conventional method, for example, Japanese Patent Application Laid-open No. 50-78609,
8iC powder with 0.3-3.0% by weight of boron and 0.1-1.
A starting material containing 0% by weight of carbon is molded and sintered.

さらに特開昭50−78609号公報には、1’−0,
06%の酸素含量を持つ硼素添加粉末は0.3%の炭素
の添加でもって、理論密度の98.5%まで容易に焼結
しうる。
Furthermore, in Japanese Patent Application Laid-open No. 50-78609, 1'-0,
A boron-doped powder with an oxygen content of 0.06% can be easily sintered to 98.5% of theoretical density with the addition of 0.3% carbon.

0,3%の酸素を含有する別の粉末は0.9%の炭素で
もって91%相対密度まで焼結しうる。
Another powder containing 0.3% oxygen can be sintered to 91% relative density with 0.9% carbon.

」また、「0.1〜1.0重量%の炭素が焼結性を提供
するのに十分であることがわかった。
``Also, 0.1-1.0% by weight of carbon was found to be sufficient to provide sinterability.''

これらの条件め下で焼結されない粉末はもつと多くの炭
素をたとえ加えたとしても焼結されないであろう」との
記載がある。
A powder that does not sinter under these conditions will not sinter even if a large amount of carbon is added.

つまりβ−8iC粉末中に0.3重量%以上の酸素が含
有され、炭素添加量が1.0重量%を越えると本発明の
目的としている3、0g/ff1以上の密度をもった焼
結体が得られないということである。
In other words, if the β-8iC powder contains 0.3% by weight or more of oxygen and the added amount of carbon exceeds 1.0% by weight, sintering with a density of 3.0 g/ff1 or more, which is the object of the present invention, can be achieved. This means that the body cannot be obtained.

β−8iC粉末は製法上SiO2をを含みやすく、また
平均粒径0.5μm以下の微粉では酸化の影響を受けや
すく表面がSiO□になりやすい。
β-8iC powder tends to contain SiO2 due to the manufacturing method, and fine powder with an average particle size of 0.5 μm or less is susceptible to oxidation and the surface tends to become SiO□.

このためβ−8iC粉末は最大1重量%程度の酸素が必
然的に含まれる。
For this reason, the β-8iC powder necessarily contains about 1% by weight of oxygen at most.

本発明の目的は従来の方法では不可能であった最大1重
量%以下の酸素を含むβ−8iC粉末を用い、炭素を従
来の1.0重量%より多く添加して3. Oglcr!
以上の密度(相対密度93%以上)に焼結した高密度炭
化珪素焼結体を製造する方法を提供することにある。
The object of the present invention is to use β-8iC powder containing up to 1% by weight or less of oxygen, which was impossible with conventional methods, and to add carbon in an amount greater than the conventional 1.0% by weight. Oglcr!
It is an object of the present invention to provide a method for manufacturing a high-density silicon carbide sintered body sintered to a density higher than that (relative density 93% or higher).

本発明者らは前記欠点について種々検討した結果、主と
してβ−8iCからなるSiC粉末に焼結助剤として硼
素を0.5〜5.0重量部または炭化硼素を0.6〜6
,0重量部、炭素を1.5〜5.0重量部加えると3.
0g/ff1以上の密度(相対密度93%以上)が得ら
れることがわかった。
As a result of various studies on the above drawbacks, the present inventors found that 0.5 to 5.0 parts by weight of boron or 0.6 to 6 parts of boron carbide was added as a sintering aid to SiC powder mainly consisting of β-8iC.
,0 parts by weight, and adding 1.5 to 5.0 parts by weight of carbon, 3.
It was found that a density of 0 g/ff1 or more (relative density of 93% or more) could be obtained.

またβ−8iC粉末中の酸素含量が0.1重量%では最
低炭素添加量は1.5重量部以上必要であり、酸素含量
が0.3重量%では炭素添加量2.0重量部以上、酸素
含量1.0重量%では炭素添加量4.0重量部以上必要
であることがわかった。
When the oxygen content in the β-8iC powder is 0.1% by weight, the minimum amount of carbon added is 1.5 parts by weight or more, and when the oxygen content is 0.3% by weight, the amount of carbon added is 2.0 parts by weight or more. It was found that when the oxygen content is 1.0% by weight, it is necessary to add 4.0 parts by weight or more of carbon.

しかし炭素添加量は5.0重量部が限度でこれ以上加え
ても密度は3.0g/d以上にすることは困難である。
However, the amount of carbon added is limited to 5.0 parts by weight, and even if more than this is added, it is difficult to increase the density to 3.0 g/d or more.

すなわちS i02量を還元するのに必要な炭素量以上
の炭素を加えるとその炭素が焼結の邪魔をすることであ
る。
That is, if more carbon is added than is necessary to reduce the amount of Si02, the carbon will interfere with sintering.

S io 2は5i02+3C−+SiC+2COの反
応でSiCとなり焼結に関与する。
Sio2 becomes SiC through the reaction of 5i02+3C-+SiC+2CO and participates in sintering.

化学量論的には炭素量は重量で酸素量とほぼ同量で十分
であるが実際には余分の炭素が必要となる。
Stoichiometrically, it is sufficient that the amount of carbon is approximately the same amount as the amount of oxygen by weight, but in reality, extra carbon is required.

本発明は最大粒径10 pm1平均粒径0.5μm以下
のβ−8iC粉末89〜98重量部、30 p、m以下
の硼素0.5〜5.0重量部または炭化硼素を0.6〜
6.0重量部、10μm以下の炭素粉末を1.5〜5.
0重量部または1.5〜5.0重量部の炭素粉末を生成
するのに相当する量の有機化合物を配合しついで溶媒を
加えて混合、成形し、さらに真空中窒素雰囲気中または
不活性雰囲気中で1900〜2300℃の温度で焼成し
て上記成形物を3.0g/d以上の密度(相対密度93
%以上)に焼結する高密度炭素珪素焼結体の製造方法に
関する。
The present invention uses 89 to 98 parts by weight of β-8iC powder with a maximum particle size of 10 pm, an average particle size of 0.5 μm or less, 0.5 to 5.0 parts by weight of boron of 30 p, m or less, or 0.6 to 0.6 to boron carbide.
6.0 parts by weight of carbon powder with a diameter of 10 μm or less at 1.5 to 5.
An amount of organic compound equivalent to producing 0 parts by weight or 1.5 to 5.0 parts by weight of carbon powder is blended, and a solvent is added, mixed and molded, and further in a nitrogen atmosphere or an inert atmosphere in a vacuum. The above molded product is baked at a temperature of 1900 to 2300°C in a
% or more).

なお本発明においてβ−8iC粉末は100%のβ−8
iC粉末を使用することが好ましいが、不純物としてS
i02の形で存在する1重量%までの酸素、5重量%
までの非等軸晶系α形炭化珪素、2重量%までのその他
の不純物例えば遊離ケイ素鉄、アルミニウム、マグネシ
ウム、カルシウム等を必然的に含む、本質的にβ−8i
Cからなる炭化珪素粉末を用いることも可能である。
In the present invention, β-8iC powder is 100% β-8
It is preferable to use iC powder, but S as an impurity
Up to 1% by weight of oxygen present in the form of i02, 5% by weight
Anisometric α-form silicon carbide up to, essentially β-8i, necessarily containing up to 2% by weight of other impurities such as free silicon iron, aluminum, magnesium, calcium, etc.
It is also possible to use silicon carbide powder made of C.

これらのβ−8iC粉末は最大粒径10μm1平均粒径
0.5μm以下のものが使用され、平均粒径が0.5μ
mを越えると焼結しに< <、3.0 g/cr#J上
の高密度化が困難である。
These β-8iC powders have a maximum particle size of 10 μm, an average particle size of 0.5 μm or less, and an average particle size of 0.5 μm or less.
If it exceeds 3.0 g/cr#J, it is difficult to achieve high density during sintering.

また最大粒径として10μmを越えるものがあると高密
度炭化珪素焼結体に欠陥が生じ強度が低下する。
Further, if the maximum particle size exceeds 10 μm, defects will occur in the high-density silicon carbide sintered body and the strength will decrease.

また硼素、炭化硼素の粒径は30μm以下、好ましくは
10μm以下とされ30μmを越えると3、(Bi’/
i以上の高密度化が困難である。
In addition, the particle size of boron and boron carbide is 30 μm or less, preferably 10 μm or less, and if it exceeds 30 μm, (Bi'/
It is difficult to increase the density beyond i.

炭素粉末の粒径は10μm以下とされ10μmを越える
と前記と同様3.0g/i以上の高密度化が困難である
The particle size of the carbon powder is 10 μm or less, and if it exceeds 10 μm, it is difficult to achieve a high density of 3.0 g/i or more, as described above.

さらに本発明で使用される有機化合物は、高温で炭素を
生じ特に炭化率の大きいフェノールホルムアルデヒド樹
脂、クレゾールホルムアルデヒド樹脂、フラン系樹脂、
ポリフェニレン系樹脂、タール、ピッチ等が適している
Further, the organic compounds used in the present invention include phenol formaldehyde resin, cresol formaldehyde resin, furan resin, which generates carbon at high temperatures and has a particularly high carbonization rate.
Polyphenylene resin, tar, pitch, etc. are suitable.

また溶媒は炭化珪素粉末その他の添加物を分散するのに
適したものであればよく、水と有機溶剤が使用される。
Further, the solvent may be any solvent suitable for dispersing silicon carbide powder and other additives, and water and organic solvents are used.

なお水には分散を容易にするために界゛面活性剤、pH
調整剤等を添加してもよい。
Additionally, water contains surfactants and pH pH to facilitate dispersion.
A regulator or the like may be added.

また水溶性でない有機化合物を炭素添加剤とする場合に
は、有機化合物を溶解するのに必要な有機溶剤例えばア
セトン、メチルエチルケトン、メタノール、イソプロピ
ルアルコール、トルエン、キシレン等が使用される。
Further, when a non-water-soluble organic compound is used as a carbon additive, an organic solvent necessary to dissolve the organic compound, such as acetone, methyl ethyl ketone, methanol, isopropyl alcohol, toluene, xylene, etc., is used.

硼素または炭化硼素の添加量はβ−8iC粉末89〜9
8重量部に対し、硼素0.5〜5.0重量部、炭化硼素
0.6〜6.0重量部添加され、最適量は硼素の場合は
1.0重量部、炭化硼素の場合は1.28重量部である
The amount of boron or boron carbide added is β-8iC powder 89-9
To 8 parts by weight, 0.5 to 5.0 parts by weight of boron and 0.6 to 6.0 parts by weight of boron carbide are added, and the optimum amount is 1.0 parts by weight for boron and 1 part by weight for boron carbide. .28 parts by weight.

添加量が硼素において0.5重量部未満または炭化硼素
において0.6重量部未満の場合は混合が不十分となり
易<3.0g/i以上の高密度化が困難であり、また硼
素において5.0重量部または炭化硼素において6.0
重量部を越えた場合も前記と同様に3.0.!?/i以
上の高密度化が困難である。
If the amount added is less than 0.5 parts by weight for boron or less than 0.6 parts by weight for boron carbide, mixing tends to be insufficient and it is difficult to achieve a high density of <3.0 g/i or more. .0 parts by weight or 6.0 in boron carbide
If the weight exceeds 3.0. ! ? It is difficult to achieve higher density than /i.

炭素粉末は1.5〜5.0重量部または1.5〜5.0
重量部の炭素粉末を生成するのに相当する量の有機化合
物が添加され、この範囲から外れると3.0g/cIf
1以上の高密度化が困難である。
Carbon powder is 1.5 to 5.0 parts by weight or 1.5 to 5.0 parts by weight
If an amount of organic compound is added equivalent to producing parts by weight of carbon powder, and outside this range, 3.0 g/cIf
It is difficult to increase the density of 1 or more.

なお必要とされる炭素粉末の量は、出発炭化珪素粉末中
の酸素含量におおむね依存する。
Note that the amount of carbon powder required generally depends on the oxygen content in the starting silicon carbide powder.

炭素粉末の添加方法は有機化合物を溶媒とともに添加し
て混合することが好ましい。
The carbon powder is preferably added by adding and mixing an organic compound together with a solvent.

もし注形法で成形する場合はカーボンブラックの使用ば
好ましい。
If molding is to be carried out by a casting method, it is preferable to use carbon black.

また賦形剤としてカルボキシメチルセルロース、メチル
セルロース、アラビアゴム、アビセル、ゼラチン、澱粉
、アルギン酸塩、ステアリン酸塩、ポリビニルアルコー
ル等の水溶液を添加して混合する方法が適している。
Also suitable is a method of adding and mixing an aqueous solution of carboxymethylcellulose, methylcellulose, gum arabic, avicel, gelatin, starch, alginate, stearate, polyvinyl alcohol, etc. as an excipient.

成形は通常公知の方法で行なわれ、焼結は真空中、窒素
雰囲気中またはアルゴン、ヘリウム等の不活性雰囲気中
で1900〜2300℃の温度で行なうことが必要であ
る。
Molding is usually carried out by a known method, and sintering must be carried out in vacuum, in a nitrogen atmosphere, or in an inert atmosphere such as argon or helium at a temperature of 1900 to 2300°C.

1900℃未満の焼結温度では焼結の進行が遅<、3.
0g/cr/1以上の高密度化が困難であり、2300
℃を越えると結晶が成長して粗大化し前記と同様に3.
(1/cIft以上の高密度化が困難である。
If the sintering temperature is less than 1900°C, the sintering progresses slowly.3.
It is difficult to increase the density to 0g/cr/1 or more, and 2300
If the temperature exceeds ℃, the crystals will grow and become coarse, as described in 3.
(It is difficult to increase the density to 1/cIft or higher.

以下実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

実施例 1 純度99.5%の硅石粉と炭素分99.0%のコークス
粉を1900℃で処理して得た最大粒径2μm、平均粒
径0.25 pm 、 S i02含量0.3重量%(
酸素含量0.16重量%)、α−8iC1,0重量%以
下、その他の不純物1.0重量%以下を含むβ−8iC
粉末96.0重量部、1μm以下の硼素粉末1.0重量
部、ノボラック形フェノール樹脂(三菱瓦斯化学・−■
製、商品名SM−P 107A)6重量部(炭素量とし
て3重量部)を配合し、外掛でアセトン100重量部を
添加しボールミルで30分混合後80℃で2時間乾燥し
た。
Example 1 Silica powder with a purity of 99.5% and coke powder with a carbon content of 99.0% were processed at 1900°C. Maximum particle size 2 μm, average particle size 0.25 pm, Si02 content 0.3 weight %(
β-8iC containing 0.16% by weight of oxygen), 1.0% by weight or less of α-8iC, and 1.0% by weight or less of other impurities
96.0 parts by weight of powder, 1.0 parts by weight of boron powder of 1 μm or less, novolak type phenolic resin (Mitsubishi Gas Chemical, -■
6 parts by weight (3 parts by weight as carbon content) of SM-P 107A (trade name, manufactured by Manufacturer Co., Ltd.) were blended, 100 parts by weight of acetone was added in an outer layer, mixed for 30 minutes in a ball mill, and then dried at 80° C. for 2 hours.

乾燥後前記混合物を捕潰機で15分間粉砕後、賦形剤と
して6重量%ポリビニルアルコール水溶液を10重量部
添加しさらに15分間混合後42メツシュの篩を通し成
形粉を得た。
After drying, the mixture was crushed for 15 minutes using a crusher, 10 parts by weight of a 6% by weight aqueous polyvinyl alcohol solution was added as an excipient, mixed for another 15 minutes, and passed through a 42-mesh sieve to obtain a molded powder.

次に成形粉を1000 kg/CIF¥の圧力で成形し
、外径50關、高さ10朋の成形物を得る。
Next, the molded powder is molded at a pressure of 1000 kg/CIF ¥ to obtain a molded product with an outer diameter of 50 mm and a height of 10 mm.

この成形体を30℃/時間の速度で250℃まで硬化し
、さらに0.04Torrの真空中で500°C/時間
の速度で2000℃まで昇温し、45分間焼結した。
This molded body was cured to 250°C at a rate of 30°C/hour, and further heated to 2000°C at a rate of 500°C/hour in a vacuum of 0.04 Torr, and sintered for 45 minutes.

この結果18%の線収縮で3.14g/cI!の密度(
相対密度97.8%)の高密度炭化珪素焼結体が得られ
た。
The result was 3.14 g/cI with a linear shrinkage of 18%! The density of (
A high-density silicon carbide sintered body with a relative density of 97.8% was obtained.

実施例 2 実施例1と同様な方法によって得られたS i02含量
が第1表に示すように異なるβ−8iC粉末を用い、炭
素添加量を変え以下実施例1と同様な工程を経て高密度
炭素珪素焼結体を得た。
Example 2 Using β-8iC powders obtained by the same method as in Example 1 and having different Si02 contents as shown in Table 1, the amount of carbon added was changed and the following steps were performed in the same manner as in Example 1 to obtain high-density powders. A carbon silicon sintered body was obtained.

この結果を合わせて第1表に示す。The results are shown in Table 1.

実施例 3 実施例1と同様な方法によって得られたβ−8iC粉末
95重量部、1μ以下の炭化硼素粉末2重量部、カーボ
ンブラック3重量部を配合し、外掛で珪酸ナトリウム0
.1重量部、蒸留水60重量部をボールミルで30分混
合後、焼石膏型内に流し込み外径501nTIL1内径
4011t7IL1長さ50mmの円筒を成形し乾燥後
、アルゴンガス雰囲気で2050℃で45分間焼結した
Example 3 95 parts by weight of β-8iC powder obtained by the same method as in Example 1, 2 parts by weight of boron carbide powder of 1μ or less, and 3 parts by weight of carbon black were mixed, and 0 parts by weight of sodium silicate was added to the outer layer.
.. 1 part by weight and 60 parts by weight of distilled water were mixed in a ball mill for 30 minutes, then poured into a calcined plaster mold to form a cylinder with an outer diameter of 501nTIL1 an inner diameter of 4011t7IL1 and a length of 50mm, dried, and sintered at 2050°C for 45 minutes in an argon gas atmosphere. did.

この結果3.10 g/cdの密度の高密度炭化珪素焼
結体が得られた。
As a result, a high-density silicon carbide sintered body having a density of 3.10 g/cd was obtained.

比較例 1 実施例1と同様な方法によって得られたSiO□含量が
第2表に示すように異なるβ−8iC粉末を実施例1と
同様な工程を経て成形、焼結した。
Comparative Example 1 β-8iC powders obtained by the same method as in Example 1 and having different SiO□ contents as shown in Table 2 were molded and sintered through the same steps as in Example 1.

ただし炭素添加量は全て1重量部とした。However, the amount of carbon added was 1 part by weight in all cases.

この結果を合わせて第2表に示す。The results are shown in Table 2.

比較例 2 最大粒径3μm1平均粒径0.5μm1S t 02含
量1.88重量%(酸素含量1°0重量%)、その他の
不純物3.0重量%を含む研摩剤α−8iC粉末(=1
!10000)を実施例1と同様の配合でかつ同様な工
程を経て焼結体を得た。
Comparative Example 2 Abrasive α-8iC powder (=1
! 10,000) in the same formulation as in Example 1 and through the same steps to obtain a sintered body.

この結果密度は2.41g/cI!(相対密度75.1
%)であった。
The resulting density was 2.41g/cI! (Relative density 75.1
%)Met.

実施例 4 配合時の炭素量を重量部でそれぞれ1,1.5゜2.2
.5,3,4及び5にして、ほかは実施例1と同じ方法
で炭化珪素焼結体を得た。
Example 4 The amount of carbon at the time of blending was 1 and 1.5° and 2.2 parts by weight, respectively.
.. A silicon carbide sintered body was obtained in the same manner as in Example 1, except that samples Nos. 5, 3, 4, and 5 were used.

炭素添加量と得られた炭化珪素焼結体の相対密度及び曲
げ強度との関係を第1図に示す。
FIG. 1 shows the relationship between the amount of carbon added and the relative density and bending strength of the obtained silicon carbide sintered body.

また上記データから求めた相対密度と曲げ強さとの関係
を第2図に示す。
Furthermore, the relationship between relative density and bending strength determined from the above data is shown in FIG.

第1図から相対密度及び曲げ強さは炭素添加量2.5重
量%のところに最大値を示す曲線が得られ、第2図から
曲げ強度は相対密度とほぼ比例関係にあることが示され
る。
Figure 1 shows that the relative density and bending strength show a maximum value at a carbon content of 2.5% by weight, and Figure 2 shows that the bending strength is almost proportional to the relative density. .

この曲げ強度の値は従来の非加圧焼結法による焼結体に
比して何等遜色のないものである。
This value of bending strength is comparable to that of a sintered body produced by the conventional non-pressure sintering method.

本発明によれば酸素含量が最大1重量%迄のβ−8iC
粉末でも硼素または炭化硼素及び炭素を焼結助剤として
焼結する場合、炭素添加量を1.5〜5.0重量部含有
させることにより3.O,!li’/cIIt以上の密
度(相対密度93%以上)に焼結した十分な機械強度を
有する高密度炭化珪素焼結体を容易に製造することがで
きる。
According to the invention, β-8iC with an oxygen content of up to 1% by weight
When sintering powder using boron or boron carbide and carbon as a sintering aid, 3. O,! A high-density silicon carbide sintered body having sufficient mechanical strength and sintered to a density of li'/cIIt or higher (relative density of 93% or higher) can be easily produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は炭素添加量と相対密度及び曲げ強度との関係を
示すグラフ並びに第2図は相対密度と曲げ強度の関係を
示すグラフである。
FIG. 1 is a graph showing the relationship between the amount of carbon added, relative density and bending strength, and FIG. 2 is a graph showing the relationship between relative density and bending strength.

Claims (1)

【特許請求の範囲】[Claims] 1 最大粒径10μm1平均粒径0.5μm以下のβ形
炭化珪素89〜98重量部、30μm以下の硼素0.5
〜5.0重量部または炭化硼素0.6〜6.0重量部、
10μm以下の炭素粉末を1.5〜5.0重量部または
1.5〜5.0重量部の炭素粉末を生成するのに相当す
る量の有機化合物を配合し、ついで溶媒を加えて混合、
成形し、さらに真空中、窒素雰囲気中または不活性雰囲
気中で1900〜2300℃の温度で焼成した上記成形
物を3.0 g/cr!!以上の密度(相対密度93%
以上)に焼結することを特徴とする高密度炭化珪素焼結
体の製造方法。
1 Maximum particle size: 10 μm 1: 89 to 98 parts by weight of β-type silicon carbide with an average particle size of 0.5 μm or less, 0.5 parts by weight of boron with an average particle size of 30 μm or less
~5.0 parts by weight or 0.6 to 6.0 parts by weight of boron carbide,
1.5 to 5.0 parts by weight of carbon powder of 10 μm or less or an organic compound in an amount equivalent to producing 1.5 to 5.0 parts by weight of carbon powder, then a solvent is added and mixed,
The above molded product was molded and fired at a temperature of 1900 to 2300°C in vacuum, nitrogen atmosphere, or inert atmosphere to yield 3.0 g/cr! ! or higher density (relative density 93%)
1. A method for producing a high-density silicon carbide sintered body, characterized by sintering the above).
JP54167976A 1979-12-24 1979-12-24 Method for manufacturing high-density silicon carbide sintered body Expired JPS5817146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54167976A JPS5817146B2 (en) 1979-12-24 1979-12-24 Method for manufacturing high-density silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54167976A JPS5817146B2 (en) 1979-12-24 1979-12-24 Method for manufacturing high-density silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JPS5692167A JPS5692167A (en) 1981-07-25
JPS5817146B2 true JPS5817146B2 (en) 1983-04-05

Family

ID=15859500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54167976A Expired JPS5817146B2 (en) 1979-12-24 1979-12-24 Method for manufacturing high-density silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JPS5817146B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155572A (en) * 1984-01-24 1985-08-15 科学技術庁無機材質研究所長 Manufacture of high heat conductivity silicon carbide sintered body
JPS62226861A (en) * 1986-03-28 1987-10-05 株式会社日立製作所 Manufacture of graphitic fiber reinforced silicon carbide sintered body
JPS6360158A (en) * 1986-09-01 1988-03-16 イビデン株式会社 Manufacture of silicon carbide sintered body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078609A (en) * 1973-10-24 1975-06-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078609A (en) * 1973-10-24 1975-06-26

Also Published As

Publication number Publication date
JPS5692167A (en) 1981-07-25

Similar Documents

Publication Publication Date Title
US4105455A (en) Method of producing dense sintered silicon carbide body from polycarbosilanes
US7723247B2 (en) Method for pressurelessly sintering zirconium diboride/silicon carbide composite bodies to high densities
US8097548B2 (en) High-density pressurelessly sintered zirconium diboride/silicon carbide composite bodies and a method for producing the same
JPS6350312B2 (en)
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
US4019913A (en) Process for fabricating silicon carbide articles
JPH02172864A (en) Preparation of silicon carbide sintered product
JPS60221365A (en) Manufacture of high strength silicon carbide sintered body
JPS6350311B2 (en)
US4172109A (en) Pressureless sintering beryllium containing silicon carbide powder composition
JPS60246264A (en) Manufacture of silicon carbide material
JPS6350310B2 (en)
JP2535768B2 (en) High heat resistant composite material
JPS5817146B2 (en) Method for manufacturing high-density silicon carbide sintered body
JPS6360159A (en) Manufacture of high density silicon carbide sintered body
JPS6152106B2 (en)
JPS6337067B2 (en)
JPS5891065A (en) Manufacture of silicon carbide ceramic sintered body
JPH01242465A (en) Production of silicon carbide sintered body and sliding member thereof
JPS5915112B2 (en) Method for manufacturing high-density silicon carbide sintered body
JPS6355162A (en) High heat conductivity sintered body and manufacture
JPH0597518A (en) Production of silicon carbide sintered compact
JPH1053453A (en) Production of high density ceramics
JP2000026177A (en) Production of silicon-silicon carbide ceramics
JP2003081682A (en) Method of producing silicon-impregnated silicon carbide ceramic