JPS5835976A - Insulated gate type field-effect semiconductor device and manufacture thereof - Google Patents

Insulated gate type field-effect semiconductor device and manufacture thereof

Info

Publication number
JPS5835976A
JPS5835976A JP13408881A JP13408881A JPS5835976A JP S5835976 A JPS5835976 A JP S5835976A JP 13408881 A JP13408881 A JP 13408881A JP 13408881 A JP13408881 A JP 13408881A JP S5835976 A JPS5835976 A JP S5835976A
Authority
JP
Japan
Prior art keywords
layer
gate electrode
melting point
gate
point metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13408881A
Other languages
Japanese (ja)
Inventor
Toshifumi Takeda
敏文 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13408881A priority Critical patent/JPS5835976A/en
Publication of JPS5835976A publication Critical patent/JPS5835976A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To lower the resistance of gate electrode itself and the wiring of the gate electrode in the gate electrode by stacking a poly Si layer onto a high-melting metallic layer, and to form an electrode through a self-alignment method. CONSTITUTION:An Mo 6 is attached onto a field oxide film 2 and the gate oxide film 5 of P type Si 1 through a CVD method, and Mo is crystallized and its resistance is lowered through treatment for thirty min. at 1,000 deg.C in N2. When the Mo oxide film 12 generated at that time is sufficiently removed through etching and P added poly Si 7 deposited onto the whole surface through a CVD method, there is no oxide film on an interface between the layers 6 and 7, and contact resistance is sufficiently lowered. The layers 7, 6 are selectively etched to shape the gate electrode having double layer structure, and an N<+> source 3 and a drain 4 are formed in self-alignment shape through ion implantation. The surface is coated with PSG 8, an opening 14 is bored, and an Al electrode is attached. According to this constitution, the high-melting point metallic layer is annealed, a surface oxide is removed and the poly Si can be laminated, and a metallic gate which can effectively prevent the increase of the contact resistance by the oxide generated through annealing is obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、M工8 IF E T (Metal In
sulBtOr8emicOnductor Fiel
d 1ffect Translstor)會代表とす
る絶縁ゲート型電界効果牛導体装置、例えばメタルゲー
トのダイナミックRAM等のMIB型メモII 、及び
その製造方法に関するものである。 高集積度の高速MIEi型メモ+1からなる半導体集積
回路装置(工C)においては、ゲート電極を多結晶シリ
コン(以下、ボI+ 81と記す)で形成している。と
ころが、史に高速化を図るために、ボII Q lより
も抵抗率の低いゲート電極材料か望まれるか、こうした
材料としてポリ81層(1層目)とill!ll11!
l1点金属層(2層目)との2層構造か考えられている
。この場合、ポリシリコン層は11ンのドーピングによ
って低抵抗化嘔れており、また上層の高融点金属は例え
ばMOからなっている。 しかしながら、この積層、構造のゲート電極について本
発明者か検討を加えた結果、次のような問題点があるこ
とか判明した。即ち、このゲート電極を作成する工程で
は、まずボI+ 817化学的気相成長技術(ovn)
で形成した後、その上に高融点金属tスパッタI)ング
又はCvDで仮着名ゼ、更に高融点金属層t−Wi低抵
抗化するために高温で熱処理(アニール)した場合、高
融点金属層の形成時に七の中に取シ込まれ友酸素かボ1
181層と高融点金属層との界面に析出してしまう。こ
のために1 ボII g 1層−高融点金属層間の接触
抵抗か増大するので望ましくない。他方、上層の高融点
金属に代えてそのシリサイド、例えばMg811
The present invention is based on M engineering 8 IF ET (Metal In
sulBtOr8emic Conductor Field
This article relates to an insulated gate field effect conductor device, such as a metal gate dynamic RAM (MIB type memory II), which is the representative of this conference, and its manufacturing method. In a semiconductor integrated circuit device (Engineer C) consisting of a highly integrated, high-speed MIEi type memory +1, a gate electrode is formed of polycrystalline silicon (hereinafter referred to as BoI+81). However, in order to achieve higher speeds, it is desirable to have a gate electrode material with a lower resistivity than Bo II Ql, and such a material is poly 81 layer (first layer) and ill! ll11!
A two-layer structure with a metal layer (second layer) at the l1 point is considered. In this case, the polysilicon layer is doped with 11 nm to lower its resistance, and the upper layer of high melting point metal is made of, for example, MO. However, as a result of the inventor's study of the gate electrode having this stacked layer structure, it has been found that the following problems exist. That is, in the process of creating this gate electrode, first, the VoI+ 817 chemical vapor deposition technique (OVN) is used.
After forming the high-melting point metal layer t-Wi on top of it by sputtering or CvD, the high-melting point metal layer is further heat-treated (annealed) at a high temperature to lower the resistance. During the formation of the layer, oxygen is incorporated into the
It precipitates at the interface between the 181 layer and the high melting point metal layer. This undesirably increases the contact resistance between the 1 layer and the high melting point metal layer. On the other hand, instead of the high melting point metal in the upper layer, its silicide, e.g. Mg811

【用い
た場合には、上記の接触抵抗を減少嘔ぜるCとか期待ち
れたが、ゲート電極又は配線としての電気抵抗は思った
程には下からないことか分った。いずれにしても、高融
点金属又は七の71】サイドを上層、ポリ8111−下
層とする構造は1抵抗か充分には下がらず、アクセス時
間かそれ程短縮できないから、高速化の要求に応えるこ
とかできないものと言える。 従って、本発明の目的は、ゲート電極及びその配線の電
気抵抗r充分に低下せしめて高速化を達。 成し、またセルファライン方式か適用可能なゲート構造
のデバイスを提供し、かつそうしたデバイスを再現性良
、く作成できる製造方法を提供することにある。 以下、本梶明會例えばダイナミックRAM用のM18F
ICTに適用した実施例を図面について詳細に述べる。 填1図は、メモlセルr構成するV工EIIFKTt例
示するものである。P型シ・11コン基板1の一主面K
s択的に成長させたフィールドsto1g2によって各
素孕領むS分離嘔A、1素子領域には後述のセルファラ
イン方式でN+型ソース領域3及びドレイン領域4か形
成場れている。ここで注目すべきことは、ゲート酸化g
5土に設けるゲート電極(及び七のゲート配#j)か1
層目のモリブデン層6と2層目のポリ81層7との2層
構造からなっていることである。モリブデン層6はCv
Dで犀名zouoX根度に形成もれたものであって、後
述の7ニールによる結晶化で低抵抗化されたものである
。を友Cのアニール時に、0vDKよる成長中に取込ま
れたO、が表面に析出して酸化物か薄く生成場れるか、
この酸化物はエツチングで既に充分に除去ちれている。 ボ1381層7もCvDで厚さ2000λ程fjlK形
成されていてよく、下地のキリプデン層6を保−してソ
ース及びドレイン領域用のイオン打込み時のマスタ作用
!+−iしている。なお、図中、8はリンク11ケート
ガラス腺、9はアルミニウム配綱である。 このようにゲー)1[1jj及びその配線(ワード線)
tボ11S1−モIIプデンの2層構造で形成下れば、
下層のモ11ブデン層會アニールして低抵抗化せしめ、
かつこのアニール時に七の表面に析出する酸゛    
化物(Moon 、Mo5s等)を予め除去した状態で
上層のボII 81層を形成できるので、ボl+81−
モリブデン間の接触抵抗か充分に低いゲート構造、  
  とすぷことかできる。ポリS1層7の方もCvD後
に公知の11ン処理tIM丁ことによって低抵抗化でき
るから、全体としての配耐抵抗は渦足丁べきものト1に
シ、この種のメモII工OX%KVT、BX會高運化す
ることが可能となる。 しかも、上層のポリB1層7はイオン打込み時のマスク
作用を有していて、モリブデン層6と同一パターンに加
工してゲート電極形状となせば、このゲート電極自体t
マスクとしてイオン打込みt行ない、上記ソース及びド
レイン領域tセルファライン方式で形成できる。従って
、本実施例のゲート構造は、これまでのポリB1ゲート
における製造プーロセスtそのまま適用でき、既存のプ
ロセスと互換性かある点で好都合なものである。なお、
モ11プデン層6はOVDで形成されるから、  ゛下
地のゲート酸化膜5との接着性か良好となってbる。 次に、本実施例のメモリの製造方法を主として!1図o
mzsyxr部に関し説明する。 まず!2A図のように、P型シリコン基板1の゛−生主
面、窒化シリコン磯lotマスクとする公知の選択酸化
技術によってフィールドE110malif2を選択的
に成長名ぜる。 次すで112B図のように、マスク10及び下地のsi
o、膜111rエツチングで除去した後に酸化性雰囲気
中での熱処理によりゲート酸化膜5を成長場せ、更にO
VDで全面にモリブデン層6を被1する。そして、NI
中において1000℃で30分間、熱処gJ(了ニール
)を行なうことにより、モリブデン層6’kif晶化ゼ
しめかつ低抵抗化せしめる。この際、OvD#にモリブ
デン層6中に取込まれたO雪かその表面に析出し、厚名
50〜100ム程度と薄す表面酸化膜(MoO雪、11
go01等)が生成する。 次いで第20図のように、七の表面酸化膜12の犀も分
だけH1系エッチャントで軽くエツチングする。これに
よって、モリブデン層6の表面の酸化モリブデンを充分
く除去する。 次いでllZD図のように、OvDで全面にポリ81層
7を成長せしめる。このボ1)81層7は低抵抗化のた
めに公知のIIン処理を行表ってよく、或いは0VDK
よる成長時にリンを同時にト°−プして低抵抗ポリs1
として析出させたものでろつてもよい。ボII 81層
7は、既に表面酸化膜が除去されたモ1)プデン層6上
に低温(590〜600℃)で成長せしめられ、しかも
モ1)プデン層6のアニールか既に終了していることか
ら、両層6−7IvIの界面には酸素の析出(酸化膜の
生成)が何ら生じておらず、その接触抵抗は光分に低く
なっている。 次いで#!2E図のように、公知のフォトエツチングに
よってボ1181層7、モ11プデン層62は1!同一
パターンに順次エツチングして、2層構造のゲート電極
及びその配置1i1に形成する。 次すで1i2F図のように、全面に砒素のイオンビーム
13’l(照射せしめ、ポリ81層7及びフィールド8
1011js2@マスクとしてこれらの間のゲート酸化
1115?l−逸してイオン打込み1行ない、シ11コ
ン基板LKkl+型ンース領域3及びドレイン領域4を
夫々選択的に形成する。これらの内領域はポリ81層7
のマスク作用によってセルファライン方式で(自己整合
的K)形成される。従って、ポリ81層7の保護作用で
モリブデン層6中を砒素イオンか突き抜けることがなく
、既存のセルファライン方式のイオン打込みプロセスと
の互換性を保つことができる。 次いで算2G図のように、OVDで全面にリンク11ケ
ートガラス膜8を成長させ、更にこのガラス$8及びゲ
ート酸化−5の所定箇所を公知のフォトエツチングで除
去し、コンタクトホール14【形成する。 次いで、例えは公知の真空蒸5I技術で全面にアルミニ
ウムを付M4ゼ、これ【公知のフォトエツチングでパタ
ーニングしてtliL1図に示したアルミニウム配@9
等髪形成する。 上記し穴ように、本実施例の製造プロセスによって、R
存のプロセスを実質的に変更することなく#11図のデ
バイスを再現性良く作成することができる。しかも、プ
ロセス中にモリブデン層表面の酸化膜tライトエツチン
グ後にボII El 1層を設けている危め、それらの
接触抵抗七減らしてvb8IメモリのiII+運動作を
確実に実現することかできる。 第3図は、本発明の112の実施例によるメモ11の製
造方法を示すものである。 この例では、まず1113ム図のように、第2B図で形
成したゲート酸化1145に公知のフォトエツチングで
パターニングしてゲート位置のみに残し、更に上述した
と同様にモリブデン層6を形成する。 次いで第3B図のように、上述と同様にモリブデン層6
にアニールした後に表面に析出した酸化モリブデンをラ
イトエツチングで除去し、しかるi[0vDでボ11B
1層711−槓層ぜしめる0次いで#30図のように、
公知のフォトエツチングでポ1)S1層71モ1)ブデ
ン層6を順次同一形状にパターニングし、ゲート電極及
び七の配置を形成でる。 次いで113D図のように、公知のイオン打込みによっ
て上述したと同様にC型ンース頓域3及びドV47%域
&’tセルフ了ライン方式で夫々形成する。なお、上記
酸化膜1511−形成しない場合には、公知の熱拡散で
ンース及びドレイン領域を形成してよい。 次いで51131図のように、OvDで全面に11ンシ
lケートガラス[8に形成し、更に公知のフォトエツチ
ングでコンタクトホール14【形成する。 この後は、上述したと同様にアルミニウムを蒸酒し、各
アルミニウム配線にエツチングで加工する。 以上、本発明を例示したか、上述の実施例は本発明の技
術的思想に基いて更に変形か可能である。 例えば、ゲートの1層目のモリブデン酸に代えて他の高
融点金属、例えばタングステン、タンタル又はチタン層
を設けることかできる。また、上述のボlj 81−高
融点金属の積層構造は、ゲート電極と共に七の配線にも
採用ちれるのか望ましいか、ゲート電極のみに採用し、
配縁はアルミニウム等で形成することもできる。また、
上述のモ1)ブデン層はOVD以外にもスパッタリング
家形成してもよい。なお、本発明はダイナミックRAM
′にはじめ他のM工8型メモ11、l![ijm I 
8型1:IシックL8工等の絶縁ゲート型電界効果牛導
体装置に広く適用可能である。 上述した如く、本発明によれは、少なくともゲート電極
において高融点金属層t−1層目とし、その上に多結晶
シリコンを積層する構造としたので、高融点金属層のア
ニール後にその表面の酸化物を除去した後に多結晶シI
Iコン會積層でき、そのアニールによ松虫じる酸化物で
接触抵抗か増大するのt効果的に防止できるメタルゲー
ト會提供できる。従って、高速化の要求を光分[%足し
九絶縁ゲート型素子か得られる。しかも、1層目の高融
点金属層は耐イオン打込み性のある多結晶シリコン層で
保護されているから、この積層構造のゲートによってソ
ース及びドレイン領域tイオン打込みでセルファライン
方式で形成でき、既存の製造プロセスとの互換性?保持
できる。 また、上配槓層構造のゲートは、1層目の高融点金属層
の7二−ル後に表面の版化物tライトエツチングで除去
し、その上に多結晶シ11コンt−[ぜることによって
作成しているから、高速化の除害となる上記酸化物″4
を確実に除去することかでき、再現性良く^連デバイス
を作成できる。
[When used, it was hoped that C would reduce the contact resistance mentioned above, but it turned out that the electrical resistance as a gate electrode or wiring did not decrease as much as expected. In any case, a structure in which the high melting point metal or 711 side is the upper layer and the poly 8111 side is the lower layer does not lower the resistance by 1 or less, and the access time cannot be reduced that much, so it is difficult to meet the demand for higher speeds. It can be said that it is impossible. Therefore, an object of the present invention is to sufficiently reduce the electrical resistance r of the gate electrode and its wiring to achieve high speed. The object of the present invention is to provide a device with a gate structure that can be implemented using the self-line method, and to provide a manufacturing method that can produce such a device with good reproducibility. Below, Honkaji Meikai, for example, M18F for dynamic RAM
An embodiment applied to ICT will be described in detail with reference to the drawings. Figure 1 shows an example of a V-type EIIFKTt that includes a memory cell r. One principal surface K of the P-type silicon 11-con board 1
An N+ type source region 3 and a drain region 4 are formed in one element region by the selectively grown field sto1g2, which covers each element, by the self-line method described later. What should be noted here is that the gate oxidation g
5 Gate electrode provided on soil (and 7 gate wiring #j) or 1
It has a two-layer structure consisting of a molybdenum layer 6 as the first layer and a poly 81 layer 7 as the second layer. Molybdenum layer 6 is Cv
This is a result of the formation of the rhinoceros oxide in D, and its resistance has been lowered by crystallization using 7-neel crystallization, which will be described later. When annealing C, the O taken in during growth by 0vDK precipitates on the surface and forms a thin oxide field.
This oxide has already been sufficiently removed by etching. The bottom 1381 layer 7 may also be formed by CvD to a thickness of about 2000λ, and serves as a master during ion implantation for the source and drain regions while preserving the underlying cylindrical layer 6! +-i. In addition, in the figure, 8 is a link 11, a glass gland, and 9 is an aluminum cable. In this way, game) 1[1jj and its wiring (word line)
If it is formed with a two-layer structure of TBo11S1-MoIIPden,
The lower molybdenum layer is annealed to lower the resistance.
During this annealing, the acid precipitated on the surface of the
Since the upper layer Bo II 81 can be formed with the compounds (Moon, Mo5s, etc.) removed in advance, Bo II 81-
Gate structure with sufficiently low contact resistance between molybdenum,
I can do something called Tospup. The resistance of the poly S1 layer 7 can also be lowered by subjecting it to the well-known 11-layer treatment after CvD, so the overall distribution resistance is as low as 100%. , it becomes possible to improve the performance of BX. Moreover, the upper polyB1 layer 7 has a masking effect during ion implantation, and if it is processed into the same pattern as the molybdenum layer 6 to form the gate electrode shape, the gate electrode itself can be
Ion implantation is performed as a mask, and the source and drain regions can be formed using the self-line method. Therefore, the gate structure of this embodiment can be applied to the conventional manufacturing process for poly B1 gates as is, and is advantageous in that it is compatible with existing processes. In addition,
Since the semiconductor layer 6 is formed by OVD, it has good adhesion to the underlying gate oxide film 5. Next, we will mainly discuss the method for manufacturing the memory of this embodiment! Figure 1 o
The mzsyxr section will be explained. first! As shown in FIG. 2A, a field E110malif2 is selectively grown on the main surface of the P-type silicon substrate 1 using a known selective oxidation technique using silicon nitride as a lot mask. Next, as shown in Figure 112B, the mask 10 and the underlying Si
o. After removing the film 111r by etching, a gate oxide film 5 is grown by heat treatment in an oxidizing atmosphere, and then O
A molybdenum layer 6 is coated on the entire surface using VD. And N.I.
By performing heat treatment at 1000° C. for 30 minutes in the inside, the molybdenum layer 6'kif is crystallized and reduced in resistance. At this time, the O snow incorporated into the molybdenum layer 6 in OvD# is deposited on its surface, and the surface oxide film (MoO snow, 11
go01 etc.) is generated. Next, as shown in FIG. 20, the surface oxide film 12 is lightly etched using an H1 etchant. As a result, molybdenum oxide on the surface of the molybdenum layer 6 is sufficiently removed. Next, as shown in the llZD diagram, a poly 81 layer 7 is grown on the entire surface by OvD. This board 1) 81 layer 7 may be subjected to a known II treatment to lower the resistance, or may be treated with 0VDK.
During growth, phosphorus is simultaneously topped to form a low-resistance polys
It is also possible to use a precipitated product. Bo II 81 layer 7 is grown at a low temperature (590 to 600°C) on the surface oxide layer 6 from which the surface oxide film has already been removed, and the annealing of the layer 6 has already been completed. Therefore, no oxygen precipitation (formation of oxide film) occurs at the interface between both layers 6-7IvI, and the contact resistance is extremely low. Then #! As shown in Fig. 2E, the bottom 1181 layer 7 and the bottom layer 62 are 1! The same pattern is sequentially etched to form a two-layer gate electrode and its arrangement 1i1. Next, as shown in Figure 1i2F, the entire surface is irradiated with an arsenic ion beam 13'l (irradiated with poly 81 layer 7 and field 8
1011js2@gate oxidation 1115 between these as a mask? One row of ion implantation is performed with l- missed to selectively form an LKkl+ type source region 3 and a drain region 4 on the silicon substrate. These inner areas are poly 81 layer 7
It is formed in a self-aligned manner (self-aligned K) by the mask action of . Therefore, the protective effect of the poly 81 layer 7 prevents arsenic ions from penetrating through the molybdenum layer 6, and compatibility with the existing self-line type ion implantation process can be maintained. Next, as shown in Fig. 2G, a link 11 gate glass film 8 is grown on the entire surface by OVD, and predetermined portions of this glass 8 and gate oxide 5 are removed by known photoetching to form a contact hole 14. . Next, aluminum was applied to the entire surface using the well-known vacuum evaporation 5I technique, and this was patterned using the well-known photoetching method to form the aluminum layout shown in the tliL1 diagram.
Forms equal hair. As mentioned above, by the manufacturing process of this example, R
The device shown in Figure #11 can be produced with good reproducibility without substantially changing the existing process. Moreover, since the Bo II El 1 layer is provided after light etching of the oxide film on the surface of the molybdenum layer during the process, the contact resistance thereof can be reduced by 7 to ensure the iII+ motion operation of the Vb8I memory. FIG. 3 shows a method of manufacturing a memo 11 according to a 112th embodiment of the present invention. In this example, as shown in the diagram 1113, first, the gate oxide 1145 formed in FIG. 2B is patterned by known photoetching, leaving only the gate position, and then a molybdenum layer 6 is formed in the same manner as described above. Next, as shown in FIG. 3B, a molybdenum layer 6 is formed in the same manner as described above.
After annealing, the molybdenum oxide deposited on the surface was removed by light etching, and then
1st layer 711 - 0 next layer #30 As shown in the diagram,
1) S1 layer 71 and 1) Budden layer 6 are sequentially patterned into the same shape using known photoetching to form the gate electrode and the arrangement shown in FIG. Next, as shown in FIG. 113D, the C-type non-stop region 3 and the de-V47% region &'t self-finishing line method are formed by known ion implantation, respectively, in the same manner as described above. Note that if the oxide film 1511 is not formed, the source and drain regions may be formed by known thermal diffusion. Next, as shown in FIG. 51131, a 11 insilicate glass [8] is formed on the entire surface by OvD, and a contact hole 14 [8] is further formed by known photoetching. After this, aluminum is steamed and processed into each aluminum wiring by etching in the same manner as described above. Although the present invention has been illustrated above, the embodiments described above can be further modified based on the technical idea of the present invention. For example, instead of molybdic acid in the first layer of the gate, another high melting point metal layer, such as tungsten, tantalum or titanium, can be provided. Also, is it possible to use the above-mentioned laminate structure of high melting point metal for the gate electrode as well as for the 7th wiring?Is it desirable to use it only for the gate electrode?
The trim can also be made of aluminum or the like. Also,
The above-mentioned method 1) the buten layer may be formed by sputtering instead of OVD. Note that the present invention is a dynamic RAM.
' and other M-worker 8 type memo 11, l! [ijm I
8 type 1: It is widely applicable to insulated gate type field effect conductor devices such as I-thick L8 type. As described above, according to the present invention, at least in the gate electrode, the high melting point metal layer is the t-1 layer, and since the structure is such that polycrystalline silicon is laminated thereon, the surface of the high melting point metal layer is not oxidized after annealing. After removing the material, polycrystalline silicon I
It is possible to provide a metal gate board that can be laminated with an I-contact board and can effectively prevent an increase in contact resistance due to oxides that are damaged by annealing. Therefore, by adding up the demand for higher speed by 9% of the light, an insulated gate type device can be obtained. Moreover, since the first high-melting point metal layer is protected by a polycrystalline silicon layer that is resistant to ion implantation, the gate with this stacked structure allows the source and drain regions to be formed using the self-line method by ion implantation. Compatibility with manufacturing process? Can be retained. In addition, the gate of the upper layer structure was removed by light etching of the surface plate after 7 years of the first high melting point metal layer, and then the polycrystalline silicon layer was removed by light etching. Since the above oxide "4" is created by
can be reliably removed, and a connected device can be created with good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明’((MIS型メモI+ [適用した実施
例を示すものであって、5IL1図はI!1の実施例に
よるメモ11セル部の断面図、第2A図〜#2G図は七
の製造方法を工糧順に示す各wr面図、第3A図〜第3
E図は第2の実施例によるメモ1ンセル部の製造方法を
工程順に示す各断面図である。 なお、図面に示した符号において、5はゲート酸化膜、
6はモリブデン酸、7はボ11 B i層、12はモリ
ブデン酸化物である。 第  1  図 第2A図 第25図 第2C図 第2E図 第2F図 第3A図 第3B図 第3D図
The drawings show an embodiment in which the present invention is applied to the MIS type memo I+. Each wr side view showing the manufacturing method in order of production, Figures 3A to 3
FIG. E is a cross-sectional view showing the method of manufacturing the memory cell part according to the second embodiment in the order of steps. In addition, in the symbols shown in the drawings, 5 is a gate oxide film,
6 is molybdic acid, 7 is the Bo11B i layer, and 12 is molybdenum oxide. Figure 1 Figure 2A Figure 25 Figure 2C Figure 2E Figure 2F Figure 3A Figure 3B Figure 3D

Claims (1)

【特許請求の範囲】 1、 ソース及びドレイン領域間に絶縁Mk介してゲー
ト電極が設けられている絶縁ゲート型電界効果牛導体装
置において、少なくとも前記ゲート電極か、高融点金属
からなる下層と多結晶シリコンからなる土層との積層構
造によって形成もれていることに’S徴とする装置。 λ 半導体基体上に絶縁J1gt−形成する工程と、こ
の絶縁膜上#ICaI&融点金属層倉形成する工程と、
この高融点金属層上熱処理しt後にその表面全組くエツ
チングする工程と、このエツチング後に前記高融点金属
層上に多結晶シリコン層を積層する工程と、この多結晶
シリコン層及び前記高融点金属層を少なくともゲート電
極形状に夫々加工する工程と、この加工後に前記多M1
1&シ11コン層葡マスクとして前記半導体基体に所定
の不純物を選択的に導入すること(よってノース及びド
レイン領域を夫々形成する工程とt具備する絶縁ゲート
型電界効果半導体装置の製造方法。
[Claims] 1. In an insulated gate field effect conductor device in which a gate electrode is provided between a source and a drain region via an insulating Mk, at least the gate electrode or a lower layer made of a high melting point metal and a polycrystalline This device is characterized by its leakage due to its laminated structure with a soil layer made of silicon. λ A step of forming an insulator J1gt- on the semiconductor substrate, a step of forming #ICaI & melting point metal layer on this insulating film,
A step of heat-treating the high melting point metal layer and then etching the entire surface thereof, a step of laminating a polycrystalline silicon layer on the high melting point metal layer after this etching, and a step of stacking the polycrystalline silicon layer and the high melting point metal. A step of processing each layer into at least a gate electrode shape, and after this processing, the multilayer M1
A method for manufacturing an insulated gate field effect semiconductor device, comprising selectively introducing predetermined impurities into the semiconductor substrate as a silicon layer mask (thus forming north and drain regions, respectively).
JP13408881A 1981-08-28 1981-08-28 Insulated gate type field-effect semiconductor device and manufacture thereof Pending JPS5835976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13408881A JPS5835976A (en) 1981-08-28 1981-08-28 Insulated gate type field-effect semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13408881A JPS5835976A (en) 1981-08-28 1981-08-28 Insulated gate type field-effect semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS5835976A true JPS5835976A (en) 1983-03-02

Family

ID=15120130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13408881A Pending JPS5835976A (en) 1981-08-28 1981-08-28 Insulated gate type field-effect semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5835976A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04216027A (en) * 1990-12-14 1992-08-06 Sekisui Chem Co Ltd Injection molding die
WO2006061369A1 (en) * 2004-12-06 2006-06-15 Infineon Technologies Ag Semiconductor device and method of manufacture thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04216027A (en) * 1990-12-14 1992-08-06 Sekisui Chem Co Ltd Injection molding die
WO2006061369A1 (en) * 2004-12-06 2006-06-15 Infineon Technologies Ag Semiconductor device and method of manufacture thereof
US7291526B2 (en) 2004-12-06 2007-11-06 Infineon Technologies Ag Semiconductor device and method of manufacture thereof
US7576399B2 (en) 2004-12-06 2009-08-18 Infineon Technologies Ag Semiconductor device and method of manufacture thereof

Similar Documents

Publication Publication Date Title
US4392150A (en) MOS Integrated circuit having refractory metal or metal silicide interconnect layer
JPS6237815B2 (en)
JP2668081B2 (en) Method of manufacturing a CMOS EPROM memory cell
KR920004226B1 (en) Method for interconnecting semiconductor device
US5003375A (en) MIS type semiconductor integrated circuit device having a refractory metal gate electrode and refractory metal silicide film covering the gate electrode
US4737831A (en) Semiconductor device with self-aligned gate structure and manufacturing process thereof
US5169792A (en) Semiconductor device
KR0172116B1 (en) Method of manufacturing a semiconductor device
US5840618A (en) Method of manufacturing semiconductor device using an amorphous material
KR100743618B1 (en) Gate of semiconductor and method for manufacturing the same
JPS5835976A (en) Insulated gate type field-effect semiconductor device and manufacture thereof
JPS6292481A (en) Manufacture of semiconductor device
JPH0329189B2 (en)
JPS60193333A (en) Manufacture of semiconductor device
JPS597231B2 (en) Method for manufacturing insulated gate field effect semiconductor device
JPS61105870A (en) Manufacture of thin film transistor
JPH0715954B2 (en) Method of manufacturing nonvolatile semiconductor memory device
JPH039572A (en) Manufacture of semiconductor device
JPH0810726B2 (en) Method for manufacturing semiconductor device
JPS59161072A (en) Semiconductor device
KR100351895B1 (en) Method for forming bitline in semiconductor device
KR960011816B1 (en) Method of making a capacitor in semiconductor device
JPH0338732B2 (en)
JPH02203565A (en) Semiconductor device and its manufacture
JPH06104428A (en) Semiconductor device and its manufacture