JPS5834973A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS5834973A
JPS5834973A JP56133198A JP13319881A JPS5834973A JP S5834973 A JPS5834973 A JP S5834973A JP 56133198 A JP56133198 A JP 56133198A JP 13319881 A JP13319881 A JP 13319881A JP S5834973 A JPS5834973 A JP S5834973A
Authority
JP
Japan
Prior art keywords
film
region
contact
sub
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56133198A
Other languages
Japanese (ja)
Inventor
Masaru Katagiri
優 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56133198A priority Critical patent/JPS5834973A/en
Publication of JPS5834973A publication Critical patent/JPS5834973A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To improve integration density by miniaturization of a subcontact region and, in addition, to shorten etching time by settling an interface between a metallic layer for an electrode of a subcontact region and a semiconductor substrate shallower than an interface between the field oxide film and semiconductor substrate. CONSTITUTION:An SiO2 film and Si2N4 film are deposited on a P type silicon substrate 21 and patterning is made by PEP to form a field oxide film 26 by thermal oxidation. Then, an element forming region 27 and the subcontact region 28 are produced. N type impurities are diffused into the element forming region 27 to form N<+> regions 31, 32. After an SiO2 film 33 is formed over the entire face of the substrate by CVD, the source, drain and subcontact regions are provided by PEP and a contact hole 34 is formed. Next, electrodes and interconnection are produced by evaporation and patterning of a metallic layer 36. This permits the interface between the metallic layer 36 of the subcontact region 28 and the substrate 21 to be shallower than the interface between the field oxide film 26 and the substrate 21 so as to be able to shorten the etching time and to improve integration density by miniaturization of the subcontact region.

Description

【発明の詳細な説明】 この発明はサブコンタクトを有する半導体装置及びその
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device having sub-contacts and a method for manufacturing the same.

従来%サブコンタクトを有するMU8(Metal!X
ムde旦dmicooduc tor )4半導体装置
は例えは第1図(1)〜(h)に示すような工程で製造
されていた。
MU8 (Metal!
For example, semiconductor devices have been manufactured through the steps shown in FIGS. 1(1) to 1(h).

すなわち%M1図(a)に示すように、P型Ctuuン
シリコン基’411上に別喝、sllべ属3を櫨次堆”
a Nhjl 3をパターニングした後、フィールF領
域に開口4を奢するレジスト膜5をマスクにして反転防
止用にボロンのイオン注入な行う。
In other words, as shown in Figure (a), a separate layer of sllbe 3 was deposited on the P-type silicon base 411.
After patterning the Nhjl 3, boron ions are implanted to prevent inversion using the resist film 5 covering the opening 4 in the field F region as a mask.

次に、第1図伽)に示すようにレジスト膜5を剥離した
後、パターニングされた84N、膜3をマスクにして熱
酸化を行いフィールド酸化M6に形成し、シリコン基板
lの所定領域に素子形成電域りを設ける0次に4131
図(C)に示すように、811へ膜3及び8i(4膜2
をエツチング除去した後、全面にゲート酸化M481’
形成し、さらにこより−ゲート電極及び配線用の多結晶
シリコンパターンを形成する。そして、パターニングさ
れた多結晶シリコン膜9をマスクにしてゲート酸化膜8
をエツチングした後%露出したシリコン基板1表面にN
tJI!不祠物例えばリンの拡散を行い、ソース、ドレ
インとなるN”!III域10゜11を形成する。久に
%m1図(りに示すように、全面にCV D (Che
micalヱapour Depot目ioすSム偽膜
12を形成する0次に、第1図(f)に示すよう(:C
VD8i0. J[72f)”)−ス# )’しく ン
領域、及びサブコンタクト領域にPH1Pによりコンタ
クトホール13を形成する。しかる後、第1図(−に示
すようにフィールド酸化膜6のサブコンタクト領域にサ
ブコンタクトホール14を形成する。最後に%第1図(
りに示すように全面に例えばAt(アルミニウムンの金
属層15を蒸着した後、パターニングして電極及び配m
t−形成するものである。
Next, as shown in FIG. 1, after peeling off the resist film 5, thermal oxidation is performed using the patterned 84N film 3 as a mask to form field oxidation M6, and devices are formed in a predetermined area of the silicon substrate l. 0th order 4131 to provide formation electric field
As shown in Figure (C), the film 3 and 8i (4 film 2
After removing by etching, gate oxidation M481' is applied to the entire surface.
Then, polycrystalline silicon patterns for gate electrodes and wiring are formed. Then, using the patterned polycrystalline silicon film 9 as a mask, a gate oxide film 8 is formed.
After etching, N is applied to the exposed silicon substrate 1 surface.
tJI! Diffusion of impurities such as phosphorus is performed to form N''!III regions 10°11 which will serve as sources and drains.
Next, as shown in FIG. 1(f), the pseudomembrane 12 is formed.
VD8i0. J[72f)'')-S#)' A contact hole 13 is formed in the sub-contact region and the sub-contact region by PH1P.After that, as shown in FIG. A sub-contact hole 14 is formed.Finally, as shown in Figure 1 (
As shown in the figure, a metal layer 15 of, for example, At (aluminum) is deposited on the entire surface and then patterned to form electrodes and wiring.
t-forming.

しかしながら、このような従来の半導体装置においては
、 ■ サブコンタクトホール14を形[fるために、CV
D8i0.膜12をエツチングした恢−さらに厚いフィ
ールド酸化膜6をエツチングする必要があり、エツチン
グに長時間を要する。
However, in such a conventional semiconductor device, (1) In order to form the sub-contact hole 14, CV
D8i0. After etching the film 12, it is necessary to etch an even thicker field oxide film 6, which takes a long time.

■ 熱酸化によるフィールド酸化膜6とCVD84偽膜
12のようにエツチング速度の真なる敵化膜に、コンタ
クトホールな形成する必要があるため、適当なテーパを
設けることが嫡しく、第1図伽)に■で示すようにAt
の金属層15の段切れ等を起こし易い。
■ Since it is necessary to form a contact hole in films that are truly hostile to etching speed, such as the field oxide film 6 by thermal oxidation and the CVD 84 pseudo film 12, it is appropriate to provide an appropriate taper (see Figure 1). As shown by ■, At
It is easy for the metal layer 15 to break off.

■ ■、■の理由によりパターン変換差が大きくなり、
サブコンタクト領域形成に大きな面積を要し、集積度が
低下する。
■ Due to the reasons for ■ and ■, the pattern conversion difference becomes large.
A large area is required to form the sub-contact region, and the degree of integration is reduced.

等の欠点があった。There were other drawbacks.

この発明は上記実情に鑑みてなされたもので一七の目的
は、エツチング時間を短縮し、かっ取出電極金属層の段
切れを防止することが9餌で一チブコンタクト領域に要
する面積を縮小できる半導体装置及びその製造方法を提
供することにある。
This invention was made in view of the above-mentioned circumstances, and the 17th purpose is to shorten the etching time and prevent breakage of the metal layer of the cutout electrode. An object of the present invention is to provide a semiconductor device and a method for manufacturing the same.

以下、内面を参照してこの発明の一実施例を説明する、
まず、82図(a月二示すようにPtJCltBI)シ
リコン基板21上に厚さaNAの84へ属fJv7畝次
堆積し、PfjPにより81m N+ 11jtJJを
パターニングする。しかる後、フィールド領域に開口2
4を有するレジスト膜25をマスクにして反転防止用に
ボロシのイオン注入ン行う。
Hereinafter, one embodiment of the present invention will be described with reference to the inner surface.
First, as shown in FIG. 82 (A/2), PtJCltBI is deposited on a silicon substrate 21 in 84 to 84 mN+ 11jtJJ with a thickness of aNA, and 81m N+ 11jtJJ is patterned by PfjP. After that, an opening 2 is made in the field area.
Using the resist film 25 having No. 4 as a mask, boroshi ions are implanted to prevent reversal.

次に、1n21N(b月二示すようにレジスト膜25の
剥離を行った後亀バターニングされた5hN41123
をマスクにして熱酸化によりフィールド°酸化膜26を
形成する。これにより、シリコン基板21の所定領域に
素子形成領域27が形成される。その際、この実施例に
おいてはサブコンタクト領域28も同時に形成される。
Next, 1n21N (5hN41123 was patterned after peeling off the resist film 25 as shown in Figure 2).
A field oxide film 26 is formed by thermal oxidation using as a mask. As a result, an element formation region 27 is formed in a predetermined region of the silicon substrate 21. At this time, in this embodiment, the sub-contact region 28 is also formed at the same time.

(Kに%第2□□□(C)に示すように、84.N、膜
23及びSiO禦膜22をエツチング除去した後、全面
に厚さ数百へのゲート酸化膜29を形成し、さらにこの
ゲート酸化膜29上に数千人の多−晶シリコン膜30を
堆積する0次に、1i2図(d)に示すように、pgp
によりゲート電極及び配−用の多結晶シリコンパターン
を形成するが、同時にサブコンタクト領域28にも多結
晶シリコンパターンを形成する。そし乙バターニングさ
れた多結晶シリコン1[s oをマスクにしてゲート酸
化M29をエツチングする0次に、繕出したシリコン基
板21の表面(ソース−ドレイン領域ンにN型不純物例
えばリンの拡散を行い5Nlli填域J7.JJを形成
する。この際%サブコンタクト領域28には多結晶シリ
コン膜30及びゲート酸化膜2#があるためN1散は行
われない。
(As shown in 2nd □□□ (C), 84.N, after etching and removing the film 23 and the SiO film 22, a gate oxide film 29 with a thickness of several hundred is formed on the entire surface, Furthermore, several thousand polycrystalline silicon films 30 are deposited on this gate oxide film 29. As shown in FIG.
A polycrystalline silicon pattern for the gate electrode and wiring is formed by this process, and at the same time, a polycrystalline silicon pattern is also formed in the sub-contact region 28. Then, the gate oxide M29 is etched using the patterned polycrystalline silicon 1 as a mask. Next, an N-type impurity such as phosphorus is diffused into the surface of the repaired silicon substrate 21 (source-drain region). Then, a 5Nlli filling region J7.JJ is formed.At this time, since the polycrystalline silicon film 30 and the gate oxide film 2# are present in the % sub-contact region 28, N1 dispersion is not performed.

次に、第2図(C)に示すように全面にCv税8i0.
膜JJをlP機機影形成る。
Next, as shown in FIG. 2(C), Cv tax 8i0.
Film JJ is formed using an IP machine.

次に、第2図(f)に示すように、上記CVD8iL)
Next, as shown in FIG. 2(f), the above CVD8iL)
.

M33のソース、ドレイン領域及びサブコンタクト領域
にPEPによりコンタクトホールS4を形成する。この
場合、サブコンタクト領域2Bには多結晶シリコン膜3
0があるため、基板21が露出することはない0次(=
、第2図−)に示すようζ二、P’FJPi二よりサブ
コンタクト領域28の多結晶シリコンMI J o及び
その下のゲート酸化膜29ンエツチング除去し1サブコ
ンタクトホールal′Ik−形成する。厳倣に、第2図
(h)に示すように全面に例えばAAの金属層3シを蒸
着した後パターニングして、電極及び配I[ン形成する
Contact holes S4 are formed in the source, drain and sub-contact regions of M33 by PEP. In this case, the polycrystalline silicon film 3 is in the sub-contact region 2B.
0, the substrate 21 is never exposed because of the 0th order (=
, FIG. 2-), the polycrystalline silicon MIJo of the sub-contact region 28 and the gate oxide film 29 thereunder are removed by etching from ζ2 and P'FJPi2 to form one sub-contact hole al'Ik-. As shown in FIG. 2(h), three metal layers of AA, for example, are deposited over the entire surface and patterned to form electrodes and interconnections.

このようにして製造された半導体装置においては%ナラ
コンタクトホール35の形成に従来のような厚い酸化膜
tエツチングする必要がないため、従来に比ベエッチン
グに要する時間が短かくなる。また、サブコンタクト領
域28における金属層36とシリコン基板2)との界面
が、従来に比べて浅く−すなわちフィールド酸化膜26
とシリコン基板21との界面より浅くなっているため、
金属層36の段差が小さくなり1段切れを防止すること
ができる。また、パターン変換差が小さくなり1サブコ
ンタクト債域L!の面積な紬小できる。
In the semiconductor device manufactured in this way, it is not necessary to etch a thick oxide film as in the conventional method to form the contact hole 35, so that the time required for etching is shorter than in the conventional method. Furthermore, the interface between the metal layer 36 and the silicon substrate 2) in the sub-contact region 28 is shallower than in the past - that is, the field oxide film 2
Since it is shallower than the interface between the silicon substrate 21 and the silicon substrate 21,
The difference in level of the metal layer 36 is reduced, and breakage of one level can be prevented. Also, the pattern conversion difference becomes smaller and the 1 sub-contact bond area is L! The area of tsumugi can be small.

上記実施例においては、サブコンタクト積載28をチッ
プ内に形成するようにしたが、チップ内に形成できない
場合には133図に示すようにチップ周辺部のダイシン
グライン1′ノにサブコンタクト及びGND  (グラ
ンド)ラインを形成するようにすればよい、第4図は第
3図の一部拡大図、Il!5図は184図のA −A’
線に沿った断面図である。#J51Nにおいてsitは
シリコン基板% Uはサブコンタクト領域、53はダイ
シングラインとしてのN@域% 54はフィールド酸化
膜、55は多結晶シリコン属%56はCVD9轟O8膜
% 5rはGND  ラインとしてのAA金属層である
In the above embodiment, the sub-contact mounting 28 is formed within the chip, but if it cannot be formed within the chip, the sub-contact and GND ( Figure 4 is a partially enlarged view of Figure 3, Il! Figure 5 is A-A' in Figure 184.
It is a sectional view along the line. # In J51N, sit is silicon substrate % U is sub-contact region, 53 is N@ area as dicing line % 54 is field oxide film, 55 is polycrystalline silicon % 56 is CVD9 O8 film % 5r is as GND line It is an AA metal layer.

以上のようにこの発明によれば、サブコンタクト領域に
おける取出電極金属層と牛導体轟板との界面が一フイー
ルド領域におけるフィールド酸化膜と半導体基板との界
面よりも浅い位置となるような構成としたので、エツチ
ング時間を短縮できると共に取出1m!極金異金属段切
れY防止でき、従ってサブコンタクト領域に要する面積
を縮小でき集積度が向上する。
As described above, according to the present invention, the interface between the extraction electrode metal layer and the conductor plate in the sub-contact region is located at a shallower position than the interface between the field oxide film and the semiconductor substrate in one field region. As a result, the etching time can be shortened and the removal distance is only 1 m! It is possible to prevent discontinuous metal step breakage, thereby reducing the area required for the sub-contact region and improving the degree of integration.

【図面の簡単な説明】[Brief explanation of the drawing]

粥1図(荀〜(h)は従来の半導体装置の製造工程を示
す断面図、第2(1!!1(13〜(h)はこの発明の
一実施例に係る半導体装置の断面図、1lIIa図乃至
第511Iはこ5の発明の他の実施例を示すもので、第
3図は半導体クエへの平面図、第4図は上記ウニへの一
部拡大図、第5図は第4図のA−に線に沿った断面図で
ある。 z t −−−P梨シリコン基板、22・・・84tJ
、・膜、2J・・・81MN番Lzs・・・フィールド
酸化膜、1!?”−kg子影形成領域U・・・サブコン
タクト領域b j # ”・ゲート酸化膜、10・・・
多結晶シリコン膜% 81.81・・・N1懺域、11
・・・CVD81υ。 g%J14−・コンダクトホール% 35−fブコンダ
ケトホール、36・・・金属層。 出−人代理人 弁理土鈴 江 武 彦 第1図 第1rIl 第2図
Figure 1 (Xu ~ (h) is a cross-sectional view showing the manufacturing process of a conventional semiconductor device, Figure 2 (1!!1 (13 ~ (h) is a cross-sectional view of a semiconductor device according to an embodiment of the present invention, Figures 1lIIa to 511I show other embodiments of this fifth invention, in which Figure 3 is a plan view of the semiconductor cube, Figure 4 is a partially enlarged view of the above-mentioned sea urchin, and Figure 5 is a partial enlarged view of the above-mentioned sea urchin. It is a sectional view taken along the line A- in the figure. z t---P pear silicon substrate, 22...84tJ
,・Membrane, 2J...81MN No. Lzs...Field oxide film, 1! ? "-kg shadow forming region U...sub-contact region b j #"-gate oxide film, 10...
Polycrystalline silicon film% 81.81...N1 area, 11
...CVD81υ. g%J14-・Conduct hole% 35-f Bucondaketohole, 36...Metal layer. Patent Attorney Takehiko E Takehiko Figure 1 Figure 1rIl Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)  半導体i板の一力主面にフィールド領域及び
サブコンタクト領域を有する半導体装置において、前記
サブコンタクト領域における取出電極金属層と半導体基
板との界面が、前とフィールド領域におけるフィールド
酸化膜と半導体(2)−導電型半導体基板上に酸化A及
び耐ぼ化性膜を順次堆積させる工程と、前記Ilt酸化
性膜の少なくともサブコンタクト形成予定領域3除くフ
ィールド形成予定領域をS択的に除去し、この耐ば化性
膜をマスクにして熱酸化を行いフィールド酸化膜を形成
する工程と、air配耐威化性膜及び酸化膜を除去した
恢、全面に多結晶シリコンMを堆積させる工程と、前記
多結晶シリコン膜をパターニングして前記サブコンタク
ト形成予定領域に選択的に残存させる工程と%前記多結
晶シリコン膜をパターニングした後全市に絶縁膜を形成
し、この絶縁膜のm配すブコンタク、ト形成予定領域に
コンタクトボールを形成する工程と、l1tr記コンタ
クトホールな形成した後、前記サブコンタクト形我予′
ii!領域の多結晶シリコン膜を除去することによりI
lr配基板基板するようなチブコンタクト示−ルを形成
する工程と、前記サブコンタクトホールに電極取出金属
層を形成する工程とを具備したことを特偵とする半導体
装置の製造方法。
(1) In a semiconductor device having a field region and a sub-contact region on one main surface of a semiconductor i-board, the interface between the lead electrode metal layer and the semiconductor substrate in the sub-contact region is formed between the field oxide film and the semiconductor substrate in the front and field regions. (2) - Sequentially depositing oxide A and a blurring-resistant film on a conductive semiconductor substrate, and selectively removing at least the field formation area except for the sub-contact formation area 3 of the Ilt oxidation film. , a step of forming a field oxide film by performing thermal oxidation using this oxidation-resistant film as a mask, and a step of depositing polycrystalline silicon M on the entire surface after removing the oxidation-resistant film and the oxide film. , a step of patterning the polycrystalline silicon film to selectively leave it in the area where the sub-contact is to be formed, and forming an insulating film over the entire area after patterning the polycrystalline silicon film, and forming a contact layer on which the insulating film is disposed. , forming a contact ball in the region where the sub-contact shape is to be formed, and forming the contact hole in the sub-contact shape region.
ii! By removing the polycrystalline silicon film in the region
1. A method of manufacturing a semiconductor device comprising the steps of forming a chip contact mark such as an LR wiring board, and forming an electrode lead metal layer in the sub-contact hole.
JP56133198A 1981-08-25 1981-08-25 Semiconductor device and manufacture thereof Pending JPS5834973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56133198A JPS5834973A (en) 1981-08-25 1981-08-25 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56133198A JPS5834973A (en) 1981-08-25 1981-08-25 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS5834973A true JPS5834973A (en) 1983-03-01

Family

ID=15099007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56133198A Pending JPS5834973A (en) 1981-08-25 1981-08-25 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5834973A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4566499A (en) * 1983-11-24 1986-01-28 Mitsubishi Rayon Co., Ltd. Jacquard mechanism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4566499A (en) * 1983-11-24 1986-01-28 Mitsubishi Rayon Co., Ltd. Jacquard mechanism

Similar Documents

Publication Publication Date Title
US4549927A (en) Method of selectively exposing the sidewalls of a trench and its use to the forming of a metal silicide substrate contact for dielectric filled deep trench isolated devices
US3462650A (en) Electrical circuit manufacture
JPH0322053B2 (en)
ES353793A1 (en) Method of manufacturing a semiconductor device and device manufactured by said method
JPS6318673A (en) Manufacture of semiconductor device
GB2100926A (en) Field effect transistors
US4525733A (en) Patterning method for reducing hillock density in thin metal films and a structure produced thereby
JPS6041470B2 (en) Manufacturing method of semiconductor device
US4292728A (en) Method for manufacturing semiconductor integrated circuits utilizing special contact formation
JPS58220445A (en) Manufacture of semiconductor integrated circuit
US4465528A (en) Method of producing a walled emitter semiconductor device
US4464825A (en) Process for fabrication of high-speed radiation hard bipolar semiconductor devices
US4544941A (en) Semiconductor device having multiple conductive layers and the method of manufacturing the semiconductor device
JPS5834973A (en) Semiconductor device and manufacture thereof
US3967364A (en) Method of manufacturing semiconductor devices
JP2830215B2 (en) Method for manufacturing charge transfer device
EP0037040B1 (en) Method of manufacturing a semiconductor device
JPS6214095B2 (en)
KR960011864B1 (en) Manufacturing method of semiconductor device wiring
JP2621607B2 (en) Method for manufacturing semiconductor device
RU2244985C1 (en) Method for manufacturing complementary vertical bipolar transistors as parts of integrated circuits
KR100224778B1 (en) Fabrication method for semiconductor chip
JP2550302B2 (en) Method for manufacturing semiconductor device
JPH05259451A (en) Semiconductor device and manufacture thereof
JPS62179160A (en) Manufacture of mis-type semiconductor device