JPS5833308A - Coupled quartz oscillator - Google Patents

Coupled quartz oscillator

Info

Publication number
JPS5833308A
JPS5833308A JP56131033A JP13103381A JPS5833308A JP S5833308 A JPS5833308 A JP S5833308A JP 56131033 A JP56131033 A JP 56131033A JP 13103381 A JP13103381 A JP 13103381A JP S5833308 A JPS5833308 A JP S5833308A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
crystal resonator
temperature
coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56131033A
Other languages
Japanese (ja)
Inventor
Hirofumi Kawashima
宏文 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP56131033A priority Critical patent/JPS5833308A/en
Priority to GB08218897A priority patent/GB2108316A/en
Priority to FR8213858A priority patent/FR2511820B1/en
Priority to DE19823229972 priority patent/DE3229972A1/en
Priority to CH500382A priority patent/CH659362GA3/fr
Publication of JPS5833308A publication Critical patent/JPS5833308A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02102Means for compensation or elimination of undesirable effects of temperature influence
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F5/00Apparatus for producing preselected time intervals for use as timing standards
    • G04F5/04Apparatus for producing preselected time intervals for use as timing standards using oscillators with electromechanical resonators producing electric oscillations or timing pulses
    • G04F5/06Apparatus for producing preselected time intervals for use as timing standards using oscillators with electromechanical resonators producing electric oscillations or timing pulses using piezoelectric resonators
    • G04F5/063Constructional details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • H03H2003/0421Modification of the thickness of an element
    • H03H2003/0428Modification of the thickness of an element of an electrode

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To obtain a titled oscillator having a small primary temperature coefficient, by providing exciting electrodes at the entire area of upper and lower surfaces of the oscillating part of said oscillator and setting larger thickness for the electrode at the edge part in the width direction that decides the resonance frequency of the main oscillation than the electrode at the cener part. CONSTITUTION:Exciting electrodes 33 and 34 are provided on the entire surface of an oscillating part 35 on both upper and lower surfaces 31 and 32 of a coupled oscillator 30 of GT-cut in which plural vertical oscillation modes are combined. The part 35 and the supporting parts across the part 35 are formed in a body. The electrodes 20 and 21 at the edge part in the width direction that decides the resonance frequency of the main oscillation of the electrode 33 have larger thickness than an electrode 36 at the center part. The thickness is controlled for the electrodes 20 and 21 by means of the vapor deposition of Au, Ag, etc. As a result, the primary temperature coefficient is approximately zero and the crystal impedance value is reduced with no spurious oscillation for a coupled oscillator.

Description

【発明の詳細な説明】 本発明は、複数の縦振動モードが結合した、いわゆる結
合水晶振動子の励振電極に@する。
DETAILED DESCRIPTION OF THE INVENTION The present invention applies to an excitation electrode of a so-called coupled crystal resonator in which a plurality of longitudinal vibration modes are coupled.

本発明の目的は、周波数理f%性(以下、温度特性と呼
ぶ)の優れた結合水晶振動子を提供することにある。
An object of the present invention is to provide a coupled crystal resonator with excellent frequency characteristics (hereinafter referred to as temperature characteristics).

本発明の他の目的は、o x (Orystal  工
mpe−aance)  の小さい結合水晶振動子を提
供することにある。温fIfli性の優れた、しが%b
o工の小さい振動子を要求する民生機器は多くあるが、
これらK1−1ムTカツト水晶振動子が使用されて米た
Another object of the present invention is to provide a coupled quartz crystal with small ox (Orystal engineering). Excellent thermal properties, strength%b
There are many consumer devices that require small oscillators,
These K1-1 T-cut crystal resonators were used.

しかし、最近は色々な民生機器で小型化がなされ、それ
に従って、ムチカット水晶振動子も小型化が要求されて
米ているが、このタイプの振動子は、スプリアス振動(
flpurious Vibration)が多く小蓋
化が離しく、同時に、小蓋化すると0工が高くなってし
まうのが実状である* 41 K−腕時計用水晶振動子
としてムチカット水晶aIIll子を使用する場合、相
aK小型化する必要があり、音叉型屈曲水晶振動子と比
較したとき、サイズの面では全く満足できるものではな
い。そこで、最近は10の技術を応用したフォトリング
ラフィにょる振動子の形成方法が振動子製造に応用され
、その結果、大変に小型の振動子を提供すること゛がで
きるようになった。例えば、振動子の厚みを大変に薄く
で★る温If%性の優れた()Tカット水晶振動子に応
用され、非常に小屋のものが可能になった。
However, recently, various consumer devices have become smaller, and whip-cut crystal resonators have also been required to be smaller.
The reality is that it is difficult to make the cap smaller, and at the same time, the 0 min becomes higher when the cap is made smaller. aK needs to be made smaller, and when compared with a tuning fork type bent crystal resonator, it is not completely satisfactory in terms of size. Therefore, recently, a method of forming a vibrator using photolithography, which applies the above 10 techniques, has been applied to the manufacture of vibrators, and as a result, it has become possible to provide extremely small vibrators. For example, it has been applied to T-cut crystal oscillators with excellent temperature If% properties that allow the thickness of the oscillator to be made very thin, making it possible to create very thin oscillators.

しかし、これら0丁カット水晶振動子は、嵐好な温度特
性を得る次めに二つの振動モード、即ち、主振動とiI
l振動の結合を利用している。それ故、温f特悴は、主
振動・副振−動の共振周波数の差によってほは決定され
る。理論的には優れた温[41性を与える共振周波数の
差を、どの位にすれば嵐いか分かるが、実際には、製造
上のバラツキがあり、一定に押えることは難しく、温f
特性のパラ。
However, these zero-cut crystal resonators have two vibration modes, i.e., main vibration and iI
It uses the coupling of l vibrations. Therefore, the temperature characteristic is determined by the difference in the resonance frequency between the main vibration and the sub-vibration. Theoretically, it is possible to determine the difference in resonant frequency that provides excellent temperature [41], but in reality, due to manufacturing variations, it is difficult to maintain a constant temperature.
Characteristic para.

ツク原因であった。仁の温度特性のバラツキを吸収する
方法が、いくつが提案されている。例えば、特公昭47
−5508では、励振電極を除去して温WLIfIi4
&を調整する方法を提案しているが、励振電極t#去す
るため実質電界効率が低下するのでaX値が高くなると
いう、不具合が生じる。又、蒸着で電極膜の厚みを変え
て周波数微調整するととを述べているが、具体的にどの
ようにするのが全く述べられていない、更に、水晶振動
子を2本の細いリード線で支持するため小型化が難しく
、同時に、衝撃に対しても弱いという欠点があった。
It was the cause of the trouble. Several methods have been proposed to absorb variations in the temperature characteristics of kernels. For example,
-5508, the excitation electrode is removed and the temperature WLIfIi4 is
Although a method of adjusting & is proposed, since the excitation electrode t# is removed, the actual field efficiency decreases, resulting in a problem that the aX value increases. It also states that the frequency can be fine-tuned by changing the thickness of the electrode film by vapor deposition, but there is no specific explanation of how to do this. Because of the support, it was difficult to miniaturize, and at the same time, it had the disadvantage of being weak against shock.

そこで、本発明はこれらの不具合、欠点を改善した、即
ち、支持方法の改善、並びに、新しい温度特性調整方法
と共振周波数調整方法を見い出し、改善を図った。以下
、図面に沿って本発明の詳細な説明する。
Therefore, the present invention has improved these problems and drawbacks, that is, improved the supporting method, and discovered and improved a new method for adjusting temperature characteristics and a new method for adjusting resonant frequency. The present invention will be described in detail below with reference to the drawings.

第1図は1本発明の結合振動子の形状と電極の一実施例
で、振動部2とその両側に配置された二つの支持部5と
が一体に形WItされkG丁カット水晶振動子の例であ
る。第1図(ム)は平面図を、第°1図(B)は側面図
を示す。水晶1の振動部2の上面4と下面5には、励振
電@6 、7が各々全面に、一様に配置され、励振電極
6は一方の支持部3に延びて配置され、励振電極7は他
方の支持部SVc延びて配置されている。即ち、支持部
には片面にのみ電極が配置され、電界が印加されない構
造となっている。従って、これは振動部のエネルギーを
できるだけ振動部内部に閉じ込め、支持部に伝達しない
ようになっている。換言すれば、振動部2から支持部3
へ延びた電極は、電界を印加するために必要な亀子電極
にすぎない。支持部3にまで延びた両電極に交番電圧を
印加することによって、容易に振動子を励振することか
でt!iろ。
Figure 1 shows an embodiment of the shape and electrodes of a coupled resonator according to the present invention, in which a vibrating part 2 and two supporting parts 5 disposed on both sides thereof are integrally shaped like a KG-cut crystal resonator. This is an example. FIG. 1(M) shows a plan view, and FIG. 1(B) shows a side view. On the upper surface 4 and lower surface 5 of the vibrating part 2 of the crystal 1, excitation electrodes @6 and 7 are arranged uniformly over the entire surface, the excitation electrode 6 is arranged extending to one of the supporting parts 3, and the excitation electrode 7 is arranged to extend from the other support portion SVc. That is, the support part has a structure in which electrodes are arranged only on one side and no electric field is applied. Therefore, this confines the energy of the vibrating part as much as possible inside the vibrating part and prevents it from being transmitted to the support part. In other words, from the vibrating part 2 to the supporting part 3
The electrode extending to is just a hook electrode necessary for applying an electric field. By applying an alternating voltage to both electrodes extending to the support part 3, the vibrator can be easily excited. Iro.

又、幅Wと長さLによって二つのモードの共振周波数は
各々決定され、幅W#ICよって主振動の共振周波数f
vが、長さLKよって副振動の共振周波数fムが決定さ
れる0次に、励振電極を振動s2の上下面、全面に配置
する理由を説明する。
Also, the resonance frequencies of the two modes are determined by the width W and the length L, and the resonance frequency f of the main vibration is determined by the width W#IC.
The reason why the excitation electrodes are arranged on the upper and lower surfaces of the vibration s2 and the entire surface of the vibration s2 will be explained.

第2図(ム)は、本発明の振動部2と支持部5が一体に
形成されているGTカット水晶振動子のA図である。°
断面ムームの各位置に対する変位との関係の計算値を示
している。即ち、点Cで変位は零となり、点Cから点a
、eに行くに従って変位の絶対値は大きくなる振動であ
る(変位u亀=−ul)、  第2図(B)は、各位置
に対する歪みとの関係を示している。即ち、点Cで歪み
は最大となり、端部に行くに従って小さくなる。しかし
、第2図、第3図から明らか表ように、端部a、eでは
歪みが零とならず、歪みが生じている。これは振動部の
端部に励振電極を配置した場合と、しない場合では、水
晶振動子の0工値が異なることを意味している。即ち、
**−の端部に壕で励振電極を配置することにより、低
いOX値を得ることができる。
FIG. 2(M) is a diagram A of a GT cut crystal resonator in which the vibrating section 2 and the supporting section 5 of the present invention are integrally formed. °
It shows the calculated value of the relationship between each position of the cross-sectional muum and the displacement. That is, the displacement becomes zero at point C, and from point C to point a
, e is a vibration in which the absolute value of displacement increases as it goes to e (displacement u = -ul). Figure 2 (B) shows the relationship between strain and each position. That is, the distortion becomes maximum at point C and decreases toward the end. However, as clearly shown in FIGS. 2 and 3, the distortion does not become zero at the ends a and e, and distortion occurs. This means that the zero-factor value of the crystal resonator is different depending on whether or not an excitation electrode is disposed at the end of the vibrating section. That is,
A low OX value can be obtained by arranging the excitation electrode in a trench at the end of the **-.

第5図は、振動部の上下面、全面に励振電極を配置した
場合と、部分(II勤部の約7s−)に配置した場合の
0工僅の分布のヒストグラムで、実験値である。第5図
(A)は、励損電極を部分に配置したときの個数n=2
00に対するCI値の分布を示すヒストグラムで、平均
値z m 14 Q(ハ)である。これに対して、第3
図(B)は、振動部の上下面、全面に配置したときの個
数nxx 2Q QのときのCI値の分布を示すヒスト
グラムで、平均値X m 84 (Q)と、約4割0工
値を小さくすることができ、全面に励振電極を配置し穴
ときの効果が著しく大きい事が分かる。
FIG. 5 is a histogram of the distribution of 0 man-hours when the excitation electrodes are placed on the entire top and bottom surfaces of the vibrating part, and when they are placed in the part (approximately 7s- of the II part), which is an experimental value. Figure 5 (A) shows the number of excitation electrodes arranged in a section, n=2.
This is a histogram showing the distribution of CI values relative to 00, and the average value is z m 14 Q (c). On the other hand, the third
Figure (B) is a histogram showing the distribution of CI values when the number of pieces is nxx 2Q Q when they are arranged on the upper and lower surfaces of the vibrating part, and the entire surface. It can be seen that the excitation electrodes are arranged on the entire surface, and the effect when using holes is significantly large.

第4図は、本発明の0丁カット水晶振動子9を支持台8
にマウントしたときの一実施例で、平面図(ム)と側面
図(B) f、示す、支持台8には水晶振動子9が配置
され、振動子の端部12,1i%で接着剤あるいは、半
田付けによって固着されている。水晶振動子の上下面に
は、励振用電極10゜11が配置されている。水晶11
!勤子9Fi、支持台8に両端で固着されるので、耐衝
撃性に優れた水晶振動子を提供することができる。更に
、水晶振動子9は複雑な形状をしているが、フォトリソ
グラフィによって容易に形成することができる。その結
果−非常に小屋の水晶振動子を提供することができるよ
うになった。次に、温f%性について説明する。
FIG. 4 shows the 0-cut crystal resonator 9 of the present invention on a support stand 8.
In one embodiment, when mounted on a top view (M) and a side view (B), shown in FIG. Alternatively, it is fixed by soldering. Excitation electrodes 10°11 are arranged on the upper and lower surfaces of the crystal resonator. crystal 11
! Since the pin 9Fi is fixed to the support base 8 at both ends, it is possible to provide a crystal resonator with excellent impact resistance. Furthermore, although the crystal resonator 9 has a complicated shape, it can be easily formed by photolithography. As a result - it is now possible to provide a very compact quartz crystal. Next, the temperature f% property will be explained.

幅Wによる主振動の共振周波数fWと長さLKよる副振
動の共振周液数fI−との間には、次の関係がある。
The following relationship exists between the resonance frequency fW of the main vibration due to the width W and the resonance frequency fI- of the sub-vibration due to the length LK.

flcc−・・・・・・・・・・・・・・・ (1)f
X、E−・・・・・・・・・・・・・・・ (2)更に
、温度特性は両共振周波数の差fW−fLによってほぼ
決定される。
flcc-・・・・・・・・・・・・・・・ (1) f
X, E- (2) Furthermore, the temperature characteristics are almost determined by the difference fW-fL between both resonance frequencies.

@S図は、フォトリングラフィによって形成された本発
明の()Tカット水晶振動子oia*特性q)例で、結
合の強さによって温f%!!11Pなる。主振動と副振
動の間の結合が弱いとき、即ち、δ=でマーデシが大き
いときは直線亀のように、又、結合が強いとき、即ち、
−が小さいときは直線すのようになる。このとき、−次
温度係数αの絶対値は約2.5X10−・7℃と大暑く
、横足で會る温I[%性と表ら彦い、しかし、−が最適
値のときは直線Cのようになり、嵐好″&l1度特性會
示す。
The @S diagram is an example of the ( ) T-cut crystal resonator oia * characteristics q) of the present invention formed by photolithography, and the temperature f%! ! It will be 11P. When the coupling between the main vibration and the sub-vibration is weak, i.e., when δ= and mardeci is large, it looks like a straight tortoise, and when the coupling is strong, i.e.
When - is small, it becomes a straight line. At this time, the absolute value of the −th temperature coefficient α is very hot, about 2.5×10−・7℃, and the temperature I [%] that meets the horizontal foot is expressed as %, but when − is the optimal value, it is a straight line. It becomes like C, and shows the characteristics of Arashiyoshi & l1 degree.

一般に作られる結合振動子は、このような)(ラツイタ
温[4!性を示す、即ち、ni*aのように一次温度係
数αが約−2,5X 10”@/Cと貫うように負の値
を持つもの、一方、直Ilbの、ように、α力;約+2
.5X10−・7℃ と正の値を持つもの、それから、
直線Cのようにaがほとんど零になるものと、多種多様
の温II特性を示す、又、形成後の振動子のαは−2,
5X10−・/℃〜+15 X 10=/Uの範囲内に
ある。ここで、αが正、負、それからほとんど零という
ことは、次のように定義する。
Generally made coupled oscillators exhibit the following) Those with negative values, on the other hand, like the direct Ilb, α force; approximately +2
.. Those with a positive value of 5X10-・7℃, and
Straight line C, where a is almost zero, shows a wide variety of temperature II characteristics, and α of the resonator after formation is -2,
It is within the range of 5×10−·/°C to +15×10=/U. Here, the fact that α is positive, negative, or almost zero is defined as follows.

(1)−次温度係数αがほとんど零ということは、aが
士tOX10−マ/℃以内にあるものを言う。
(1) The fact that the -order temperature coefficient α is almost zero means that a is within −tOX10−ma/°C.

(2)  −次温度係数aが正ということは、αがα)
 t OX 1 o−?/c  にあるものを言う。
(2) The −th temperature coefficient a is positive, which means that α is α)
t OX 1 o-? Say what is in /c.

(3)−次温匿係数aが負ということは、aがα(−t
ox1o″1/℃ にあるもの1−言う。
(3) The −th order concealment coefficient a is negative, which means that a is α(−t
What is at ox1o″1/°C 1- Say.

第4図は、本発明のGTカット水晶振動子の一実’m例
で、1!I)ils14ノ上面15と下面16(図示さ
れてない)には、励振用電極17,18(図示されてな
い)が全面に一様に配置されていて、上面15に配置さ
れた励振用電極17の幅W方向の端部、そして、厚さ方
向のほぼ中央位置に、対称的に、中央部電極19より厚
く電極20.21が蒸着によって配置されている。振動
部の熾部の電極を、厚く配置すると、次の三つの効果を
有する。
Figure 4 shows an example of the GT-cut crystal resonator of the present invention. I) On the upper surface 15 and lower surface 16 (not shown) of the ils 14, excitation electrodes 17 and 18 (not shown) are uniformly arranged over the entire surface, and the excitation electrode arranged on the upper surface 15 Electrodes 20 and 21, which are thicker than the central electrode 19, are symmetrically arranged by vapor deposition at the ends of the electrodes 17 in the width W direction and at approximately the center in the thickness direction. Placing the electrodes in the inner part of the vibrating part thickly has the following three effects.

(1311kllJ@端部の励振電極を厚くすることは
、電極負荷効果、即ち、錘りの働きをする。それ故、共
振周波数f1並びに、温度特性を変えることができる。
(1311kllJ@ Increasing the thickness of the excitation electrode at the end has an electrode loading effect, that is, it acts as a weight. Therefore, the resonance frequency f1 and temperature characteristics can be changed.

同時に−1 (2)  電極負荷効果によって、振wh部端部での弾
性波の反射を少なくシ、スプリアス振動を抑制すること
ができる。
At the same time, -1 (2) Due to the electrode load effect, it is possible to reduce the reflection of elastic waves at the ends of the vibrating wh section and suppress spurious vibrations.

(3)電極負荷効果によって、m1ss内部に励振エネ
ルギーをトラップすることができる。それ故、0工値を
更に低くすることができる。
(3) Due to the electrode loading effect, excitation energy can be trapped inside m1ss. Therefore, the zero work value can be further lowered.

第7図は、第6図の電極20.21を蒸着によって厚く
したときの電極付加量に対する一次温度係数αの変化1
示している。即ち、励振電極20゜21を厚くするに従
って、−次温駅係数αは負側へと移動する。
Figure 7 shows the change in the primary temperature coefficient α with respect to the amount of electrode added when the electrodes 20 and 21 in Figure 6 are made thicker by vapor deposition.
It shows. That is, as the excitation electrodes 20.degree. 21 become thicker, the -subtemperature coefficient a moves toward the negative side.

第8図Fi、本発明のG′rカット水晶振動子の他の実
施例で、四隅に蒸着によって電極22.25゜24.2
5を付着した例である。
Fig. 8 Fi is another embodiment of the G'r cut crystal resonator of the present invention, with electrodes 22.25°24.2 by vapor deposition at the four corners.
This is an example in which 5 is attached.

第9図は、第8図の電極22.25,24.25を蒸着
で付着、厚くしたときの電極の付着量に対する一次温度
係数αの関係を示す、電極の付着量を多くするに従って
、−次温度係数aFi正側へと移動する。これらのこと
から分かるように・第6図の電極のときは、端部の電極
を付着することによって1.−次温度係数ぼは負の方向
に、又、第6図の電極の付着のと亀は、電極を付着する
ことによって、−次温度係数αは正側へと移動する。即
ち、第6図の南部電極20.21と第8図の南部電極2
2,25,24.25の間に電極を付着したときは、−
次温度係数αは全く変化しない事が予測できる。
FIG. 9 shows the relationship between the first-order temperature coefficient α and the amount of electrode deposition when the electrodes 22.25 and 24.25 of FIG. 8 are deposited and thickened by vapor deposition. As the amount of electrode deposition increases, - The next temperature coefficient aFi moves to the positive side. As can be seen from the above, in the case of the electrode shown in Fig. 6, by attaching the end electrode, 1. By attaching the electrodes, the -order temperature coefficient α moves to the negative direction, and as shown in FIG. 6, by attaching the electrodes, the -order temperature coefficient α moves to the positive side. That is, the southern electrode 20.21 in FIG. 6 and the southern electrode 2 in FIG.
When the electrode is attached between 2, 25, 24.25, -
It can be predicted that the next temperature coefficient α will not change at all.

第10図は、本発明のGTカット水晶振動子の電極付着
の他の実施例で、第6図の電極20と第8図の電極22
.25の間にあるように厚く電極26.2?が付着され
、電極21と電極25,24の間にあるように電極27
.28が付着された平面図である。
FIG. 10 shows another embodiment of the electrode attachment of the GT-cut crystal resonator of the present invention, in which the electrode 20 in FIG. 6 and the electrode 22 in FIG.
.. The thick electrode is between 25 and 26.2? is attached to the electrode 27 so that it is between the electrode 21 and the electrodes 25 and 24.
.. FIG.

@11tEIH1第1o @ノ亀86%極26,27゜
2’8.29を蒸眉で付着し次ときの電極付着量に対す
る一次温度係数αとの関係を示し、電極の付着によって
一次温度係数αは全く変化しない事が分かる。
@11tEIH1 1st o @Nogame 86% electrode 26,27゜2'8.29 is attached with a steam eyebrow, and the relationship between the first temperature coefficient α and the amount of electrode adhesion is shown. It can be seen that there is no change at all.

第12図は、第6図の電極20,21、第8図の電極2
2,2!S、24,25、第10WAの電極26.27
.28.2?を蒸着で各々付着したときの電極付着量に
対する生揚の共振周波数の変化を示し、直線り、に、F
はそれぞれ第6図、第10図、第8図の場合に対応して
いる。いやれの場合でも、端部電極の付着量によって主
振動の共振周波数は低くなることが分かる。
FIG. 12 shows electrodes 20 and 21 in FIG. 6 and electrode 2 in FIG.
2, 2! S, 24, 25, 10th WA electrode 26.27
.. 28.2? It shows the change in the resonant frequency of the raw material with respect to the amount of electrode deposited when each is deposited by vapor deposition, and the straight line, F
correspond to the cases of FIG. 6, FIG. 10, and FIG. 8, respectively. Even in such a case, it can be seen that the resonance frequency of the main vibration becomes lower depending on the amount of adhesion of the end electrode.

次に、周波数調整と温f%性調整方法を具体的に説明す
る。
Next, the frequency adjustment and temperature f% adjustment method will be specifically explained.

第1図のGTカット水晶振動子は、フォトグラフィによ
って形放された後、次のような特性を持つように設計す
る。
The GT-cut crystal resonator shown in FIG. 1 is designed to have the following characteristics after being released by photography.

(1)主振動の共振周波数は、合わせ込む規準周波数f
、より高い値い會持つ。通常11000pp〜2000
ppm高くなっている。
(1) The resonant frequency of the main vibration is the reference frequency f to be matched.
, have a higher value. Usually 11000pp~2000
ppm is high.

このような振動子は、形状、エツチング時間を選択する
ことによって容易に得られる。次に、この振動子は、あ
る任意の温度に置き、この温度をサーミスター等の温度
針によって読み取り、この温度をtlとする。このとき
の主振動の共振周波数ftl糊定する。更に、他の任意
の温度に前記振動子を置き、この時1の温[t ’*を
前記と同様に読み取る。温j[ttets と共1振周
波数f・、f。
Such a vibrator can be easily obtained by selecting the shape and etching time. Next, this vibrator is placed at a certain arbitrary temperature, this temperature is read by a temperature needle such as a thermistor, and this temperature is set as tl. The resonance frequency ftl of the main vibration at this time is determined. Furthermore, place the vibrator at any other temperature, and then read the temperature [t'* of 1 in the same manner as above. Temperature j[ttets and resonant frequency f・, f.

によって、次式から一次温度係数αを求める。The first-order temperature coefficient α is determined from the following equation.

a x bニハ(HM/℃) ・・・・・・=  (3
)を露−tl 又、合わせ込む規準周波数foを使って書き改めると、
次のようになる。
a x b Niha (HM/℃) ・・・・・・= (3
) is rewritten using the standard frequency fo to match,
It will look like this:

f鵞−fl      1 α−−−(1/℃)・・・・・・(4)f・    を
嵩−11 第13図はこの様子を示し、直線gはαが正の場合の例
である。温度t@は、生揚の共振周波数を規準周波数f
、に合わせ込むときの温度である。
f 鵞−fl 1 α−−−(1/℃)・・・・・・(4) f・ は−11 Figure 13 shows this situation, and the straight line g is an example when α is positive. . Temperature t@ is the resonant frequency of raw frying with reference frequency f
, is the temperature when adjusting to .

温度t・のとき生揚の共振周波数fは、規準周波数f・
よりも高くなっている。従って、生揚の共振周波数ft
−規準周波数foK:端部電極の厚みを厚くして合わせ
込む方法は、前記した三つの方法がある。しかし、この
場合、αは正であるから、αが負側に移動する方法を採
用すれば、αを更に小さくすることができる。即ち、第
6図の電極20.21を付着する方式である。第13図
の直線りと1Fi、共振周波数ft規準周波数f・に合
わせ込む場合の温度特性の変化會示している。規準周波
数f・に近づくに従って、αは零に近づき(直線h)、
規準周波数f・に合わせ込まれたとtkけαはほぼ零に
なる(直*i)。
When the temperature is t, the resonant frequency f of raw frying is the standard frequency f.
It is higher than that. Therefore, the resonant frequency ft of raw air
-Reference frequency foK: There are three methods described above to adjust the thickness of the end electrode by increasing the thickness. However, in this case, since α is positive, α can be further reduced by adopting a method of moving α to the negative side. That is, this is a method in which the electrodes 20 and 21 shown in FIG. 6 are attached. 13 shows the change in temperature characteristics when adjusting to the straight line 1Fi, the resonance frequency ft and the reference frequency f·. As it approaches the reference frequency f, α approaches zero (straight line h),
When tuned to the standard frequency f, tk becomes almost zero (direct*i).

、二14図は、このようにして得られた本発明の温度特
性の一実施例を示す。直線jは振動子形成後の温度特性
で、α中1.5 X 10−’ /C1直線には1振の
共振周波数fを規準周波数f・に合わせ込んだときの温
度特性で、α中5×10″″? / ℃  と相当小さ
くなり、良好な温度特性を示すことが分かる。全く同様
に、αが負のときは、1振の共振周波数fを規準周波数
f@に合わせ込むときαが正側に移動する方法を採用す
れば、at−更に零に近づけることができる。即ち、第
8図の電極22゜23.24.25を厚く付着する方法
である。又、αがほとんど零のときには、αを変化させ
る必要がないから、共振周波数fを規準周波数f・に合
わせ込むときαが変化しない方法、部ち、第10図の電
極26,27,28,29を付着する方法を採用すれば
良い。
, 214 show an example of the temperature characteristics of the present invention obtained in this way. The straight line j shows the temperature characteristics after the resonator is formed, and the straight line j shows the temperature characteristics when the resonant frequency f of one vibration is adjusted to the reference frequency f, and the 1.5 ×10″″? /°C, which indicates good temperature characteristics. In exactly the same way, when α is negative, by adopting a method in which α moves to the positive side when adjusting the resonant frequency f of one vibration to the reference frequency f@, at- can be made even closer to zero. That is, this is a method in which the electrodes 22, 23, 24, and 25 shown in FIG. 8 are deposited thickly. Also, when α is almost zero, there is no need to change α, so there is a method in which α does not change when the resonant frequency f is adjusted to the reference frequency f. 29 may be used.

第15図は、本発明のGTカット水晶振動子の一実施例
の斜視図を示し、水晶振動子30の上面31と下面32
には、励振電極55.54が振一部35全面に配置され
、電極53の端部電極20゜21は、中央部電極s6よ
りも厚くなっている。
FIG. 15 shows a perspective view of an embodiment of the GT-cut crystal resonator of the present invention, showing an upper surface 31 and a lower surface 32 of the crystal resonator 30.
, excitation electrodes 55 and 54 are arranged on the entire surface of the vibration part 35, and the end electrodes 20 and 21 of the electrodes 53 are thicker than the center electrode s6.

ところで、本発明では電極の厚みを厚くする材料として
、ムu ’tムgが使用される。
By the way, in the present invention, Mu't Mug is used as a material for increasing the thickness of the electrode.

以上述べたように、本発明は、結合振動子の振動部の上
下面、全面に励振電極を配置し、1振の共振周波数を決
める幅方向の端部電極を中央部電極より厚く配置するこ
とによって、Ox値の小さい、スプリアス振動のない結
合振動子を提供することかで11+穴。更に、結合振動
子の鳶波数調整前の最適温度特性、並びに、主振動の最
適共振周液数を得る振動子の設計をし、任意の温度tl
、t@での主11mの共振周波数ft、f、を測定し、
この値から一次温度係数aを計算し、更に、蒸着によっ
て一次温度係数αがほとんど零で、しかも、1振の共振
周波数がf・に合わせ込まれた温度特性の優れfCGT
カット水晶根水晶管動子することができた。更に、本発
明の結合振動子は、振動部と支持部がフォトリングラフ
ィによって一体に形成されるので小型化が可能であり、
又、振動子の支持部両趨で接着剤、半田付は等によって
固定されているので、耐衝撃性に優れている結合振動子
を提供することができる0本発明の考え方は、他の結合
水晶振動子、例えば、2丁カット水晶振動子にも適用で
きることは言うまでもない。
As described above, the present invention arranges excitation electrodes on the upper and lower surfaces and the entire surface of the vibrating part of a coupled resonator, and arranges the end electrodes in the width direction, which determine the resonance frequency of one vibration, thicker than the center electrodes. By providing a coupled resonator with a low Ox value and no spurious vibrations, the 11+ hole. Furthermore, we designed the oscillator to obtain the optimum temperature characteristics before adjusting the wave number of the coupled oscillator and the optimum resonance frequency of the main vibration, and set the oscillator to an arbitrary temperature tl.
, measure the resonance frequency ft, f of the main 11m at t@,
The first-order temperature coefficient a is calculated from this value, and the first-order temperature coefficient α is almost zero by vapor deposition, and the resonant frequency of one oscillation is tuned to f, which has excellent temperature characteristics.
Cut the crystal roots to make the crystal tube mover. Furthermore, the coupled vibrator of the present invention can be miniaturized because the vibrating part and the supporting part are integrally formed by photolithography.
Furthermore, since both ends of the support part of the vibrator are fixed with adhesive, soldering, etc., it is possible to provide a coupled vibrator with excellent impact resistance. Needless to say, the present invention can also be applied to a crystal resonator, for example, a two-cut crystal resonator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(4)、(2)は、それぞれ本発明の結合振動子
の形状と電極の一実施例を示す平面図、側面図で、振動
部2とその両側に配置さ:#′した二つの支持部3とが
一体に形成され−Za丁カット水晶振動子の例である。 第2図(4)は、本発明の振l11部2と支持部器が一
体に形成されている0丁カット水晶振動子の半平面図で
ある。第2図(9)は、第2図(4)の0丁カット水晶
振動子の各位置に対する歪みとの関係を示すグラフであ
る。 第5図(4)は、励振電極を振amの部分に配置したと
きOOI値のヒストグラムである。第3図体)は、励振
電極管振動部の上下面、全面に配置したときのOx値の
ヒストグラムである。 第4図は、本発明の0丁カット水晶振動子9を支持台8
にマウントしたときの一実施例で、平面図(4)と11
w図(B)を示す。 第5図は、フォトリングラフィによって形gされ九本発
明のGTカット水晶振動子の温fIF#性の例を示すグ
ラフである。 第6WAは、GT遣フット水晶振動子蒸着により電極を
厚くした一実施例を示す平面図である。 第7図は、第6図の端部電極を蒸着によって厚くシタと
きの電極の付加量に対する一次温度係数αの変化を示す
グラフである。 第8図は、GTカット水晶振振動〇四隅に蒸着によって
電極を厚くした一実施例を示す平面図である。 第9図は、第8図の端部電極を蒸着で厚くしたときの電
極の付加量に対する一次温度係数αの関係を示すグラフ
である。 第10図は、GTカット水水晶−子の電極を厚くした他
の実施例を示す平面図である。 @11図は、第10図の端部電極を蒸着で付着し次とき
の電極付層量に対する一次温度係数aとの関係を示すグ
ラフである。 第12図は、第8図の端部電極20 e 21、第8図
の端部電極22,25,24,25、第10図の端部電
極24,27,28,2?會蒸着で各各厚くしtときの
電極の付着i1に対する主振動の共振周波数の変化を示
すグラフであり、直線り。 F、Fは、それぞれ第6図、第10111.第8図の場
合に対応している。 第15図の直線gは、−、次温度係数αが正の振動子の
温度に対する土掻の共振周波数との関係を示すグラフで
あり、直線りと1、は、共振周波数を規準周波数f@に
合わせ込む場合の温[41性の変化を示す。 第14図は、本発明によって得られ九温度特性の一実施
例を示すグラフである。 第15図は、本発明のGTTカツト晶振動子の一実施例
の斜視図を示す。 20〜2!・・・・・・厚い電極 以  上 出願人 株式会社第二精工舎 代理人 弁理士 最上  務 第1図(A)        第1図(B)第4図(A
)     第4図(8) 第5図 第6図        第70 第8図          第9図 第1θ口       第11図 第12図 第75図 JE/  j<    Z/   JG  、lj  
  あ手続補正書(方式) l 事件の表示 昭和56年  特許願第11011  号2、発明の名
称 結合水晶振動子 3、補正をする者 事件との関係 4、代 理 人 代表取締役 服 部 −部5 補正命
令の日付 、六 2 補正の内容 明細書第19貞下から第4〜2行の 「第13図の直IJgは、・・・・・・グラフであり、
」を削除し、次の文章を加入する。 「第13図は、温度と振動子主機の共振周波数との関係
を示すグラフであり、直i1j!g+ま一次温度係数α
が正の場合の例を示し、」 υ上 2″°シ
Figures 1 (4) and (2) are a plan view and a side view showing an embodiment of the shape and electrodes of the coupled resonator of the present invention, respectively, and show the vibrating part 2 and the two electrodes arranged on both sides thereof. This is an example of a Za-cut crystal resonator in which two supporting parts 3 are integrally formed. FIG. 2(4) is a half plan view of a zero-cut crystal resonator in which the swing l11 part 2 and the support part of the present invention are integrally formed. FIG. 2(9) is a graph showing the relationship between distortion and each position of the zero-cut crystal resonator of FIG. 2(4). FIG. 5(4) is a histogram of OOI values when the excitation electrode is placed in the area of oscillation am. Figure 3) is a histogram of Ox values when arranged on the upper and lower surfaces of the excitation electrode tube vibrating section and the entire surface. FIG. 4 shows the 0-cut crystal resonator 9 of the present invention on a support stand 8.
This is an example when mounted on the top view (4) and 11
w Figure (B) is shown. FIG. 5 is a graph showing an example of the temperature fIF# characteristic of the GT-cut crystal resonator of the present invention shaped by photolithography. The sixth WA is a plan view showing an example in which the electrodes are thickened by GT-based crystal oscillator deposition. FIG. 7 is a graph showing the change in the primary temperature coefficient α with respect to the amount of electrode added when the end electrode of FIG. 6 is thickened by vapor deposition. FIG. 8 is a plan view showing an embodiment in which electrodes are thickened by vapor deposition at the four corners of a GT-cut crystal vibrator. FIG. 9 is a graph showing the relationship between the first-order temperature coefficient α and the amount of electrode added when the end electrode of FIG. 8 is made thicker by vapor deposition. FIG. 10 is a plan view showing another embodiment in which the electrodes of the GT-cut quartz crystal are made thicker. Figure @11 is a graph showing the relationship between the first-order temperature coefficient a and the amount of electrode layer after the end electrode of Figure 10 is deposited by vapor deposition. FIG. 12 shows the end electrodes 20 e 21 in FIG. 8, the end electrodes 22, 25, 24, 25 in FIG. 8, and the end electrodes 24, 27, 28, 2? in FIG. It is a graph showing the change in the resonance frequency of the main vibration with respect to the electrode adhesion i1 when each thickness is increased by vapor deposition, and the graph is a straight line. F and F are respectively shown in Fig. 6 and Fig. 10111. This corresponds to the case shown in FIG. The straight line g in FIG. 15 is a graph showing the relationship between the resonant frequency of the earth scraper and the temperature of an oscillator with a positive temperature coefficient α. Shows the change in temperature when adjusted to FIG. 14 is a graph showing an example of nine temperature characteristics obtained by the present invention. FIG. 15 shows a perspective view of an embodiment of the GTT cut crystal resonator of the present invention. 20~2!・・・・・・Thick electrode or more Applicant: Daini Seikosha Co., Ltd. Representative Patent Attorney: Tsutomu Mogami Figure 1 (A) Figure 1 (B) Figure 4 (A
) Fig. 4 (8) Fig. 5 Fig. 6 Fig. 70 Fig. 8 Fig. 9 Fig. 1θ mouth Fig. 11 Fig. 12 Fig. 75 JE/ j< Z/ JG, lj
A Procedural amendment (method) l Indication of the case 1982 Patent Application No. 11011 2, Name of the invention Combined crystal oscillator 3, Relationship with the person making the amendment 4, Representative Director Hattori - Department 5 Date of amendment order, 62. Lines 4 to 2 from No. 19 of the Specification of Contents of Amendment: ``The direct IJg in Figure 13 is...a graph;
” and add the following sentence. ``Figure 13 is a graph showing the relationship between temperature and the resonant frequency of the vibrator main engine, and is a graph showing the relationship between temperature and the resonant frequency of the vibrator main engine.
An example is shown in which is positive, and 2″° above υ

Claims (1)

【特許請求の範囲】 (1)  複数の縦振動電−ドが結合した結合水晶振動
子で、前記結合水晶振動子の振動部と支持部が一体に形
成され、前記水晶振動子の励振電極は振動部の上下面、
全面に配置され、IITosの一方の励振電極の厚みは
一様に、他方の励振電極の厚みは中央部より端部の方が
厚くなって−ゐ事を特徴とする結合水晶振動子。 (2、特許請求の範囲第(1)項に於いて、下面の励振
電極は振動部の幅方向の端部で、長さ方向の中心部付近
(20,21)の少なくとも1ケ所が厚くなっている事
1**とする結合水晶振動子。 (3)特許請求の範囲第(1)項に於いて、下面の励振
電極は振動部の四隅(24,27,28,29)の少な
くとも1ケ所が厚くなっている事を%徴とする結合水晶
振動子。 (4)  特許請求の範囲第(1)項に於いて、下面の
励振電極は振動部の幅方向の端部で、長さ方向の中心部
(2,0,21)と四隅(26,27,28,29)゛
の間(22,23,24,25)  の少力くとも1ケ
所が厚くなっている事を41徴とする結合水晶振動子。 (5)  41許請求の範囲第(1)項に於いて、下面
の励振電極は振動部の幅方向の端部で、長さ方向の中心
部付近(20,21)、振動部の四隅(26゜27.2
8.29)振動部の幅方向端部で、長さ方向の中心部付
近(20,21)と四隅(26゜27.28.z?)の
閣(22,2N+、24.25)の少なくとも1ケ所が
厚くなっている事をIf!I徴とする結合水晶振動子。 (6)  41許請求の範囲第(1)項に於いて、前記
結合水晶振動子はGTカット水晶撫動子である事1に%
徴とする結合水晶振動子。
[Scope of Claims] (1) A coupled crystal resonator in which a plurality of longitudinal vibration electrodes are coupled, the vibrating part and the support part of the coupled crystal resonator are integrally formed, and the excitation electrode of the crystal resonator is Upper and lower surfaces of the vibrating part,
A coupled crystal resonator characterized in that one excitation electrode of the IITos is arranged over the entire surface and has a uniform thickness, while the other excitation electrode is thicker at the ends than at the center. (2. In claim (1), the excitation electrode on the lower surface is thick at at least one place near the center (20, 21) in the length direction at the end in the width direction of the vibrating part. (3) In claim (1), the excitation electrode on the lower surface is located at at least one of the four corners (24, 27, 28, 29) of the vibrating part. (4) In claim (1), the excitation electrode on the lower surface is located at the end of the vibrating part in the width direction, and has a length of There are 41 signs that at least one place between the center (2, 0, 21) and the four corners (26, 27, 28, 29) (22, 23, 24, 25) is thicker. (5) In paragraph (1) of the scope of claim 41, the excitation electrode on the lower surface is located at the end of the vibrating section in the width direction, near the center in the length direction (20, 21 ), the four corners of the vibrating part (26°27.2
8.29) At the end of the width direction of the vibrating part, at least in the vicinity of the center in the length direction (20, 21) and in the corners (22, 2N+, 24.25) of the four corners (26° 27.28.z?) If it is thicker in one place! Coupled crystal oscillator with I characteristic. (6) In paragraph (1) of the scope of claim 41, it is provided that the coupled crystal resonator is a GT cut crystal resonator.
Coupled crystal oscillator.
JP56131033A 1981-08-21 1981-08-21 Coupled quartz oscillator Pending JPS5833308A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP56131033A JPS5833308A (en) 1981-08-21 1981-08-21 Coupled quartz oscillator
GB08218897A GB2108316A (en) 1981-08-21 1982-06-30 Piezo-electric resonator
FR8213858A FR2511820B1 (en) 1981-08-21 1982-08-09 MODEL COUPLING QUARTZ RESONATOR
DE19823229972 DE3229972A1 (en) 1981-08-21 1982-08-12 COUPLING RESONATOR
CH500382A CH659362GA3 (en) 1981-08-21 1982-08-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56131033A JPS5833308A (en) 1981-08-21 1981-08-21 Coupled quartz oscillator

Publications (1)

Publication Number Publication Date
JPS5833308A true JPS5833308A (en) 1983-02-26

Family

ID=15048443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56131033A Pending JPS5833308A (en) 1981-08-21 1981-08-21 Coupled quartz oscillator

Country Status (5)

Country Link
JP (1) JPS5833308A (en)
CH (1) CH659362GA3 (en)
DE (1) DE3229972A1 (en)
FR (1) FR2511820B1 (en)
GB (1) GB2108316A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5891240A (en) * 1991-09-24 1999-04-06 Gordian Holding Corporation Radio frequency automatic identification system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4447753A (en) * 1981-03-25 1984-05-08 Seiko Instruments & Electronics Ltd. Miniature GT-cut quartz resonator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS533178A (en) * 1976-06-30 1978-01-12 Seiko Instr & Electronics Ltd Crystal vibrator
JPS5379396A (en) * 1976-12-23 1978-07-13 Nec Corp Square plate form piezoelectric ceramic vibrator
JPS5444857A (en) * 1977-06-27 1979-04-09 Centre Electron Horloger Method of controlling characteristics of crystal oscillator
JPS5469985A (en) * 1977-11-15 1979-06-05 Seiko Instr & Electronics Ltd Piezoelectric vibrator
JPS5469986A (en) * 1977-11-15 1979-06-05 Seiko Instr & Electronics Ltd Piezoelectric vibrator
JPS5585119A (en) * 1978-12-21 1980-06-26 Seiko Instr & Electronics Ltd Piezoelectric oscillator of profile oscillation mode
JPS586616A (en) * 1981-07-02 1983-01-14 Seiko Instr & Electronics Ltd Frequency adjusting method for coupling oscillator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051283B2 (en) * 1975-09-10 1985-11-13 株式会社精工舎 How to adjust frequency temperature characteristics of GT cut crystal resonator
DE2939844A1 (en) * 1978-12-21 1980-07-10 Seiko Instr & Electronics QUARTZ SWINGER
US4447753A (en) * 1981-03-25 1984-05-08 Seiko Instruments & Electronics Ltd. Miniature GT-cut quartz resonator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS533178A (en) * 1976-06-30 1978-01-12 Seiko Instr & Electronics Ltd Crystal vibrator
JPS5379396A (en) * 1976-12-23 1978-07-13 Nec Corp Square plate form piezoelectric ceramic vibrator
JPS5444857A (en) * 1977-06-27 1979-04-09 Centre Electron Horloger Method of controlling characteristics of crystal oscillator
JPS5469985A (en) * 1977-11-15 1979-06-05 Seiko Instr & Electronics Ltd Piezoelectric vibrator
JPS5469986A (en) * 1977-11-15 1979-06-05 Seiko Instr & Electronics Ltd Piezoelectric vibrator
JPS5585119A (en) * 1978-12-21 1980-06-26 Seiko Instr & Electronics Ltd Piezoelectric oscillator of profile oscillation mode
JPS586616A (en) * 1981-07-02 1983-01-14 Seiko Instr & Electronics Ltd Frequency adjusting method for coupling oscillator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5891240A (en) * 1991-09-24 1999-04-06 Gordian Holding Corporation Radio frequency automatic identification system

Also Published As

Publication number Publication date
FR2511820A1 (en) 1983-02-25
FR2511820B1 (en) 1988-09-30
GB2108316A (en) 1983-05-11
CH659362GA3 (en) 1987-01-30
DE3229972A1 (en) 1983-03-03

Similar Documents

Publication Publication Date Title
JPH0150129B2 (en)
JP4936221B2 (en) Mesa-type piezoelectric vibrating piece, mesa-type piezoelectric vibrating device, oscillator, and electronic device
US6739190B2 (en) Micromechanical resonator device
CN101847978B (en) Flexural vibration piece and oscillator using the same
US4365181A (en) Piezoelectric vibrator with damping electrodes
JP5067486B2 (en) Bending vibrator, bending vibrator, and piezoelectric device
JPS5937722A (en) Longitudinal oscillation type piezoelectric oscillator
GB2032685A (en) Piezo-electric resonator
JPS58182311A (en) Tuning fork type oscillator
JPS5833308A (en) Coupled quartz oscillator
JP5818903B2 (en) Low acceleration sensitivity mounting of surface acoustic wave resonator
JPH0265518A (en) Piezoelectric resonator
JPH0156564B2 (en)
US2204762A (en) Piezoelectric crystal apparatus
JPS58190115A (en) Piezoelectric oscillator
US6016025A (en) Selected overtone resonator with channels
JPS59202720A (en) Tuning fork type crystal resonator
GB2047953A (en) Tuning Fork Vibrator
NO319238B1 (en) Piezoelectric resonator and circuit component with one or more such resonators
JPS58136125A (en) Coupled crystal oscillator
JPS5870612A (en) Coupled crystal oscillator
JP2001024470A (en) Extremely high frequency at cut crystal oscillatory
JPS5824503Y2 (en) Width-slip crystal oscillator
JPS5827414A (en) Frequency adjusting method for coupling oscillator
JPS5944114A (en) Method for adjusting frequency of coupled oscillator