JPH0156564B2 - - Google Patents
Info
- Publication number
- JPH0156564B2 JPH0156564B2 JP10430781A JP10430781A JPH0156564B2 JP H0156564 B2 JPH0156564 B2 JP H0156564B2 JP 10430781 A JP10430781 A JP 10430781A JP 10430781 A JP10430781 A JP 10430781A JP H0156564 B2 JPH0156564 B2 JP H0156564B2
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- vibrator
- temperature coefficient
- weight
- main vibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 claims description 14
- 238000005530 etching Methods 0.000 claims description 3
- 239000013078 crystal Substances 0.000 description 27
- 238000007740 vapor deposition Methods 0.000 description 13
- 238000000206 photolithography Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/02—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
- H03H3/04—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Description
【発明の詳細な説明】
本発明はいくつかの振動モードが結合した、い
わゆる結合振動子の周波数調整方法に関する。本
発明の目的は周波数温度特性(以下、温度特性と
呼ぶ)の優れた結合振動子を提供することにあ
る、温度特性の優れた振動子を要求する民生機器
は多くあるが、これらにはATカツト水晶振動子
が使用されて来た。しかし、最近は色々な民生機
器で小型化がなされ、それに従つて、ATカツト
水晶振動子も小型化が要求されて来ているが、こ
のタイプの振動子はスプリアス振動(Spurious
Vibration)が多く小型化が難しいというのが現
状である。特に、腕時計用振動子としてATカツ
ト水晶振動子を使用する場合相当に小型化する必
要があり、音叉型屈曲水晶振動子と比較したと
き、サイズの面では全く満足できるものではな
い。そこで、最近はICの技術を応用したフオト
リソグラフイによる振動子の形成方法が振動子製
造に応用され、その結果、大変に小型の振動子を
提供することができるようになつた。例えば、振
動子の厚みを大変に薄くできる温度特性の優れた
GTカツト水晶振動子や屈曲モード振動と捩りモ
ード振動を結合させた屈曲−捩り水晶振動子(以
下、FT水晶振動子と呼ぶ)に応用され、非常に
小型のものが可能になつた。しかし、これらGT
カツト、FTカツト水晶振動子は良好な温度特性
を得るために二つの振動モード、即ち、主振動と
副振動の結合を利用している。それ故、温度特性
は主振動、副振動の共振周波数の差によつてほぼ
決定される。理論的には優れた温度特性を与える
共振周波数の差をどの位にすれば良いか分かる
が、実際には、製造上のバラツキがあり、一定に
押えることは難しく、温度特性のバラツク原因で
あつた。そこで、本発明は主振動の共振周波数を
規準周波数f0に合わせ込む際に温度特性のバラツ
キを小さくする共振周波数と温度特性調整方法を
提案するものである。以下、図面に沿つて本発明
を詳細に説明する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for adjusting the frequency of a so-called coupled vibrator in which several vibration modes are coupled. The purpose of the present invention is to provide a coupled resonator with excellent frequency-temperature characteristics (hereinafter referred to as temperature characteristics).There are many consumer devices that require resonators with excellent temperature characteristics. Cut quartz crystals have been used. However, recently, various consumer devices have become smaller, and AT-cut crystal resonators have also been required to be smaller.
The current situation is that miniaturization is difficult due to the large number of vibrations. In particular, when an AT-cut crystal resonator is used as a wristwatch resonator, it must be considerably miniaturized, and when compared with a tuning fork-type bent crystal resonator, it is not completely satisfactory in terms of size. Therefore, recently, a method of forming resonators using photolithography, which applies IC technology, has been applied to the manufacture of resonators, and as a result, it has become possible to provide extremely small resonators. For example, there are
It has been applied to GT cut crystal resonators and bending-torsion crystal resonators that combine bending mode vibration and torsional mode vibration (hereinafter referred to as FT crystal resonators), making it possible to make extremely compact devices. However, these GT
Cut and FT Cut crystal resonators utilize two vibration modes, namely the combination of main vibration and sub vibration, to obtain good temperature characteristics. Therefore, the temperature characteristics are almost determined by the difference between the resonance frequencies of the main vibration and the sub-vibration. Theoretically, it is known how much difference in resonant frequency should be set to provide excellent temperature characteristics, but in reality, it is difficult to maintain a constant difference due to manufacturing variations, and it is the cause of variations in temperature characteristics. Ta. Therefore, the present invention proposes a method for adjusting the resonance frequency and temperature characteristics to reduce variations in the temperature characteristics when adjusting the resonance frequency of the main vibration to the reference frequency f 0 . The present invention will be described in detail below with reference to the drawings.
第1図は本発明の結合振動子の形状と電極の一
実施例で、振動部とその両側に配置された二つの
支持部とが一体に形成されたGTカツト水晶振動
子の例である。Aは平面図を、Bは側面図を示
す。水晶1の表裏面には電極2,3が配置され、
両電極に交番電圧を印加することによつて容易に
振動子を励振することができる。又、幅Wと長さ
Lによつて2つのモードの共振周波数は決定さ
れ、幅Wによる主振動の共振周波数をfW、長さL
による副振動の共振周波数をfLとすると次の関係
がある。 FIG. 1 shows an example of the shape and electrodes of a coupled resonator according to the present invention, and is an example of a GT cut crystal resonator in which a vibrating section and two support sections disposed on both sides of the vibrating section are integrally formed. A shows a plan view and B shows a side view. Electrodes 2 and 3 are arranged on the front and back surfaces of the crystal 1,
The vibrator can be easily excited by applying an alternating voltage to both electrodes. Also, the resonance frequencies of the two modes are determined by the width W and the length L, and the resonance frequency of the main vibration due to the width W is f W and the length L
Let f L be the resonant frequency of the secondary vibration due to
fW∝1/W ……(1)
fL∝1/L
更に、温度特性は両共振周波数の差fW−fLによ
つてほぼ決定される。第2図はGTカツト水晶振
動子を支持台4にマウントしたときの一実施例で
平面図Aと側面図Bを示す。支持台4には水晶振
動子5が配置され、振動子の端部8,9で接着
剤、あるいは、半田付けによつて固着されてい
る。水晶の表裏面には励振用電極6,7が配置さ
れている。第3図はフオトリソグラフイによつて
形成されたGTカツト水晶振動子の温度特性の例
で、結合の強さによつて温度特性は異なる。主振
動と副振動の結合が弱いとき、即ち、δ=fW−fL
が大きいときは直線aのように、又、結合が強い
とき、即ち、δが小さいときは直線bのようにな
る。このとき一次温度係数αの絶対値は約2.5×
10-6/℃と大きく、満足できる温度特性とならな
い。しかし、δが最適値のときは直線cのように
なり、良好な温度特性を示す。一般に作られる結
合振動子はこのようなバラツイタ温度特性を示
す。即ち、直線aのように一次温度係数αが約−
2.5×10-6/℃と言うように負の値を特つもの、
一方、直線bのように、αが約+2.5×10-6/℃
と正の値を持つもの、それから、直線cのように
αがほとんど零になるものと、多種多様の温度特
性を示す。又、形成後の振動子のαは−2.5×
10-6/℃〜+2.5×10-6/℃の範囲内にある。こ
こでαが正、負、それからほとんど零ということ
は次のように定義する。 f W ∝1/W (1) f L ∝1/L Furthermore, the temperature characteristics are almost determined by the difference f W −f L between both resonance frequencies. FIG. 2 shows a plan view A and a side view B of an embodiment of the GT cut crystal resonator mounted on the support base 4. A crystal resonator 5 is arranged on the support base 4, and the ends 8 and 9 of the resonator are fixed by adhesive or soldering. Excitation electrodes 6 and 7 are arranged on the front and back surfaces of the crystal. Figure 3 shows an example of the temperature characteristics of a GT cut crystal resonator formed by photolithography, and the temperature characteristics vary depending on the strength of the bond. When the coupling between the main vibration and the sub-vibration is weak, that is, δ=f W −f L
When δ is large, the line becomes a line a, and when the bond is strong, that is, when δ is small, the line becomes a line b. At this time, the absolute value of the first-order temperature coefficient α is approximately 2.5×
10 -6 /℃, which is large and does not provide satisfactory temperature characteristics. However, when δ is the optimum value, the line becomes like a straight line c, showing good temperature characteristics. Coupled oscillators that are generally manufactured exhibit such variable tweeter temperature characteristics. That is, as shown by straight line a, the first-order temperature coefficient α is approximately -
Those with negative values such as 2.5×10 -6 /℃,
On the other hand, as shown in straight line b, α is approximately +2.5×10 -6 /℃
It shows a wide variety of temperature characteristics, including those with a positive value of , and those where α is almost zero as shown by the straight line c. Also, α of the oscillator after formation is −2.5×
It is within the range of 10 -6 /°C to +2.5 ×10 -6 /°C. Here, the fact that α is positive, negative, or almost zero is defined as follows.
(1) 一次温度係数αがほとんど零ということはα
が±1.0×10-7/℃以内にあるものを言う。(1) The fact that the first-order temperature coefficient α is almost zero means that α
is within ±1.0×10 -7 /℃.
(2) 一次温度係数αが正ということはαがα>
1.0×10-7/℃にあるものを言う。(2) The first-order temperature coefficient α is positive, which means that α>
It refers to something that is at 1.0×10 -7 /℃.
(3) 一次温度係数αが負ということはαがα<−
1.0×10-7/℃にあるものを言う。(3) The first-order temperature coefficient α is negative, which means that α is α<-
It refers to something that is at 1.0×10 -7 /℃.
第4図はGTカツト水晶振動子に蒸着により錘
り10,11を付着した一例で、振動子の幅W方
向の端部、そして、長さ方向のほぼ中央位置に、
対称的にて、錘り10,11が付着されている。
第5図は第4図の錘り10,11を蒸着によつて
付着したときの錘りの付加量に対する一次温度係
数αの変化を示している。即ち、錘りの付着量を
多くするに従つて一次温度係数αは負側へと移動
する。第6図はGTカツト水晶振動子の4隅に蒸
着によつて錘り12,13,14,15を付着し
た例である。第7図は第6図の錘り12,13,
14,15を蒸着で付着したときの錘りの付着量
に対する一次温度係数αの関係を示す。錘りの付
着量を多くするに従つて一次温度係数αは正側へ
と移動する。これらのことから分かるように、第
4図の錘りのときは、錘りを付着することによつ
て、一次温度係数αは負の方向に、又第6図の錘
りの付着のときは、錘りを付着することによつ
て、一次温度係数αは正側へと移動する。即ち、
第4図の錘り10,11と第6図の錘り12,1
3,14,15の間に錘りを付着したときは、一
次温度係数αは全く変化しない事が予測できる。
第8図はGTカツト水晶振動子の錘り付着の他の
例で、第4図の錘り10と第6図の錘り12,1
5の間にあるように錘り16,19が付着され、
錘り11と錘り13,14の間にあるように錘り
17,18が付着された平面図である。第9図は
第8図の錘り16,17,18,19を蒸着で付
着したときの錘り付着量に対する一次温度係数α
との関係を示し、錘りの付着によつて一次温度係
数αは全く変化しないことが分かる。第10図は
第4図の錘り10,11、第6図の錘り12,1
3,14,15、第8図の錘り16,17,1
8,19を蒸着で各々付着したときの錘り付着量
に対する主振動の共振周波数の変化を示し、直線
d,e,fはそれぞれ第4図、第8図、第6図の
場合に対応している。いづれの場合でも錘りの付
着量によつて主振動の共振周波数は低くなること
が分かる。次に、周波数調整と温度特性調整方法
を具体的に説明する。 Figure 4 shows an example in which weights 10 and 11 are attached to a GT-cut crystal resonator by vapor deposition, at the ends of the resonator in the width W direction and at approximately the center position in the length direction.
Weights 10, 11 are attached symmetrically.
FIG. 5 shows the change in the primary temperature coefficient α with respect to the amount of weights added when the weights 10 and 11 of FIG. 4 are attached by vapor deposition. That is, as the amount of attached weight increases, the primary temperature coefficient α moves to the negative side. FIG. 6 shows an example in which weights 12, 13, 14, and 15 are attached to the four corners of a GT cut crystal resonator by vapor deposition. Figure 7 shows the weights 12, 13 in Figure 6,
The relationship between the first-order temperature coefficient α and the amount of deposited weights when depositing weights 14 and 15 by vapor deposition is shown. As the amount of weight attached increases, the primary temperature coefficient α moves to the positive side. As can be seen from these facts, when the weight is attached as shown in Fig. 4, the primary temperature coefficient α becomes negative by attaching the weight, and when the weight is attached as shown in Fig. 6, the primary temperature coefficient α becomes negative. , by attaching a weight, the primary temperature coefficient α moves to the positive side. That is,
Weights 10 and 11 in Figure 4 and weights 12 and 1 in Figure 6
When the weight is attached between 3, 14, and 15, it can be predicted that the primary temperature coefficient α will not change at all.
Figure 8 shows another example of weight attachment in a GT cut crystal resonator, with weight 10 in Figure 4 and weights 12 and 1 in Figure 6.
Weights 16 and 19 are attached so that they are between 5,
FIG. 3 is a plan view in which weights 17 and 18 are attached between weight 11 and weights 13 and 14; Figure 9 shows the primary temperature coefficient α for the amount of weights attached when the weights 16, 17, 18, and 19 in Figure 8 are attached by vapor deposition.
It can be seen that the primary temperature coefficient α does not change at all due to the attachment of the weight. Figure 10 shows weights 10 and 11 in Figure 4, and weights 12 and 1 in Figure 6.
3, 14, 15, weights 16, 17, 1 in Figure 8
8 and 19 are deposited by vapor deposition, and the change in the resonance frequency of the main vibration with respect to the amount of attached weight is shown, and the straight lines d, e, and f correspond to the cases of Fig. 4, Fig. 8, and Fig. 6, respectively. ing. It can be seen that in any case, the resonance frequency of the main vibration becomes lower depending on the amount of weight attached. Next, the frequency adjustment and temperature characteristic adjustment methods will be specifically explained.
第1図のGTカツト水晶振動子はフオトグラフ
イによつて形成された後、次のような特性を持つ
ように設計する。 The GT cut crystal resonator shown in Figure 1 is formed by photography and then designed to have the following characteristics.
(1) 主振動の共振周波数は合わせ込む規準周波数
f0より高い値を持つ。(通常1000ppm〜
2000ppm高くなつている)
このような振動子は形状、エツチング時間を選
択することによつて容易に得られる。次に、この
振動子はある任意の温度に置き、この温度をサー
ミスター等の温度計によつて読み取り、この温度
をt1とする。このときの主振動の共振周波数f1を
測定する。更に、他の任意の温度に前記振動子を
置き、この時の温度t2を前記と同様に読み取る。
このときの主振動の共振周波数f2を測定する。温
度t1,t2と共振周波数f1,f2によつて次式から一
次温度係数αを求める。(1) The resonant frequency of the main vibration is the reference frequency to be matched.
f has a value higher than 0 . (Usually 1000ppm~
(2000ppm higher) Such a resonator can be easily obtained by selecting the shape and etching time. Next, this vibrator is placed at a certain arbitrary temperature, this temperature is read with a thermometer such as a thermistor, and this temperature is set as t1 . At this time, the resonance frequency f 1 of the main vibration is measured. Furthermore, the vibrator is placed at any other temperature, and the temperature t2 at this time is read in the same manner as above.
At this time, the resonance frequency f 2 of the main vibration is measured. The primary temperature coefficient α is determined from the following equation using the temperatures t 1 and t 2 and the resonance frequencies f 1 and f 2 .
α=f2−f1/t2−t1(Hz/℃) ……(2)
又、合わせ込む規準周波数f0を使つて書き改め
ると次のようになる。α=f 2 −f 1 /t 2 −t 1 (Hz/℃) ...(2) Also, if we rewrite it using the reference frequency f 0 to be adjusted, it becomes as follows.
α=f2−f1/f0 1/t2−t1(1/℃) ……(3)
第11図はこの様子を示し、直線gはαが正の
場合の例である。温度t0は主振の共振周波数と規
準周波数f0に合わせ込むときの温度である。温度
t0のとき主振の共振周波数fは規準周波数f0より
も高くなつている。従つて、主振の共振周波数f
を規準周波数f0に錘りを付着して合わせ込む方法
は前記した3つの方法がある。しかし、この場
合、αは正であるからαが負側に移動する方式を
採用すればαを更に小さくすることができる。即
ち、第4図の錘り10,11を付着する方式であ
る。第11図の直線hとiは共振周波数fを規準
周波数f0に合わせ込む場合の温度特性の変化を示
している。規準周波数f0に近づくに従つて、αは
零に近づき(直線h)、規準周波数f0に合わせ込
まれたときはαはほぼ零になる(直線i)。第1
2図はこのようにして得られた本発明の温度特性
の一実施例を示す。直線jは振動子形成後の温度
特性でα≒1.5×10-6/℃、直線kは主振の共振
周波数fを規準周波数f0に合わせ込んだときの温
度特性でα≒3×10-7/℃と相当小さくなり、良
好な温度特性を示すことが分かる。全く同様に、
αが負のときは主振の共振周波数fを規準周波数
f0に合わせ込むときαが正側に移動する方式を採
用すればαを更に零に近づけることができる。即
ち、第6図の錘り12,13,14,15を付着
する方式である。又、αがほとんど零のときに
は、αを変化させる必要がないから共振周波数f
を規準周波数f0に合わせ込むときαが変化しない
方式、即ち、第8図の錘り16,17,18,1
9を付着する方式を彩用すれば良い。以上、本発
明を詳細に述べたが、その周波数調整に係わる構
成と手段の要旨をまとめると次のようになる。α=f 2 −f 1 /f 0 1/t 2 −t 1 (1/° C.) (3) FIG. 11 shows this situation, and the straight line g is an example when α is positive. The temperature t 0 is the temperature at which the resonance frequency of the main resonance and the reference frequency f 0 are matched. temperature
At t 0 , the main resonance frequency f is higher than the reference frequency f 0 . Therefore, the resonance frequency f of the main vibration
There are the three methods described above to adjust the frequency f 0 to the reference frequency f 0 by attaching a weight. However, in this case, since α is positive, α can be further reduced by adopting a method in which α moves to the negative side. That is, this is a method in which weights 10 and 11 shown in FIG. 4 are attached. Straight lines h and i in FIG. 11 show changes in temperature characteristics when the resonant frequency f is adjusted to the reference frequency f 0 . As it approaches the standard frequency f 0 , α approaches zero (straight line h), and when adjusted to the standard frequency f 0 , α becomes almost zero (straight line i). 1st
FIG. 2 shows an example of the temperature characteristics of the present invention obtained in this manner. Straight line j is the temperature characteristic after the vibrator is formed, α≒1.5×10 -6 /℃, and straight line k is the temperature characteristic when the main resonance frequency f is adjusted to the reference frequency f 0 , α≒3×10 - 7 /°C, which is considerably small, indicating good temperature characteristics. In exactly the same way
When α is negative, the main resonance frequency f is the reference frequency.
If a method is adopted in which α moves to the positive side when adjusting to f 0 , α can be brought even closer to zero. That is, this is a method in which weights 12, 13, 14, and 15 shown in FIG. 6 are attached. Also, when α is almost zero, there is no need to change α, so the resonance frequency f
A method in which α does not change when adjusting to the standard frequency f 0 , that is, weights 16, 17, 18, 1 in Fig. 8
It is sufficient to use the method of attaching 9. The present invention has been described in detail above, and the gist of the configuration and means related to frequency adjustment can be summarized as follows.
主振動と副振動が結合し、主振動を短辺方向、
副振動を長辺方向とした略長方形の振動部よりな
る結合振動子で、この振動子の主振動の共振周波
数は、合わせ込むべき規準周波数f0より1000〜
2000ppm高い値になるようエツチング加工で外形
を形成されるものにおいて、この加工された振動
子の一次温度係数αが
(1) αがほとんど零とは、
−1.0×10-7/℃≦α≦1.0×10-7/℃
(2) αが正とは、α>1.0×10-7/℃
(3) αが負とは、α<−1.0×10-7/℃
で定義される。この振動子をある任意の第1の温
度t1に置き、そのときの第1の共振周波数f1を測
定する工程、次に、ある任意の第2の温度f2に前
記振動子を置き、そのときの第2の共振周波数f2
を測定する工程、これらt1,f1,t2,f2の関係か
ら、一次温度係数αを求め、この一次温度係数α
が負であれば、該振動子の振動部の四隅12〜1
5の少なくとも一ケ所に錘を付着して主振動の共
振周波数を下げ規準周波数f0に合わせ込む工程、
前記求められた一次温度係数αが正であれば、該
振動子の振動部の長辺方向のほぼ中央の端部1
0,11の少なくとも一ケ所に錘を付着して主振
動の共振周波数を下げ規準周波数f0に合わせ込む
工程、前記求められた一次温度係数αがほとんど
零であれば、該振動子の振動部の前記四隅12〜
15と、前記長辺方向のほぼ中央の端部10,1
1との間16〜19の少なくとも一ケ所に錘を付
着して主振動の共振周波数を下げ規準周波数f0に
合わせ込むことを特徴とするものであり、これに
より結合振動子の周波数調整前の最適温度特性、
並びに、主振動の最適共振周波数を得る振動子の
設計をし、任意の温度t1,t2での主振動の共振周
波数f1,f2を測定し、この値から一次温度係数α
を計算し、更に、蒸着によつて一次温度係数αが
ほとんど零で、しかも、主振の共振周波数がf0に
合わせ込まれた温度特性の優れたGTカツト水晶
振動子を提供することができた。これにより、例
えば、高精度腕時計の実現が可能になつた。又、
この方式は一個個々振動子の温度特性を測り、そ
の後、一次温度係数を調整するので温度特性によ
る不良率は著しく低下した。それ故、コストダウ
ンが可能になつた。本発明の説明はGTカツト水
晶振動子で説明したが、本発明の考え方は他の結
合振動子、例えば、FTカツト水晶振動子にも適
用できることは言うまでもない。 The main vibration and sub-vibration are combined, and the main vibration is
This is a coupled vibrator consisting of a roughly rectangular vibrating part with the secondary vibration in the long side direction, and the resonant frequency of the main vibration of this vibrator is 1000 to 1000 higher than the standard frequency f 0 to be matched.
In a device whose external shape is formed by etching to a value 2000 ppm higher, the primary temperature coefficient α of this processed resonator is (1) α is almost zero, which means -1.0×10 -7 /℃≦α≦ 1.0×10 -7 /℃ (2) Positive α is defined as α>1.0×10 −7 /℃ (3) Negative α is defined as α<−1.0×10 −7 /℃. a step of placing the vibrator at a certain arbitrary first temperature t 1 and measuring the first resonant frequency f 1 at that time; then placing the vibrator at a certain arbitrary second temperature f 2 ; Second resonant frequency f 2 at that time
In the step of measuring
If is negative, the four corners 12 to 1 of the vibrating part of the vibrator
A step of lowering the resonance frequency of the main vibration to match the reference frequency f 0 by attaching a weight to at least one place of 5;
If the obtained first-order temperature coefficient α is positive, the end 1 of the vibrating part of the vibrator is approximately central in the long side direction.
0 and 11 to lower the resonant frequency of the main vibration and match it to the reference frequency f 0. If the obtained primary temperature coefficient α is almost zero, the vibrating part of the vibrator Said four corners 12~
15, and an end portion 10, 1 approximately at the center in the long side direction.
This is characterized by attaching a weight to at least one place between 16 and 19 between 1 and 1 to lower the resonance frequency of the main vibration and match it to the reference frequency f0 . Optimal temperature characteristics,
In addition, design a vibrator to obtain the optimum resonance frequency of the main vibration, measure the resonance frequencies f 1 and f 2 of the main vibration at arbitrary temperatures t 1 and t 2 , and calculate the primary temperature coefficient α from these values.
Furthermore, through vapor deposition, it is possible to provide a GT-cut crystal resonator with excellent temperature characteristics in which the primary temperature coefficient α is almost zero and the resonance frequency of the main vibration is tuned to f 0 . Ta. This has made it possible, for example, to realize high-precision wristwatches. or,
This method measures the temperature characteristics of each individual vibrator and then adjusts the primary temperature coefficient, which significantly reduces the defective rate due to temperature characteristics. Therefore, it has become possible to reduce costs. Although the present invention has been explained using a GT-cut crystal resonator, it goes without saying that the concept of the present invention can be applied to other coupled resonators, such as an FT-cut crystal resonator.
第1図は本発明の結合振動子の形状と電極の一
実施例で、GTカツト水晶振動子の例である。A
は平面図、Bは側面図を示す。第2図はGTカツ
ト水晶振動子を支持台にマウントしたときの一実
施例で、平面図Aと側面図Bを示す。第3図はフ
オトリソグラフイによつて形成されたGTカツト
水晶振動子の温度特性の例を示すグラフである。
第4図はGTカツト水晶振動子に蒸着により錘り
を付着した一実施例を示す平面図である。第5図
は第4図の錘りを蒸着によつて付着したときの錘
りの付加量に対する一次温度係数αの変化を示す
グラフである。第6図はGTカツト水晶振動子の
4隅に蒸着によつて錘りを付着した一実施例を示
す平面図である。第7図は第6図の錘りを蒸着で
付着したときの錘りの付着量に対する一次温度係
数αの関係を示すグラフである。第8図はGTカ
ツト水晶振動子の錘り付着の他の実施例を示す平
面図である。第9図は第8図の錘りを蒸着で付着
したときの錘り付着量に対する一次温度係数αと
の関係を示すグラフである。第10図は第4図の
錘り10,11、第6図の錘り12,13,1
4,15、第8図の錘り16,17,18,19
を蒸着で各々付着したときの錘り付着量に対する
主振動の共振周波数の変化を示すグラフであり、
直線d,e,fはそれぞれ第4図、第8図、第6
図の場合に対応している。第11図の直線gは一
次温度係数αが正の振動子の温度に対する主振の
共振周波数との関係を示すグラフであり、直線h
とiは共振周波数を規準周波数f0に合わせ込む場
合の温度特性の変化を示す。第12図は本発明に
よつて得られた温度特性の一実施例を示すグラフ
である。
10〜19……錘り。
FIG. 1 shows an example of the shape and electrodes of a coupled resonator according to the present invention, and is an example of a GT cut crystal resonator. A
B shows a plan view, and B shows a side view. FIG. 2 shows an embodiment of the GT-cut crystal resonator mounted on a support, and shows a plan view A and a side view B. FIG. 3 is a graph showing an example of the temperature characteristics of a GT cut crystal resonator formed by photolithography.
FIG. 4 is a plan view showing an embodiment in which a weight is attached to a GT cut crystal resonator by vapor deposition. FIG. 5 is a graph showing the change in the primary temperature coefficient α with respect to the amount of weight added when the weight shown in FIG. 4 is attached by vapor deposition. FIG. 6 is a plan view showing an embodiment in which weights are attached to the four corners of a GT cut crystal resonator by vapor deposition. FIG. 7 is a graph showing the relationship between the first-order temperature coefficient α and the amount of weight deposited when the weight shown in FIG. 6 is deposited by vapor deposition. FIG. 8 is a plan view showing another embodiment of the weight attachment of the GT cut crystal resonator. FIG. 9 is a graph showing the relationship between the amount of attached weight and the primary temperature coefficient α when the weight of FIG. 8 is attached by vapor deposition. Figure 10 shows weights 10, 11 in Figure 4 and weights 12, 13, 1 in Figure 6.
4, 15, weights 16, 17, 18, 19 in Figure 8
It is a graph showing the change in the resonance frequency of the main vibration with respect to the amount of weight attached when each is attached by vapor deposition,
Straight lines d, e, and f are shown in Figures 4, 8, and 6, respectively.
This corresponds to the case shown in the figure. The straight line g in FIG. 11 is a graph showing the relationship between the main resonance frequency and the temperature of an oscillator with a positive primary temperature coefficient α, and the straight line h
and i indicate the change in temperature characteristics when the resonant frequency is adjusted to the reference frequency f 0 . FIG. 12 is a graph showing an example of temperature characteristics obtained by the present invention. 10-19... Weight.
Claims (1)
向、副振動を長辺方向とした略長方形の振動部よ
りなる結合振動子で、この振動子の主振動の共振
周波数は、合わせ込むべき規準周波数f0より1000
〜2000ppm高い値になるようエツチング加工で外
形を形成されるものにおいて、この加工された振
動子の一次温度係数αが、 (1) αがほとんど零とは、 −1×10-7/℃≦α≦1×10-7/℃ (2) αが正とは、α>1.0×10-7/℃ (3) αが負とは、α<−1.0×10-7/℃ で定義される。この振動子をある任意の第1の温
度t1に置き、そのときの第1の共振周波数f1を測
定する工程、次にある任意の第2の温度t2に前記
振動子を置き、そのときの第2の共振周波数f2を
測定する工程、これらt1,f1,t2,f2の関係から、
一次温度係数αを求め、この一次温度係数αが負
であれば、該振動子の振動部の四隅12〜15の
少なくとも一ケ所に錘を付着して主振動の共振周
波数を下げ規準周波数f0に合わせ込む工程、前記
求められた一次温度係数αが正であれば、該振動
子の振動部の長辺方向のほぼ中央の端部10,1
1の少なくとも一ケ所に錘を付着して主振動の共
振周波数を下げ規準周波数f0に合わせ込む工程、
前記求められた一次温度係数αがほとんど零であ
れば、該振動子の振動部の前記四隅12〜15
と、前記長辺方向のほぼ中央の端部10,11と
の間16〜19の少なくとも一ケ所に錘を付着し
て主振動の共振周波数を下げ規準周波数f0に合わ
せ込むことを特徴とする結合振動子の周波数調整
方法。[Claims] 1. A coupled vibrator consisting of a substantially rectangular vibrating part in which the main vibration and the sub-vibration are coupled, with the main vibration in the direction of the short side and the sub-vibration in the direction of the long side. The resonant frequency is 1000 from the reference frequency f 0 to be matched.
In a device whose outer shape is formed by etching to a value ~2000ppm higher, the primary temperature coefficient α of this processed resonator is: (1) When α is almost zero, -1×10 -7 /℃≦ α≦1×10 -7 /℃ (2) Positive α is defined as α>1.0×10 -7 /℃ (3) Negative α is defined as α<−1.0×10 -7 /℃ . The process of placing this vibrator at an arbitrary first temperature t 1 and measuring the first resonant frequency f 1 at that time, then placing the vibrator at an arbitrary second temperature t 2 and measuring the first resonant frequency f 1 at that time. The process of measuring the second resonance frequency f 2 at the time, from the relationship among these t 1 , f 1 , t 2 , f 2 ,
The primary temperature coefficient α is determined, and if the primary temperature coefficient α is negative, a weight is attached to at least one of the four corners 12 to 15 of the vibrating part of the vibrator to lower the resonant frequency of the main vibration and the reference frequency f 0 If the obtained first-order temperature coefficient α is positive, the ends 10, 1 of the vibrating part of the vibrator are approximately central in the long side direction.
A step of lowering the resonance frequency of the main vibration to match the reference frequency f0 by attaching a weight to at least one place of 1;
If the obtained primary temperature coefficient α is almost zero, the four corners 12 to 15 of the vibrating part of the vibrator
and the end portions 10 and 11 approximately in the center in the long side direction, a weight is attached to at least one of the locations 16 to 19 to lower the resonance frequency of the main vibration and match it to the reference frequency f 0 . How to adjust the frequency of a coupled resonator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10430781A JPS586616A (en) | 1981-07-02 | 1981-07-02 | Frequency adjusting method for coupling oscillator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10430781A JPS586616A (en) | 1981-07-02 | 1981-07-02 | Frequency adjusting method for coupling oscillator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS586616A JPS586616A (en) | 1983-01-14 |
JPH0156564B2 true JPH0156564B2 (en) | 1989-11-30 |
Family
ID=14377261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10430781A Granted JPS586616A (en) | 1981-07-02 | 1981-07-02 | Frequency adjusting method for coupling oscillator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS586616A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4447753A (en) * | 1981-03-25 | 1984-05-08 | Seiko Instruments & Electronics Ltd. | Miniature GT-cut quartz resonator |
JPS5833308A (en) * | 1981-08-21 | 1983-02-26 | Seiko Instr & Electronics Ltd | Coupled quartz oscillator |
US5371089A (en) * | 1987-02-26 | 1994-12-06 | Senetek, Plc | Method and composition for ameliorating the adverse effects of aging |
IN168838B (en) * | 1987-02-28 | 1991-06-22 | Nissei Plastics Ind Co | |
JPH11168338A (en) * | 1997-10-01 | 1999-06-22 | Murata Mfg Co Ltd | Piezoelectric resonator, frequency adjustment method for piezoelectric resonator and communication equipment |
TWI401882B (en) * | 2005-09-15 | 2013-07-11 | Daishinku Corp | Crystal oscillator |
-
1981
- 1981-07-02 JP JP10430781A patent/JPS586616A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS586616A (en) | 1983-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0150129B2 (en) | ||
US4456850A (en) | Piezoelectric composite thin film resonator | |
US4447753A (en) | Miniature GT-cut quartz resonator | |
KR102537554B1 (en) | Frequency Reference Oscillator Devices and How to Stabilize Frequency Reference Signals | |
US20100194499A1 (en) | Micro-Electromechanical Devices Having Variable Capacitors Therein that Compensate for Temperature-Induced Frequency Drift in Acoustic Resonators | |
US4384229A (en) | Temperature compensated piezoelectric ceramic resonator unit | |
JPH0232807B2 (en) | ||
JP2000295065A (en) | Piezoelectric vibrator and its frequency adjusting method | |
KR20070029561A (en) | Oscillatory circuit having two oscillators | |
JPH0156564B2 (en) | ||
US20070024158A1 (en) | Integrated resonators and time base incorporating said resonators | |
JPH0156565B2 (en) | ||
JPH0870232A (en) | Surface acoustic wave element and oscillat0r | |
JPS59202720A (en) | Tuning fork type crystal resonator | |
JPH0161251B2 (en) | ||
JPS5862915A (en) | Adjusting method of frequency versus temperature coefficient for coupling oscillator | |
SU1780147A1 (en) | Monolithic crystal filter | |
US5469010A (en) | Method of adjusting frequency of NS-GT cut quartz resonator | |
JPH0238008B2 (en) | ||
JPH06268442A (en) | Temperature compensation type crystal oscillation circuit | |
JPS5944114A (en) | Method for adjusting frequency of coupled oscillator | |
JPS5833308A (en) | Coupled quartz oscillator | |
JPS5824503Y2 (en) | Width-slip crystal oscillator | |
JP2000091878A (en) | Piezoelectric vibrator and piezoelectric oscillator | |
JPS63280507A (en) | Coupling crystal resonator |