JPS58136125A - Coupled crystal oscillator - Google Patents

Coupled crystal oscillator

Info

Publication number
JPS58136125A
JPS58136125A JP1771982A JP1771982A JPS58136125A JP S58136125 A JPS58136125 A JP S58136125A JP 1771982 A JP1771982 A JP 1771982A JP 1771982 A JP1771982 A JP 1771982A JP S58136125 A JPS58136125 A JP S58136125A
Authority
JP
Japan
Prior art keywords
oscillator
oscillation
electrode
coupled
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1771982A
Other languages
Japanese (ja)
Inventor
Hirofumi Kawashima
宏文 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP1771982A priority Critical patent/JPS58136125A/en
Publication of JPS58136125A publication Critical patent/JPS58136125A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0504Holders; Supports for bulk acoustic wave devices
    • H03H9/0509Holders; Supports for bulk acoustic wave devices consisting of adhesive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0595Holders; Supports the holder support and resonator being formed in one body

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To decrease the IC value and to improve the workability of an oscillator excellent in vibration-resistance, by forming the oscillation and support sections of a coupled crystal oscillator incorporatedly, and arranging an exciting electrode of the oscillator on the entire upper and lower surfaces of the oscillation section. CONSTITUTION:Two support sections 3 are formed incorporatedly at both sides of the oscillation section 2 of a crystal 1, and exciting electrodes 6, 7 are uniformly arranged on the upper and lower surfaces 4, 5 of the oscillation section 2. This oscillation electrode 6 is prolonged to the one support section 3, the electrode 7 is prolonged to the other support section 3, and an AC voltage is applied to the electrodes 6, 7 to excite the oscillator. The resonance frequency of the two modes is determined basing on the width W and the length L of the oscillator, and the resonance frequency of the main oscillation is determined width W and the resonance frequency of the sub-oscillation is determined basing on the length L. The IC value of the coupled crystal oscillator is reduced and the manufacture in the oscillator excellent in the vibration-resistance is made easy.

Description

【発明の詳細な説明】 本発明は振動部と支持部が一体に形成され、複数の縦振
動モードが結合した、いわゆる結合水晶振動子の電極構
造に関する。本発明の目的は周波数温度特性(以下温度
特性と呼ぶ)の優れた結合水晶振動子を提供することに
ある。本発明の他の目的はCI(crystal工mp
edanca )  の小さい結合水晶振動子を提供す
ることに、6る。本発明の他の目的は作業性の良い結合
水晶振動子の電極構造、特に、マウント作業が容易とな
る電極構造を提供することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrode structure of a so-called coupled crystal resonator in which a vibrating section and a supporting section are integrally formed and a plurality of longitudinal vibration modes are coupled. An object of the present invention is to provide a coupled crystal resonator with excellent frequency-temperature characteristics (hereinafter referred to as temperature characteristics). Another object of the present invention is to use CI (crystal engineering).
edanca) is dedicated to providing small bonded quartz crystals. Another object of the present invention is to provide an electrode structure for a coupled crystal resonator that is easy to work with, particularly an electrode structure that facilitates mounting work.

温度%性の優れた、しかも、CIの小さい振動子を要求
する民生機器は多くあるが、これらにはATカット水晶
振動子が使用されて来た。しかし、最近は色々な民生機
器で小型化がなされ、それに伴って、ATカット水晶振
動子も小型化が要求されて来ているが、このタイプの振
動子はス1リナス振動(5purious Vibra
tion )が多く小型化が難しく、同時忙、小型化す
るとCIが高くなってしまうのが実状でめる。特に、腕
時計用水晶振動子としてATカット水晶蚤動子を使用す
る場合相轟VC小型化する必要がろシ、音叉型屈曲水晶
振動子と比較したとき、サイズの面では全く満足できる
ものではない。そこで、最近は工Cの技術を応用したフ
ォトリングラフィによる振動子の形成方法が振動子製造
に応用され、その結果、大変に小型の振動子を提供する
°ζるができる工うKなった。
There are many consumer devices that require resonators with excellent temperature % characteristics and small CI, and AT-cut crystal resonators have been used in these devices. However, recently, various consumer devices have become smaller, and along with this, there has been a demand for smaller AT-cut crystal resonators.
The reality is that miniaturization is difficult due to the large number of tion), and the CI increases when miniaturization is performed. In particular, when using an AT-cut crystal oscillator as a wristwatch crystal oscillator, it is necessary to downsize the VC, and when compared with a tuning fork-type bent crystal oscillator, it is not completely satisfactory in terms of size. . Therefore, recently, a method of forming a vibrator using photolithography, which applies the technique of engineering C, has been applied to the manufacturing of vibrators, and as a result, it has become possible to provide very small vibrators. .

例えば、振動子の厚みを大食に薄くできる温度特性の優
れたGTカット水晶蚕動子に応用され、非常に小型のも
のが可能になった。しかし、これらGTカント水晶振動
子は良好な温度特性を祷るために二つの振動モード、即
ち、主畿動と副振動の結合を利用している。それ故、温
度特性は主少動、副振動の共振周波数の差に工°りてほ
ぼ決定される。理論的には優れた温度特性を支える共振
周波数の差をどの位にすれば良いか分かるが、実際には
、勇造上のバラツキがあり、一定に押えることは難しく
、温1[4I性のバラツキ原因であつ次。
For example, it has been applied to GT-cut quartz crystal oscillators with excellent temperature characteristics that allow the thickness of the oscillator to be extremely thin, making it possible to create extremely small oscillators. However, these GT cant crystal oscillators utilize the combination of two vibration modes, ie, the main vibration and the sub-vibration, in order to achieve good temperature characteristics. Therefore, the temperature characteristics are almost determined by the difference in the resonance frequencies of the main and minor vibrations. Theoretically, it is known how much the difference in resonance frequency should be to support excellent temperature characteristics, but in reality, it is difficult to maintain a constant value due to variations in the structure. Atatsu next because of the cause.

この温度特性のバラツキを吸収する方法がいくつか提案
されている。例えば、特公昭47−3508では励振電
極を除去して1度特性を調整する方法を提案しているが
励振電極を除去するため実質電界効率が低下するのでC
エイ1が高くなるという不具合が生じる。更に、水晶振
動子と二本の細いリード線で支持するため小型化が難し
く、同時に、衝撃に対しても弱く、並びに、マウント吟
の作業性が悪くなるという欠点がめった。そこで、本発
明はこれらの不具合、欠点を改善したものでめる。
Several methods have been proposed to absorb this variation in temperature characteristics. For example, Japanese Patent Publication No. 47-3508 proposes a method in which the characteristics are adjusted once by removing the excitation electrode, but since the actual electric field efficiency decreases due to the removal of the excitation electrode, C
A problem arises in that Stingray 1 becomes high. Furthermore, since it is supported by a crystal oscillator and two thin lead wires, it is difficult to miniaturize it, and at the same time, it is vulnerable to shocks, and the workability of the mount is often poor. Therefore, the present invention is intended to improve these problems and drawbacks.

以下、1面に沿って本発明の詳細な説明する。Hereinafter, the present invention will be described in detail along one aspect.

第1図(A)、(B)は本発明の結合振動子の形状と電
極の一実施例で振動部2とそのFikJIIllに配置
された二つの支持s3とが一体に形成されたGTカット
水晶撮動子の例である。fa1図(A)は平面図を第1
図(B)は側面図を示す。水高1の振動部2の上面4と
下UAJ5には励振電極6.7が各々全面に、一様に6
i1i&され、励振電極6は一方の支持部3に延びて配
置され、励振電極7は他方の支持部5に延びて配置され
ている。励振部2から支持部3へ延びた電極は電界を印
加する友めに必要な端子1!極である。支持部3にま1
延びた両電葎に交番電圧を印加することによって容易に
振動子を励振することができる。父、幅Wと長さLK工
って2つのモードの共振周波数は各々決定され、@WV
C工って主蚤動の共振周波数jWが、長さLによって副
損動の共振周波数fL が決定きれる。次に、励振電極
を撮動1@S2の上下面、全面に配置する理由を説明す
る。第2図(Nは本発明の振動部2と支持部5が一体に
形成されているGTカット水晶撮動子のnFI!Jでめ
る。断面A−Aの各位置に対する変位との関係の計算値
を示している。即ち、点Cで変位は零となり点Cから点
a、eにh<VC従って変位の絶対値は大きくなる振動
である(ux=uz)。
FIGS. 1(A) and 1(B) show an example of the shape and electrode of the coupled resonator of the present invention, in which the vibrating part 2 and the two supports s3 arranged in its FikJIIll are integrally formed of a GT cut crystal. This is an example of a camera. fa1 diagram (A) is the top view
Figure (B) shows a side view. On the upper surface 4 and lower UAJ 5 of the vibrating part 2 at a water height of 1, excitation electrodes 6.7 are arranged uniformly over the entire surface.
i1i&, the excitation electrode 6 is disposed extending to one support part 3, and the excitation electrode 7 is disposed to extend to the other support part 5. The electrode extending from the excitation part 2 to the support part 3 is a terminal 1 necessary for applying an electric field! It is extreme. Support part 3
The vibrator can be easily excited by applying an alternating voltage to both extended wires. The resonance frequencies of the two modes are determined by width W and length LK, respectively, @WV
In C, the resonant frequency jW of the main vibration can be determined, and the resonant frequency fL of the auxiliary vibration can be determined depending on the length L. Next, the reason why the excitation electrodes are arranged on the upper and lower surfaces and the entire surface of the imaging 1@S2 will be explained. Fig. 2 (N is determined by nFI!J of the GT-cut crystal camera in which the vibrating part 2 and the supporting part 5 of the present invention are integrally formed. The relationship between the displacement and each position on the cross section A-A. The calculated value is shown. That is, the displacement becomes zero at point C, and from point C to points a and e, h<VC, so the absolute value of displacement increases (ux=uz).

第2図(B)は各位INK対する歪みとの関係を示して
いる。即ち、点Cで歪みは最大となシ、端部:こ析〈に
従って小さくなる。しかし、第2 因(A)、 (f1
11謝3図(A)、 <B)から明らかなように端部a
、θで2・′よ歪みが零とならず、伶みが生じている。
FIG. 2(B) shows the relationship between each INK and distortion. That is, the strain is maximum at point C, and becomes smaller at the ends. However, the second cause (A), (f1
As is clear from Figure 11.3 (A) and <B), the end a
, θ, the distortion does not become zero at 2·′, and a distortion occurs.

これは振動部の端部に励振電極を配置した場合としない
場合では水晶振動子の01体が異なることを意味1−て
いる、即ち、撮動部の端部に1で励振電極を配置するこ
とKよシ低いC工f−を得ることができる。
This means that the 01 body of the crystal resonator is different depending on whether the excitation electrode is placed at the end of the vibrating section or not.In other words, the excitation electrode is placed at the end of the imaging section. In other words, it is possible to obtain a C f- that is lower than K.

第5図(A)、(層は撮動部の上下面、全面に励振電極
を配置した場合と部分(振動部の約75優)に配置した
場合のCll1[の分布のヒストグラムで実験値でおる
。第3図(A)Fi励畿電極を部分に配置したときの個
数n=200に対するC1値の分布を示すヒストグラム
で、平均値X=140fffiである。
Figure 5 (A), (The layer is a histogram of the distribution of Cll1 when the excitation electrode is placed on the upper and lower surfaces of the imaging section, the entire surface, and when it is placed on a portion (approximately 75 mm of the vibrating section), with experimental values. FIG. 3(A) is a histogram showing the distribution of C1 values for the number n=200 when Fi excitation electrodes are arranged in sections, and the average value X=140fffi.

これに対して、第5図(F33 /ri 撮動部の上下
面、全面に配置したときの個数n−2ooのときのCl
値の分布を示すヒストグラムで平均値デー84(D)と
約4割CI値を小さくすることができ、全面に励振電極
を配置したときの効果が著しく天衣い事が分かる。第4
図(A)、 (、B)td本発明のG 、Tカット水晶
撮動子9を支持台8にマウントしたときの一実施例で平
面図体)と側面図CB)を示す。支持台8には水晶振動
子9が配置され、振動子の端部12,13で接着剤、る
るいは、半田付は忙よって固着されている。水晶撮動子
の上下面には励振用電極10゜11が配置されている。
On the other hand, Fig. 5 (Cl
The histogram showing the distribution of values shows that the CI value can be reduced by about 40% from the average value data 84 (D), and the effect when the excitation electrodes are placed over the entire surface is remarkable. Fourth
Figures (A) and (,B) show a plan view (body) and a side view (CB) of an embodiment of the T-cut crystal camera 9 of the present invention mounted on a support base 8. A crystal resonator 9 is arranged on the support base 8, and the ends 12 and 13 of the resonator are fixed with adhesive, glue, or solder. Excitation electrodes 10° and 11 are arranged on the upper and lower surfaces of the crystal sensor.

水晶振動子9は支持台8に両端で固着されるので耐衝撃
性に優れた水晶振動子を提供することができ右。側に、
撮動部から支持部に電極を引き出すことによって支持両
端部でのマウント作業が容易となった。伺、水晶撮動子
9は複雑な形状をしているがフォトリングラ7イによっ
て容易に形成することができる。その結果、非常に小型
の水晶撮動子を提供することができるようになった。次
に、温度特性について説明する。温度特性は切断角度が
一定のとき幅Wと藁さLの比RVCよって決まり、R=
リ が0.90〜(199の間で優れた温度特性を示し
、第5図は、R=[L95のときの本発明による一実施
例を示す。
Since the crystal resonator 9 is fixed to the support base 8 at both ends, it is possible to provide a crystal resonator with excellent shock resistance. on the side,
By pulling out the electrodes from the imaging section to the support section, mounting work at both ends of the support became easier. Although the crystal camera element 9 has a complicated shape, it can be easily formed using a photo ring 7I. As a result, it has become possible to provide an extremely small crystal camera. Next, temperature characteristics will be explained. The temperature characteristics are determined by the ratio RVC of the width W and the straw length L when the cutting angle is constant, R=
It shows excellent temperature characteristics when R is between 0.90 and (199), and FIG. 5 shows an example according to the present invention when R=[L95.

以上、述べたように本発明は結合振動子の奎動部の上下
面、全面に励振電極を配置することによって、CI値の
小さい結合振動子を提供することができた。四に、電極
配置を改善することによって、支持端部で強固に固着す
ることができ、耐衝撃性に優れると同時に作業性の各易
な結合振動子を提供することができた。又、辺比、Rの
選択によって温度特性の優れた結合振動子を提供するこ
とができた。それ故、これらの特性を有する撮動子を民
生機器等に応用でき、その工業的価値は著しく大きい。
As described above, the present invention has been able to provide a coupled vibrator with a small CI value by arranging excitation electrodes on the upper and lower surfaces and the entire surface of the moving part of the coupled vibrator. Fourthly, by improving the electrode arrangement, it was possible to firmly fix the structure at the supporting end, thereby providing a coupled vibrator with excellent impact resistance and easy workability. Furthermore, by selecting the side ratio and R, it was possible to provide a coupled resonator with excellent temperature characteristics. Therefore, an image sensor having these characteristics can be applied to consumer equipment, etc., and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

#!1図(A)、 (B)はそれぞれ本発明の結合振動
子の形状と電極の一実施例で、振動部2とその両側に配
置された二つの支持部5とが一体に形成をれ友GTカッ
ト水晶撮動子の例を示す平面図、倶1j面図である。 第2図(A)は本発明の振動部2と支持部3が一体に形
成されていぞGTカット水晶振動子のAの位置−変位l
侍性図でるる。 第2 図4B)は第2図(A)のGTカット水晶振動子
の各位置に対する歪みとの関係を示すグラフである。 第5図(A)は励振電極t−振動部の部分に配置したと
きのCI値のヒストグラムである・ 第5図(B)は励振電極を振動部の上下面、全面に配置
したときのCI値のヒストグラムである。 第4図(A)、((9)はそれぞれ本発明の()Tカッ
ト水晶撮動子9を支持台8にマウントしたときの一実施
例で平面図および側面図である。 第5図は本発明の一実施例に工つ°C得られた温度特性
図である。 1・・・水晶     2・・・振動部5・・・支持部
    4・・・上面 5・・・下面     6.7・・・励振電極以   
上 出願人 株式会社 第二精工会 代理人 弁理士 最 上   務 −10: 第1図(Al 第1図(B〕 第2図(A)       第2図(δ)第3図(A)
       第3図CB)第4図rA1 * 4 @tβフ
#! 1 (A) and (B) respectively show an example of the shape and electrode of the coupled vibrator of the present invention, in which the vibrating part 2 and the two supporting parts 5 disposed on both sides thereof are integrally formed. FIG. 1 is a plan view and a side view showing an example of a GT-cut crystal camera. Figure 2 (A) shows that the vibrating part 2 and the supporting part 3 of the present invention are integrally formed. Position A-displacement l of the GT cut crystal resonator
Samurai drawing Ruru. 2. FIG. 4B) is a graph showing the relationship between distortion and each position of the GT cut crystal resonator of FIG. 2(A). Figure 5 (A) is a histogram of CI values when the excitation electrode is placed on the vibrating part. Figure 5 (B) is the CI value when the excitation electrode is placed on the upper and lower surfaces of the vibrating part. This is a histogram of values. 4(A) and 4(9) are a plan view and a side view, respectively, of an embodiment of the T-cut crystal camera 9 of the present invention mounted on a support base 8. It is a temperature characteristic diagram obtained in °C in one embodiment of the present invention. 1... Crystal 2... Vibrating part 5... Supporting part 4... Top surface 5... Bottom surface 6.7 ...Beyond the excitation electrode
Applicant Daini Seikokai Co., Ltd. Agent Patent Attorney Mogami-10: Figure 1 (Al Figure 1 (B) Figure 2 (A) Figure 2 (δ) Figure 3 (A)
Figure 3 CB) Figure 4 rA1 * 4 @tβfu

Claims (1)

【特許請求の範囲】[Claims] (1)  複数の縦振動モードが結合した結晶水晶振動
子で、前記結合水晶振動子の振動部と支持部が一体に形
成され、前記水晶振動子の励蚕電極は振動部の上下面、
全面に配置されでいることを特徴とする結合水晶振動子
。 (2、特許請求の範囲第(1)項に於いて、前記振動部
の上面の電極は一方の支持部の上面に延びて配電され、
前記振動部の下面の電極は油力の支持部の下1iK延び
て配置されている事を%徴とする結合水晶振動子。
(1) A crystalline quartz resonator in which a plurality of longitudinal vibration modes are coupled, the vibrating part and the supporting part of the coupled crystal resonator are integrally formed, and the excitation electrodes of the crystal resonator are arranged on the upper and lower surfaces of the vibrating part,
A coupled crystal oscillator characterized by being arranged over the entire surface. (2. In claim (1), the electrode on the upper surface of the vibrating section extends to the upper surface of one of the supporting sections for power distribution,
The coupled crystal oscillator is characterized in that the electrode on the lower surface of the vibrating section extends 1km below the hydraulic support section.
JP1771982A 1982-02-05 1982-02-05 Coupled crystal oscillator Pending JPS58136125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1771982A JPS58136125A (en) 1982-02-05 1982-02-05 Coupled crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1771982A JPS58136125A (en) 1982-02-05 1982-02-05 Coupled crystal oscillator

Publications (1)

Publication Number Publication Date
JPS58136125A true JPS58136125A (en) 1983-08-13

Family

ID=11951550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1771982A Pending JPS58136125A (en) 1982-02-05 1982-02-05 Coupled crystal oscillator

Country Status (1)

Country Link
JP (1) JPS58136125A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5129983A (en) * 1991-02-25 1992-07-14 The Charles Stark Draper Laboratory, Inc. Method of fabrication of large area micromechanical devices
US5144184A (en) * 1990-01-26 1992-09-01 The Charles Stark Draper Laboratory, Inc. Micromechanical device with a trimmable resonant frequency structure and method of trimming same
US5203208A (en) * 1991-04-29 1993-04-20 The Charles Stark Draper Laboratory Symmetrical micromechanical gyroscope
US5216490A (en) * 1988-01-13 1993-06-01 Charles Stark Draper Laboratory, Inc. Bridge electrodes for microelectromechanical devices
US5408119A (en) * 1990-10-17 1995-04-18 The Charles Stark Draper Laboratory, Inc. Monolithic micromechanical vibrating string accelerometer with trimmable resonant frequency

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216490A (en) * 1988-01-13 1993-06-01 Charles Stark Draper Laboratory, Inc. Bridge electrodes for microelectromechanical devices
US5144184A (en) * 1990-01-26 1992-09-01 The Charles Stark Draper Laboratory, Inc. Micromechanical device with a trimmable resonant frequency structure and method of trimming same
US5408119A (en) * 1990-10-17 1995-04-18 The Charles Stark Draper Laboratory, Inc. Monolithic micromechanical vibrating string accelerometer with trimmable resonant frequency
US5129983A (en) * 1991-02-25 1992-07-14 The Charles Stark Draper Laboratory, Inc. Method of fabrication of large area micromechanical devices
US5203208A (en) * 1991-04-29 1993-04-20 The Charles Stark Draper Laboratory Symmetrical micromechanical gyroscope

Similar Documents

Publication Publication Date Title
KR100802865B1 (en) Piezoelectric resonator element and piezoelectric device
US8907548B2 (en) Resonator element having a mass portion
KR101219211B1 (en) Vibrating reed, vibrator, oscillator, electronic device and method of adjusting frequency
WO2007088696A1 (en) Piezoelectric oscillator
US5311096A (en) KT cut width-extensional mode quartz crystal resonator
US6362561B1 (en) Piezoelectric vibration device and piezoelectric resonance component
GB2032685A (en) Piezo-electric resonator
US20010009343A1 (en) Piezoelectric resonator
JPS58136125A (en) Coupled crystal oscillator
JP2013042410A (en) Piezoelectric vibrating element, piezoelectric vibrator, electronic device and electronic apparatus
JP3262076B2 (en) Piezoelectric resonator, method for adjusting frequency of piezoelectric resonator, and communication device
JP2639527B2 (en) Structure of twin beam piezoelectric resonator
JP3221609B2 (en) Fixed part structure of ultra-thin plate piezoelectric resonator
JPS6357967B2 (en)
WO2002101923A1 (en) Piezoelectric vibrator and filter using the same
JPH0124368B2 (en)
JP2003273703A (en) Quartz vibrator and its manufacturing method
JPH05243889A (en) Thickness-shear piezoelectric oscillator
JPS6058709A (en) Piezoelectric vibrator
JPH07147526A (en) Vibrator utilizing width spread mode, resonator and resonator component
JP2001237670A (en) Piezoelectric vibrator
JPH0810811B2 (en) Structure of piezoelectric resonator for overtone oscillation
JPH0161251B2 (en)
JP2003046360A (en) Two frequency oscillator and its manufacturing method
JPH08242138A (en) Piezoelectric resonance component