JPS5832448A - Manufacture of complementary mos field-effect transistor - Google Patents
Manufacture of complementary mos field-effect transistorInfo
- Publication number
- JPS5832448A JPS5832448A JP57028445A JP2844582A JPS5832448A JP S5832448 A JPS5832448 A JP S5832448A JP 57028445 A JP57028445 A JP 57028445A JP 2844582 A JP2844582 A JP 2844582A JP S5832448 A JPS5832448 A JP S5832448A
- Authority
- JP
- Japan
- Prior art keywords
- type
- region
- impurities
- effect transistor
- field effect
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、相補型MO8電界効果トランジスタの製造方
法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing complementary MO8 field effect transistors.
相補型MO8電界効果トランジスタは、同一チップ内に
Pチャンネル派とNチャンネル型のそれぞれのMO8電
界効果トランジスタを組み込んだものであシ、−導電型
半導体基板に辷れとは反対導電型を有する領域を半導体
基板表面近傍に形成し、この領域内にP又はNチャンネ
を型の、また−1半導体基板にN又はPチャンネル型の
それぞれのMO8電界効果トランジスタを形成している
。A complementary MO8 field effect transistor is one in which P-channel type and N-channel type MO8 field effect transistors are incorporated in the same chip. is formed near the surface of the semiconductor substrate, and a P or N channel type MO8 field effect transistor is formed in this region, and an N or P channel type MO8 field effect transistor is formed in the -1 semiconductor substrate.
さらにそれぞれのMO8電界効果トランジスタは、その
ソース領域及びドレイン領域とこのソース領域とドレイ
ン領域の間のチャンネル領域は、ある距離をへだててソ
ース領域がよびドレイン領域とは反対導電型の領域いわ
ゆるチャンネルストッノ〆−で囲噛れている。各MO8
電界効果トランジスタのソース・ドレイン間の耐圧は使
用電源電圧以上を必要とするが、多くの場合、各MO8
電界効果トランジスタのソース領域とドレイン領域との
耐圧は十分大きいが、ソース領域あるいはドレイン領域
とチャンネルストッパー領域との耐圧が小さく、各MO
8電界効果トランジスタの耐圧は、ソース領域あるいは
ドレイン領域とチャンネルストラパー領域間の距離で決
められている。従来の相補型MO8電界効果トランジス
タの製造方法では、ソース領域あるいはドレイン領域と
チャンネルストッパー領域間の距離を正確に制御する事
が難しく、各MO8電界効果トランジスタの耐圧は大き
なバラツキを示している。以下に従来の製造方法につい
て図面を用いて説明する。Furthermore, each MO8 field effect transistor has a source region, a drain region, and a channel region between the source region and the drain region. I'm surrounded by NO〆-. Each MO8
The withstand voltage between the source and drain of a field effect transistor needs to be higher than the power supply voltage used, but in many cases, each MO8
The breakdown voltage of the source region and drain region of a field effect transistor is sufficiently high, but the breakdown voltage of the source region or drain region and channel stopper region is small, and each MO
The breakdown voltage of a field effect transistor is determined by the distance between the source region or drain region and the channel strapper region. In the conventional manufacturing method of complementary MO8 field effect transistors, it is difficult to accurately control the distance between the source region or drain region and the channel stopper region, and the breakdown voltage of each MO8 field effect transistor shows large variations. A conventional manufacturing method will be described below with reference to the drawings.
第1図(Jl)に示すように、N(又はP)ffiの半
導体基板1に(P又はN)l!の限られた領域(ウェル
と称する)2を形成し、半導体基板10表面をシリコン
酸化膜8管形成する0次に第1図bK示すようにN(又
はP)IIの半導体基板1内にP(又はN)型チャンネ
ルMO8電界効果トランジスタのソース領域4およびド
レイン領域5とウェル2の表面の一部に新生効果MO8
電界効果トランジスタの発生を防ぐ丸めのP(又はN)
IIのチャンネルストッパー領域6をP(又はN)II
の導電型を与える不純物を拡散して形成する・第1図(
C)にウェル2内にN(又はP)!IIIチャンネルM
O8電界効果トランジスタのソース領域7およびドレイ
ン領域8と半導体基板1の一部にN(又はP)型のチャ
ンネルストッパー領域9を形成する。#I1図(d)に
示すようにゲート絶mni o 、ゲート電極11.1
1’、ソース電極12.12’、ドレイン電極13.1
3’を形成し・Pチャンネル型とNチャンネル型のそれ
ぞれのMO8電界効果トランジスタを形成する。相補f
iMO8電界効果トランジスタにおいては、各MO8電
界効果トランジスタの耐圧は、ソース4.7とドレイン
5,8と間の耐圧は十分大きいかソース4.7およびト
ルイン5.8とチャンネルストッパー6.9とのそれぞ
れの耐圧が小さい場合が多く、このソース又はドレイン
とチャンネルストッパーとの耐圧で決められる場合が多
い、ところが1従来の製造方法においてはP(又はN)
飄の導電型を与える不純物を拡散法やイオン注入法で形
成する場合に、不純物が拡散又は注入されてはならない
部分には、保護マスクとしてシリコン酸化膜や感光性樹
脂薄膜を形成する。さらKP型不純物を拡散又は注入す
る場合とN型不純物を拡散又は注入する場合とては第1
図(b) 、 (e)に示すように別個にソース領域、
ドレイン領域およびチャンネルストッパーs域o拡散さ
れるべき窓を明ける。そのためにソース領域又はドレイ
ン領域とチャンネルストッパー領域間の距離を常に一定
の距離を保つ事が非常Kl!しく、ソース領域又はドレ
イン領域とチャンネル領域間のPN接合の耐圧は大きな
バラツキを示し、使用電源電圧以下になる場合が多い。As shown in FIG. 1 (Jl), on a semiconductor substrate 1 of N (or P)ffi, (P or N)l! As shown in FIG. (or N) type channel MO8 field effect transistor, the source region 4 and drain region 5 and a part of the surface of the well 2 have a new MO8 effect.
Rounded P (or N) to prevent the occurrence of field effect transistors
P (or N) II channel stopper region 6
Figure 1 (
C) N (or P) in well 2! III Channel M
An N (or P) type channel stopper region 9 is formed in the source region 7 and drain region 8 of the O8 field effect transistor and in a part of the semiconductor substrate 1. #I1 As shown in Figure (d), gate electrode 11.1
1', source electrode 12.12', drain electrode 13.1
3' to form P-channel type and N-channel type MO8 field effect transistors. complementary f
In the iMO8 field effect transistor, the breakdown voltage of each MO8 field effect transistor is determined by whether the breakdown voltage between the source 4.7 and the drains 5 and 8 is sufficiently large, or the breakdown voltage between the source 4.7 and the drain 5.8 and the channel stopper 6.9. In many cases, the breakdown voltage of each is small, and is determined by the breakdown voltage of the source or drain and the channel stopper.However, in the conventional manufacturing method, P (or N)
When forming an impurity that imparts a transparent conductivity type by a diffusion method or an ion implantation method, a silicon oxide film or a photosensitive resin thin film is formed as a protective mask in areas where the impurity should not be diffused or implanted. Furthermore, when diffusing or implanting KP-type impurities and when diffusing or implanting N-type impurities, the first
Separately source regions as shown in Figures (b) and (e),
Open a window to be diffused into the drain region and channel stopper region. Therefore, it is very important to always maintain a constant distance between the source or drain region and the channel stopper region! However, the withstand voltage of the PN junction between the source or drain region and the channel region exhibits large variations and is often lower than the power supply voltage used.
本発明は、上記の欠点を除き、MO8電界効果トランジ
スタの耐圧を改善するためになされた亀のであシ、その
特徴とするところ紘、PJ不純物とN!1!不純物が拡
散又はイオン注入されるべき領域の窓を同時に明け、そ
の後P型不純物を拡散又は注入する時にはNil不純物
が拡散又は注入されぬように保護マスクで被い、N型不
純物を拡散又は注入する時にはP型不純物が拡散又は注
入されぬように保護マスクで被う製造方法であシ、ソー
ス領域、ドレイン領域およびチャンネル領域の位置が同
時に形成されるために、ソース領域又はドレイン領域と
チャンネルストッパー領域との間隔が常に一定に保たれ
る丸めに、ソース領域又はドレイン領域とチャンネルス
トッパー領域間の耐圧は所望の値でバラツキの少ない相
補型MO8電界効果トランジスタが得られる。The present invention has been made to eliminate the above-mentioned drawbacks and improve the withstand voltage of MO8 field effect transistors, and its characteristics include Hiro, PJ impurities, and N! 1! At the same time, open a window in the region where impurities are to be diffused or ion-implanted, and then when diffusing or implanting P-type impurities, cover with a protective mask to prevent Nil impurities from being diffused or implanted, and then diffuse or implant N-type impurities. In some cases, the manufacturing method uses a protective mask to prevent P-type impurities from being diffused or implanted, and since the positions of the source region, drain region, and channel region are formed at the same time, the source region or drain region and the channel stopper region are formed at the same time. A complementary MO8 field effect transistor can be obtained in which the breakdown voltage between the source region or drain region and the channel stopper region has a desired value with little variation.
以下、本発明を図面に従って詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.
第2図(a)K示すようにN(又はP)型半導体基板1
にP(又はN)型の限られた領域すなわちウェル2を形
成し、半導体基板1表面にシリコン酸化膜を形成する。As shown in FIG. 2(a)K, an N (or P) type semiconductor substrate 1
A P (or N) type limited region, that is, a well 2, is formed on the surface of the semiconductor substrate 1, and a silicon oxide film is formed on the surface of the semiconductor substrate 1.
次に第2図(b)に示すようにN型導電型を与える不純
物及びP型導電型を示す不純物を半導体基板1及びウェ
ル2の一部に注入するための窓を同時にあける。次に第
2図(C)に示すようにN(又はP)型導電型を与える
不純物を注入する領域のみを感光性樹脂膜14で被う、
感光性樹脂膜14は窓を取シ囲んでいるシリコン酸化膜
曾の表面の少なくとも一部を被い、他の1部は6出して
良い。感光性樹脂膜やシリコン酸化膜かイオン注入に対
して保護マスクとして使用し得る事はすでに公知な事実
である・一定の加速電圧で加速されたイオンに対しては
、追歯な厚さのシリコン酸化展や感光性樹脂膜がイオン
を通過させないイ*4gLとして効果がある事は公知な
事実である。Next, as shown in FIG. 2(b), a window is simultaneously opened for implanting an impurity giving an N-type conductivity type and an impurity giving a P-type conductivity into the semiconductor substrate 1 and a part of the well 2. Next, as shown in FIG. 2(C), only the region where the impurity imparting N (or P) conductivity type is to be implanted is covered with a photosensitive resin film 14.
The photosensitive resin film 14 may cover at least a part of the surface of the silicon oxide film surrounding the window, and may cover the other part. It is already a well-known fact that a photosensitive resin film or a silicon oxide film can be used as a protective mask against ion implantation. - For ions accelerated at a certain acceleration voltage, a silicon oxide film with a large thickness can be used as a protective mask for ion implantation. It is a well-known fact that oxidation and photosensitive resin films are effective in preventing ions from passing through.
次VC第2図(d)に示すようにイオン注入法によfi
P型導電型を与える不純物を注入し、高温にて熱処理す
る事により、限られたP型のソース領域4、ドレイン領
域5、チャンネルストッパー領域6が形成される。次に
第2図(e)K示すようにN型不純物を注入するための
窓以外を感光性樹脂膜14で被う。次に第2図(f)に
示すようにイオン注入法によfiN型の導電型を与える
不純物を注入し、高温にて熱処理する事によル限られた
N型のソース領域7、ドレイン領域8、チャンネルスト
ッパー領域9が形成される。その後、表面全体をシリコ
ン酸化膜で被い、ゲート絶縁膜を熱酸化法で形成し、電
極を形成する事によす相補[MO8電界効果トランジス
タを第2図(−に示すように形成する。このような本発
明の製造方法によって得られる相補型MO8電界効果ト
ランジスタのそれぞれのMO8電界効果トランジスタの
耐圧は、新値の値でバラツキの少ないものが得られる拳
次に本発明の実施例について説明する。As shown in Figure 2(d), the next VC fi
A limited P-type source region 4, drain region 5, and channel stopper region 6 are formed by implanting an impurity that imparts P-type conductivity and performing heat treatment at a high temperature. Next, as shown in FIG. 2(e)K, the area other than the window for implanting the N-type impurity is covered with a photosensitive resin film 14. Next, as shown in FIG. 2(f), an impurity giving fiN type conductivity is implanted by ion implantation, and an N-type source region 7 and drain region are formed by heat treatment at high temperature. 8. A channel stopper region 9 is formed. Thereafter, the entire surface is covered with a silicon oxide film, a gate insulating film is formed by thermal oxidation, and electrodes are formed to form a complementary MO8 field effect transistor as shown in FIG. The breakdown voltage of each MO8 field effect transistor of the complementary MO8 field effect transistor obtained by the manufacturing method of the present invention is a new value with little variation. Next, embodiments of the present invention will be described. do.
第2図(a)において、半導体基板としてN型で不純物
1度が1014〜10”CR−3の半導体基板1の一部
にPi!!!で不純物1度が1011s〜1017cW
L−3の限られた領域すなわちウェル2を半導体基板1
の表面近傍に形成し、シリコン酸化膜を0.5〜1.5
〃形成する。次に第2図(b)において感光性樹脂膜を
用いてP型及びNpのそれぞれの導電型を示す不純物を
注入すべき部分のシリコン酸化膜を取シ除いて窓をあ忙
る。次に第2図(e)において感光性樹脂膜をP型の導
電型を与える不純物が注入されるべき領域の窓以外の半
導体基板1やPウェル2およびシリコン酸化膜80表面
を1〜8μの厚さで被う。In FIG. 2(a), a part of a semiconductor substrate 1 of N type with impurity degree of 1014 to 10" CR-3 is used as a semiconductor substrate, and impurity degree of Pi!!! is contained in a part of the semiconductor substrate 1 of 1011s to 1017cW.
The limited area of L-3, that is, the well 2, is connected to the semiconductor substrate 1.
A silicon oxide film with a thickness of 0.5 to 1.5
〃Form. Next, in FIG. 2(b), a window is prepared by removing the silicon oxide film in the portions where impurities of P type and Np conductivity type are to be implanted using a photosensitive resin film. Next, in FIG. 2(e), the surfaces of the semiconductor substrate 1, the P well 2, and the silicon oxide film 80 other than the window where the impurity that gives the photosensitive resin film a P-type conductivity type should be implanted are 1 to 8 μm thick. Cover with thickness.
次に第2図(d)においてP型の導電型を与える不純物
としてボロンをイオン注入法によシ20〜100Kvで
加速してlX1014〜lXl0(Ill−”の量を注
入する。Next, in FIG. 2(d), boron is implanted as an impurity giving P-type conductivity in an amount of 1X1014 to 1X10 (Ill-") by ion implantation and accelerated at 20 to 100 Kv.
その後、900°C〜1100℃や高温にて10〜80
分間熱処理してボロンを活性化し、P型領域を形成する
。次に第2図0において感光性樹脂膜をNWの導電型を
与える不純物が注入されるべき領域の窓以外の半導体基
板1やPウェル2およびシリコン酸化膜8の表面を1〜
8μの厚さで被う。次に第2図(f)においてNllの
導電型を与える不純物として、リンをイオン注入法によ
シ40〜150にVで加速してI X 10”〜I X
10”Ca1−”の量を注入すル・ソの彼700〜t
ooo℃の高温にて10〜80分間熱処理してリンを活
性化し、N[領域を形成する。After that, 10 to 80℃ at 900℃ to 1100℃ or high temperature.
A heat treatment is performed for a minute to activate the boron and form a P-type region. Next, in FIG. 20, the surfaces of the semiconductor substrate 1, P well 2, and silicon oxide film 8 other than the window in the region where the impurity giving NW conductivity type is to be implanted are
Cover with a thickness of 8μ. Next, in FIG. 2(f), phosphorus is ion-implanted as an impurity giving the conductivity type of Nll, and is accelerated at 40 to 150 V to give IX 10" to IX
Lu Seo's he who injects the amount of 10"Ca1-"700~t
Heat treatment is performed at a high temperature of 00° C. for 10 to 80 minutes to activate phosphorus and form a N region.
その稜900〜1100℃の高温にて熱酸化法あるいは
化学反応による気相成長法にてシリコン酸化膜2を1〜
25μの厚さで基板表面全体を被い、各ソース領域とド
レイン領域との間のチャンネル領域の半導体基板の表面
にゲート絶縁膜を形成し、その後人!勢の金属等で電極
を形成して、第2図(g)のような相補型MO8電界効
果トランジスタを得る0以上のような製造方法において
、不純物をイオン注入法で注入する場合に、半導体基板
表面の限られた窓は半導体基板が外出していても良い。The silicon oxide film 2 is formed by thermal oxidation or chemical reaction vapor phase growth at a high temperature of 900 to 1100°C.
A gate insulating film is formed on the surface of the semiconductor substrate in the channel region between each source region and drain region, covering the entire substrate surface with a thickness of 25 μm, and then is removed! In the manufacturing method described above in which a complementary MO8 field effect transistor as shown in FIG. The semiconductor substrate may be exposed through a limited window on the surface.
例えば200〜xoooXのシリコン酸化膜で被ってか
ら不純物を注入する事4可能である。For example, it is possible to implant impurities after covering with a silicon oxide film of 200 to xooooX.
次に他の実施例について説明する。Next, other embodiments will be described.
第1の実施例の場合にはイオン注入法を用いて行なり九
が、他の実施例としてドープトオキサイド膜を用いる例
がある。第2図(a)〜(b)は同じ工程である。次に
第3図(a)に示すようにボロンを含んだシリコン酸化
j[1Bを1500〜5000Aの厚さで基板表面全体
に気相成長法により形成し、少なくと龜ボpンが拡散さ
れるべき領域の窓にのみ残す。次に第3図(b)に示す
ようK I)ンを含んだシリコン酸化膜16を1500
〜5000Aの厚さで基板表(2)全体に気相成長法に
よシ形成し、少なくともリンが拡散されるべき領域の窓
にのみ残す。In the first embodiment, an ion implantation method is used, but in other embodiments, a doped oxide film is used. FIGS. 2(a) to 2(b) are the same steps. Next, as shown in FIG. 3(a), silicon oxide [1B] containing boron is formed to a thickness of 1500 to 5000 Å over the entire surface of the substrate by vapor phase growth, so that at least the boron is diffused. Leave it only in the window where it should be. Next, as shown in FIG. 3(b), a silicon oxide film 16 containing K I
It is formed to a thickness of ~5000 Å over the entire surface of the substrate (2) by vapor phase epitaxy, leaving at least only the windows in the regions where phosphorus is to be diffused.
次に第3図(C)に示すように1000〜1200IC
の高温にて熱処理し、P型及びNw不純物を半導体基板
内にドープトオキサイド禮よシ拡散させる。Next, as shown in Figure 3 (C), 1000 to 1200 IC
A heat treatment is performed at a high temperature of 100 nm to diffuse P-type and Nw impurities into the semiconductor substrate as doped oxide.
その後、ゲート絶縁膜を形成する王権、電極を形成する
工1を経て、第2図(g)に示すように相補型MO8電
界効果トランジスタを形成する。Thereafter, a complementary MO8 field effect transistor is formed as shown in FIG. 2(g) through step 1 of forming a gate insulating film and step 1 of forming an electrode.
第3の実施例を次に説明する。A third embodiment will be described next.
#!2図(a)〜(b)は、前実施例と同様であシ、菖
2図(b)において半導体基板全面にリンをイオン注入
法で50〜100KeVK加速して1014〜1011
1cIL″″2だけ注入すると、第4図(a)のように
N型半導体領域17が形成される。次に第4図(b)に
示すように第2図()と同様KP型半導体領域となるべ
き領域の半導体基板1上の窓以外を感光性樹脂膜14で
1〜8μの厚さで被う。次に第4図(C)に示すように
ボロンをイオン注入法で20〜gQKeVで加速して1
o1S〜10”CIL−”だけイオン注入し、前記イオ
ン注入で形成され九N型半導体領域17をPM半導体領
域18に変えてソース領域4.ドレイン領域5、チャン
ネルストッパー領域6を形成する。その後注入した不純
物の活性化のための高温熱処理を900〜1100℃に
て10〜30分間行なう工程、ゲート絶縁膜を形成する
工程、電極形成する工程を経て第2図(g)K示すよう
な相補fiMO8電界効果トランジスタを得る。この第
3の実施例は第1の実施例よシ感光性樹脂膜′を□形成
する工程が少なく、製造工程の短縮に効果がある・
上記実施例の他に1例えば−導電型を与える不純物をシ
リコン酸化膜中に含ませて所要の部分に形成する工程、
他の導電型を与える不純物をイオン注入法で形成する工
程、注入した不純物を活性化する丸めの高温熱処理を9
00〜1100’(:!で30〜60分間行ない、前記
不純物を含んだシリコン酸化膜よシ半導体基板内に拡散
させ、各ソース領域、ドレイン領域及びチャンネル領域
を形成する工程を有する相補型MO8電界効果トランジ
スタの製造方法もある。#! Figures 2(a) and 2(b) are similar to the previous example, but in Figure 2(b), phosphorus is accelerated by 50 to 100 KeVK by ion implantation to the entire surface of the semiconductor substrate to 1014 to 1011
When only 1cIL''2 is implanted, an N-type semiconductor region 17 is formed as shown in FIG. 4(a). Next, as shown in FIG. 4(b), the area other than the window on the semiconductor substrate 1 in the region to be the KP type semiconductor region is covered with a photosensitive resin film 14 with a thickness of 1 to 8 μm, similar to FIG. 2(). cormorant. Next, as shown in Figure 4(C), boron was accelerated at 20~gQKeV using the ion implantation method.
Ions are implanted by o1S~10"CIL-", and the nine N-type semiconductor regions 17 formed by the ion implantation are changed into PM semiconductor regions 18, and the source regions 4. A drain region 5 and a channel stopper region 6 are formed. After that, a high-temperature heat treatment is performed at 900 to 1100°C for 10 to 30 minutes to activate the implanted impurities, a gate insulating film is formed, and an electrode is formed. A complementary fiMO8 field effect transistor is obtained. This third embodiment has fewer steps for forming the photosensitive resin film than the first embodiment, and is effective in shortening the manufacturing process. a step of including it in a silicon oxide film and forming it in a required part,
A step of forming an impurity that gives another conductivity type by ion implantation, and a rounding high temperature heat treatment to activate the implanted impurity.
00 to 1100' (:!) for 30 to 60 minutes to diffuse the impurity-containing silicon oxide film into the semiconductor substrate to form each source region, drain region, and channel region. There are also methods for manufacturing effect transistors.
以上のような本発明による製造方法によって得られる相
補型MO8電界効果トランジスタは、耐圧が所望の値で
バラツキの少ない特徴の本のが得られ、また工程の短縮
も可能であり、歩留の良いものが得られる。さらに本発
明は、単体素子ばかシでなく集積回路の11!素として
用いられる事は言うに及ばない。The complementary MO8 field effect transistor obtained by the manufacturing method according to the present invention as described above has the characteristics of a desired breakdown voltage with little variation, can shorten the process, and has a high yield. You can get something. Furthermore, the present invention is not just a single element, but an integrated circuit. Needless to say, it is used as a raw material.
図面の簡単な説明 □
第1図(a) s (b) 、(c)及び(d)は、従
来の製造方法による製造工程での断面図であシ、第2図
(a) 、 (b) 。Brief explanation of the drawings □ Figures 1 (a), (b), (c) and (d) are cross-sectional views of the manufacturing process according to the conventional manufacturing method, and Figures 2 (a) and (b). ).
(c) t (d) 、 (e) 、 (f)及び(g
)は、本発明による製造工程での断面図であり、第3図
(a) l (b)及び(C)、114図(a) 、
(b)及び(C)は実施例の製造工程での断面図であシ
、1・・・・・・−導電型半導体基板、2・・・・・・
該基板とは逆導1[の限られた領域、3・・・・・・シ
リコン酸化膜、4.7・・・・・・ソース領域、5.8
・・・・・・ドレイン領域、6,9・・・・・・チャン
ネルストッパー領域、lO・・・・・・ゲート絶縁膜、
11.11’・・・・・・ゲート電極、12 、12’
・・・・・・ソース電極、13.13’・・・・・ドレ
イン電極、14・・・・・・感光性樹脂膜、15.16
・・・・・・不純物を含んだシリコン酸化膜、17・・
・・・N型領域、18・・・・・・P型領域である。(c) t (d) , (e) , (f) and (g
) are cross-sectional views during the manufacturing process according to the present invention;
(b) and (C) are cross-sectional views in the manufacturing process of the example, 1... - conductive type semiconductor substrate, 2...
A limited region of conductivity 1 [which is opposite to the substrate, 3...Silicon oxide film, 4.7...Source region, 5.8
......Drain region, 6,9...Channel stopper region, lO...Gate insulating film,
11.11'...Gate electrode, 12, 12'
...... Source electrode, 13.13'... Drain electrode, 14... Photosensitive resin film, 15.16
...Silicon oxide film containing impurities, 17...
. . . N type region, 18 . . . P type region.
7′
図面の浄書(8容ξこ変更なし)
ス /図
z Z 図
第 2図
Z 4 図
6、補正の対象
(1)明細書全文
(2)図面
(3)代理権を証明する書面
7、 補正の内容
(1)明細書全文および図面の浄書(内容に変更なし)
(2)印鑑証明書によシ昭和50年特許願第23182
号の出願人と特許法第44条第1項の規定によシ出願し
た本件の出願人が相違ない仁とを証明致します。7' Engraving of drawings (8 dimensions ξ no changes) S / Figure Z Z Figure 2 Figure Z 4 Figure 6, subject of amendment (1) Full text of specification (2) Drawings (3) Document certifying authority of agency 7 , Contents of the amendment (1) Engraving of the entire specification and drawings (no change in content) (2) Seal registration certificate 1975 Patent Application No. 23182
We hereby certify that the applicant of this patent is the same as the applicant of this case who filed the application pursuant to the provisions of Article 44, Paragraph 1 of the Patent Law.
& 添付書類 (1)明細書全文(浄書) (2)図 面 (浄書) (3)印鑑証明書 □ −222=& Attached document (1) Full text of specification (engraved) (2) Figure surface (engraving) (3) Seal certificate □ −222=
Claims (1)
トッパー領域とNチャンネルトランジスタのソースおよ
びドレイン領域とに1導電型の不純物を同時に導入する
第1の工程と、Nチャンネルトランジスタのチャンネル
ストッパー1[、!:Pチャンネルトランジスタのソー
スおよびドレイン領域とに他の導電−の不純物を同時に
導入する第2の工程とを含むことを特徴とする相補11
MO8電界効果トランジスタの製造方法。A first step of simultaneously introducing impurities of one conductivity type into the semiconductor substrate into the channel stopper region of the P-channel transistor and the source and drain regions of the N-channel transistor, and the channel stopper 1 of the N-channel transistor [,! Complementary 11 characterized in that it includes a second step of simultaneously introducing other conductive impurities into the source and drain regions of the P-channel transistor.
A method for manufacturing an MO8 field effect transistor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57028445A JPS5832448A (en) | 1982-02-24 | 1982-02-24 | Manufacture of complementary mos field-effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57028445A JPS5832448A (en) | 1982-02-24 | 1982-02-24 | Manufacture of complementary mos field-effect transistor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP50023182A Division JPS5197388A (en) | 1975-02-24 | 1975-02-24 | Sohogata mos denkaikokatoranjisutanoseizohoho |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5832448A true JPS5832448A (en) | 1983-02-25 |
JPS6359547B2 JPS6359547B2 (en) | 1988-11-21 |
Family
ID=12248868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57028445A Granted JPS5832448A (en) | 1982-02-24 | 1982-02-24 | Manufacture of complementary mos field-effect transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5832448A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60100463A (en) * | 1984-10-01 | 1985-06-04 | Nec Corp | Manufacture of semiconductor integrated circuit |
JPS61150363A (en) * | 1984-12-25 | 1986-07-09 | Sony Corp | Manufacture of semiconductor device |
JPS61156763A (en) * | 1984-12-27 | 1986-07-16 | Sony Corp | Manufacture of semiconductor device |
-
1982
- 1982-02-24 JP JP57028445A patent/JPS5832448A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60100463A (en) * | 1984-10-01 | 1985-06-04 | Nec Corp | Manufacture of semiconductor integrated circuit |
JPS61150363A (en) * | 1984-12-25 | 1986-07-09 | Sony Corp | Manufacture of semiconductor device |
JPS61156763A (en) * | 1984-12-27 | 1986-07-16 | Sony Corp | Manufacture of semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JPS6359547B2 (en) | 1988-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3898105A (en) | Method for making FET circuits | |
JPS61501948A (en) | CMOS integrated circuit techniques | |
JPS63305546A (en) | Manufacture of semiconductor integrated circuit device | |
JPS5832448A (en) | Manufacture of complementary mos field-effect transistor | |
JPS61263274A (en) | Manufacture of semiconductor device | |
KR920007200A (en) | BiCMOS field effect transistor and its manufacturing method | |
JPS63278265A (en) | Manufacture of semiconductor bicmos device | |
JPS61156858A (en) | Manufacture of cmos fet | |
JPS63302562A (en) | Manufacture of mos type semiconductor device | |
JPS601862A (en) | Manufacture of semiconductor device | |
JP2000164727A (en) | Manufacture of semiconductor device | |
JPS608623B2 (en) | Method for manufacturing semiconductor devices | |
JPH01220438A (en) | Manufacture of semiconductor device | |
JPS60253217A (en) | Manufacture of semiconductor device | |
JPH11121394A (en) | Method of manufacturing semiconductor device | |
JPS62109364A (en) | Manufacture of semiconductor device | |
JPS6043028B2 (en) | Manufacturing method of semiconductor device | |
JPS5837697B2 (en) | MIS | |
JPS6281051A (en) | Semiconductor device and manufacture thereof | |
JPH04215442A (en) | Production of semiconductor device | |
JPS5931225B2 (en) | Method of manufacturing integrated circuit device | |
JPH045832A (en) | Mis transistor | |
JPH1050859A (en) | Manufacture of semiconductor integrated circuit | |
JPS63232456A (en) | Semiconductor device | |
JPS61120460A (en) | Manufacture of semicondcutor device |