JPS5827301B2 - Supercooling prevention material and its manufacturing method - Google Patents

Supercooling prevention material and its manufacturing method

Info

Publication number
JPS5827301B2
JPS5827301B2 JP56038969A JP3896981A JPS5827301B2 JP S5827301 B2 JPS5827301 B2 JP S5827301B2 JP 56038969 A JP56038969 A JP 56038969A JP 3896981 A JP3896981 A JP 3896981A JP S5827301 B2 JPS5827301 B2 JP S5827301B2
Authority
JP
Japan
Prior art keywords
supercooling
heat storage
supercooling prevention
storage material
prevention
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56038969A
Other languages
Japanese (ja)
Other versions
JPS57153079A (en
Inventor
凉市 山本
将市 石原
隆博 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56038969A priority Critical patent/JPS5827301B2/en
Priority to US06/315,456 priority patent/US4381245A/en
Publication of JPS57153079A publication Critical patent/JPS57153079A/en
Publication of JPS5827301B2 publication Critical patent/JPS5827301B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、融解潜熱を利用した蓄熱材に対する過冷却防
止材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a supercooling prevention material for a heat storage material using latent heat of fusion.

たとえばNa2SO4・10H20などのような水化物
を蓄熱材として用い、凝固時にその潜熱を有効に取り出
すためには、融解・凝固を順調に行なわせる必要がある
For example, in order to use a hydrate such as Na2SO4.10H20 as a heat storage material and effectively extract its latent heat during solidification, it is necessary to melt and solidify smoothly.

このため過冷却防止用基材が少量蓄熱材に加えられるの
が常である。
For this reason, a small amount of a supercooling prevention base material is usually added to the heat storage material.

ここで過冷却防止用基材とは、蓄熱材中にあって、溶解
し去ることなく液体状態の蓄熱材がその融点よりわずか
でも冷却されたときにただちに不均質核発生作用を発揮
して、前記蓄熱材の微小固体をその表面で生成し、固化
を促進する作用を有するものである。
Here, the supercooling prevention base material is a material that is present in the heat storage material and immediately exerts a heterogeneous nucleation effect when the heat storage material that is in a liquid state without melting away is cooled even slightly below its melting point. It has the effect of generating fine solids of the heat storage material on its surface and promoting solidification.

それで過冷却状態になりやすい融解潜熱を利用する蓄熱
材に過冷却防止用基材を加えるのであるが、最初は液体
状態の蓄熱材とうまくなじまないため、過冷却防止の機
能が働かない場合が多い。
Therefore, a supercooling prevention base material is added to the heat storage material that uses the latent heat of fusion, which tends to become supercooled, but it does not mix well with the liquid heat storage material at first, so the supercooling prevention function may not work. many.

そのような過冷却防止用基材を含んだ蓄熱材も。There are also heat storage materials containing such supercooling prevention substrates.

1度なんらかの方法で凝固させると、過冷却防止用基材
の表面に、蓄熱材の固相が析出して、過冷却防止用基材
と蓄熱材がよくなじむことになり、以後ずつと安定して
融解と凝固を繰り返す。
Once solidified by some method, a solid phase of the heat storage material will precipitate on the surface of the supercooling prevention base material, and the supercooling prevention base material and heat storage material will become compatible, and will become stable from then on. Repeat melting and solidification.

たとえば蓄熱材としてNaCH3COO・3H20を、
過冷却防止用基材としてN a 4 P 207・10
H20をそれぞれ用いた場合など、第1回目の凝固時に
なかなか過冷却が破れず、室温まで冷却されることがし
ばしばある。
For example, NaCH3COO・3H20 is used as a heat storage material.
N a 4 P 207.10 as a base material for preventing supercooling
In cases where H20 is used, supercooling is often difficult to break during the first solidification, and the mixture is often cooled to room temperature.

この過冷却状態にあるN a CHs COO’3H2
0とNa4P2O7・10H20の混合物も、1度なん
らかの方法で凝固させてやると以後安定して融解および
凝固を繰り返す。
N a CHs COO'3H2 in this supercooled state
A mixture of 0 and Na4P2O7.10H20 will also stably repeat melting and solidification once solidified by some method.

そのためこのような蓄熱材と過冷却防止用基材を実際蓄
熱槽中に収納して用いる場合、蓄熱材と過冷却防止用基
材の混合物を一度、蓄熱材の融解する温度まで加熱し、
再び冷却して過冷却がうまく破れるかどうか確認し、過
冷却が破れないときにはなんらかの方法で過冷却を破っ
て凝固させなければならない。
Therefore, when such a heat storage material and a base material for preventing supercooling are actually stored and used in a heat storage tank, the mixture of the heat storage material and the base material for preventing supercooling is heated once to the temperature at which the heat storage material melts.
Cool it again to see if the supercooling can be broken successfully, and if the supercooling cannot be broken, you must break the supercooling in some way and make it solidify.

そのことは、多くの時間と労力を必要とし、実用上から
好ましいことではない。
This requires a lot of time and effort, and is not desirable from a practical standpoint.

また、最近、蓄熱材を空調用装置などに利用する際に、
凝固挙動を自由にコントロールすることが要求されるよ
うになってきた。
Recently, when using heat storage materials in air conditioning equipment,
It has become necessary to freely control coagulation behavior.

そのため、過冷却防止用基材として単結晶が用いられよ
うとしている。
Therefore, single crystals are being used as a base material for preventing supercooling.

しかし、単結晶には結晶表面にあまり転位などの不均一
核生成の原因となる部分がなく、シかも、表面に出てい
る面がかぎられているため、その過冷却防止の機能は微
小粉末のそれと比較して弱くなるのが常である。
However, single crystals do not have many parts on the crystal surface that can cause heterogeneous nucleation such as dislocations, and the surface that is exposed to the surface is limited, so the supercooling prevention function is It is usually weaker than that of .

本発明は、過冷却防止用基材の表面の少なくとも一部分
を、融触潜熱を利用する蓄熱材で被覆することによって
、上述の問題点を解決したものである。
The present invention solves the above problems by coating at least a portion of the surface of the supercooling prevention substrate with a heat storage material that utilizes latent heat of fusion.

すなわち、この過冷却防止材を用いることにより、融解
潜熱を利用した蓄熱材が、過冷却がほとんどなく第1回
目から確実に凝固する。
That is, by using this supercooling prevention material, the heat storage material using the latent heat of fusion is reliably solidified from the first time with almost no supercooling.

さらに、過冷却防止用基材として単結晶を用いることに
なり、蓄熱材の凝固挙動のコントロールを可能にする過
冷却防止材を提供することができる。
Furthermore, since a single crystal is used as the base material for preventing supercooling, it is possible to provide a material for preventing supercooling that makes it possible to control the solidification behavior of the heat storage material.

本発明の過冷却防止材が特に有効な蓄熱材としては、融
解潜熱が太きいけれども過冷却が大きいために適当な過
冷却防止用基材を必要とする無機水化物がある。
Heat storage materials for which the supercooling prevention material of the present invention is particularly effective include inorganic hydrates that have a large latent heat of fusion but are subject to large supercooling and therefore require a suitable supercooling prevention substrate.

このような過冷却防止材を製造するために、本発明では
、蓄熱材と過冷却防止用基材の混合物を前記蓄熱材の融
解温度以上に加熱してから、過冷却防止用基材を蓄熱材
の融液より取り出して冷却することにより、過冷却防止
用基材の表面に前記蓄熱材を凝固付着させている。
In order to manufacture such a supercooling prevention material, in the present invention, a mixture of a heat storage material and a supercooling prevention base material is heated to a temperature higher than the melting temperature of the heat storage material, and then the supercooling prevention base material is heated to a temperature equal to or higher than the melting temperature of the heat storage material. By taking the heat storage material out of the melt and cooling it, the heat storage material is solidified and adhered to the surface of the supercooling prevention base material.

本発明について蓄熱材としてNaCH3α紛・3H20
(融点58℃)、過冷却防止用基材としてNa4P2O
7・10H20を用いる場合を例に説明する。
About the present invention NaCH3α powder/3H20 as a heat storage material
(melting point 58℃), Na4P2O as a base material to prevent supercooling
The case where 7.10H20 is used will be explained as an example.

NaCH3COO+:3I(2o 100重量部をガラ
ス製容器に収納し、その容器をウォーターバス中に入れ
、80’Cに加熱して、NaCH3COO”3H20す
べてを融解した。
100 parts by weight of NaCH3COO+:3I(2o) was placed in a glass container and the container was placed in a water bath and heated to 80'C to melt all of the NaCH3COO''3H20.

そして、その中にNa4P20710H20の結晶50
重量部を加えて、混合した。
And in it there are 50 crystals of Na4P20710H20.
Parts by weight were added and mixed.

N a4 P 207・■0H20の結晶は容器下部に
沈積した。
Crystals of Na4P207.■0H20 were deposited at the bottom of the container.

その後適当な網等を用いてNa4P2O7・10H20
の結晶粒をすくい取った。
After that, using a suitable net etc., Na4P2O7・10H20
The crystal grains were scooped out.

そのとき、Na4P2O7・10H20結晶表面にN
a CH3COO” 3H20融液が付着した。
At that time, N on the Na4P2O7・10H20 crystal surface
a CH3COO” 3H20 melt was attached.

それを室温でしばらく放置しておくと、表面のNaCH
3COO・3H20は凝固して、Na4P2O7”10
H20の結晶表面がNaCH3COO・3H20結晶で
覆われた過冷却防止材が得られた。
If you leave it for a while at room temperature, the NaCH on the surface
3COO・3H20 solidifies and becomes Na4P2O7”10
A supercooling prevention material in which the H20 crystal surface was covered with NaCH3COO.3H20 crystals was obtained.

本発明の過冷却防止材の動作を、前述の製造方法と同様
に、蓄熱材として、NaCH3C0()3H20゜過冷
却防止用基材としてN a 4 P 207・10H2
0を用いた場合について説明する。
The operation of the supercooling prevention material of the present invention was carried out in the same manner as in the above-mentioned manufacturing method.
The case where 0 is used will be explained.

前記製造方法で得られた過冷却防止材o、i重量部をN
aCH3COO・3H20100重量部と混合し、70
℃まで加熱して、NaCH3COO・3H20を融解し
た。
The supercooling prevention material o and i obtained by the above manufacturing method are
Mix with 100 parts by weight of aCH3COO・3H20, 70
Heated to ℃ to melt NaCH3COO.3H20.

ところでこの過冷却防止材は内部がNa4P2O7’
10H20の結晶で外部がNaa−(3CO0・3H2
0よりなるため、当然外部のN a CH3COO’3
H20は同時に融解すると考えられる。
By the way, the inside of this supercooling prevention material is Na4P2O7'
10H20 crystal with external Naa-(3CO0・3H2
0, so naturally the external N a CH3COO'3
It is believed that H20 melts at the same time.

そして再び冷却された場合Na4P2O7・10H20
結晶表面で不均一核生成がおこり、過冷却を防止するも
のと考えられる。
And when cooled again, Na4P2O7・10H20
It is thought that heterogeneous nucleation occurs on the crystal surface and prevents supercooling.

ところでここで用いたNa4P20710H20の結晶
は一度表面上にN a CH3COO”3H20の結晶
を形成したことがあるため、全熱NaCHCO0・3H
20の結晶を粒子表面で形成したことのないNa4P2
O7・10H20に比較してはるかにすぐれた過冷却防
止機能を有する。
By the way, the crystal of Na4P20710H20 used here has once formed a crystal of Na CH3COO"3H20 on the surface, so the total heat of NaCHCO0.3H
Na4P2 that has never formed 20 crystals on the particle surface
It has a far superior supercooling prevention function compared to O7/10H20.

この原因については現在までのところ明らかではないが
、一度表面でNaCH3COO・3H20の結晶を形成
したN a4p2o7 + 10H20粒子表面には、
NaCH3α)O−3H20が再び融解してしまった後
もなんらかの痕跡が残り、それが有効にNaCH3CO
O・3H20の結晶化に作用するものと考えられる。
Although the cause of this is not clear to date, on the surface of the Na4p2o7 + 10H20 particles that once formed NaCH3COO・3H20 crystals on the surface,
Even after NaCH3α)O-3H20 has melted again, some trace remains, which effectively converts NaCH3CO
It is thought that it acts on the crystallization of O.3H20.

ところで本発明の過冷却防止材は、第1回目から確実に
過冷却防止機能を有すると言う特徴の外に、過冷却防止
用基材として過冷却防止機能の劣った単結晶を用いた場
合にも過冷却防止機能の優秀な過冷却防止材となり、そ
の過冷却防止材の蓄熱装置中での設置位置を工夫するこ
とによって、蓄熱材の凝固挙動をコントロールすること
が可能となるという特徴も有する。
By the way, the supercooling prevention material of the present invention has the feature that it reliably has a supercooling prevention function from the first use. It also has the feature that it is an excellent supercooling prevention material with an excellent supercooling prevention function, and it is possible to control the solidification behavior of the heat storage material by adjusting the installation position of the supercooling prevention material in the heat storage device. .

また、融解潜熱を利用した蓄熱材としてCaC1□・6
H,20を、またその過冷却防止用基材としてNaCl
、KCl等をそれぞれ用いても、第1回目の凝固時にな
かなか過冷却が破れない。
In addition, CaC1□・6 is used as a heat storage material using latent heat of fusion.
H,20, and NaCl as a base material for preventing supercooling.
, KCl, etc., supercooling does not easily break during the first solidification.

しかし、本発明の製造方法によって得られた、NaC1
またはKCIの結晶粒子表面の一部分または全部をCa
Cl 2・6H20結晶で被覆した過冷却防止材を用
いると、第1回目から確実に過冷却が破れ、それ以後も
有効に過冷却防止効果が得られる。
However, NaC1 obtained by the production method of the present invention
Or Ca
When a supercooling prevention material coated with Cl 2 .6H20 crystals is used, supercooling is reliably broken from the first time, and an effective supercooling prevention effect can be obtained thereafter.

蓄熱材として他にNa2S2O3・5H20やNa2H
PO4・12H20のような融解潜熱が大きいけれども
過冷却の大きい無機水化物と、それぞれの過冷却防止用
基材とからなるものに、本発明を適用することによって
第1回目から確実に過冷却が破れ、しかも、過冷却を防
止するための基材に単結晶を用いることにより、その過
冷却防止材の設置位置を工夫することにより、凝固挙動
のコントロールが可能になった。
Other heat storage materials include Na2S2O3・5H20 and Na2H.
By applying the present invention to an inorganic hydrate such as PO4.12H20, which has a large latent heat of fusion but is highly supercooled, and a base material for preventing supercooling, supercooling can be ensured from the first time. By using a single crystal as the base material to prevent tearing and supercooling, it has become possible to control the solidification behavior by devising the installation position of the supercooling prevention material.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

実施例 l NaCH3COO・3H20100重量部を70℃に加
熱してすべて融解した。
Example 1 100 parts by weight of NaCH3COO.3H20 was heated to 70°C to completely melt it.

そのNaCH3C00・3H20の融液中に2重量部の
Na4P2O7・10H20の単結晶を1分間入れ、そ
の後取り出して、室温中に放置した。
Two parts by weight of a single crystal of Na4P2O7.10H20 was put into the melt of NaCH3C00.3H20 for 1 minute, and then taken out and left at room temperature.

これにより、Na4P2O7・10H20単結晶表面に
付着したN a CHsC00・3H20が凝固して、
過冷却防止材が得られた。
As a result, Na CHsC00 3H20 attached to the surface of the Na4P2O7 10H20 single crystal solidifies,
A supercooling prevention material was obtained.

この過冷却防止材2.5重量部をNaCH3COO・3
H201000重量部中に入れ、加熱および冷却を繰り
返して、融解および凝固の挙動を観測した。
2.5 parts by weight of this supercooling prevention material was added to NaCH3COO.3
The mixture was placed in 1,000 parts by weight of H20, heated and cooled repeatedly, and the melting and solidification behavior was observed.

NaCH3COO・3H20は第1回の凝固時からほと
んど過冷却することなく過冷却防止材表面から確実に結
晶化していき、著しい過冷却防止機能を示した。
NaCH3COO.3H20 steadily crystallized from the surface of the supercooling prevention material with almost no supercooling from the first solidification, and exhibited a remarkable supercooling prevention function.

さらに、蓄熱装置中での過冷却防止材の設置位置を工夫
することにより、凝固の挙動も十分コントロールできる
ことが確認された。
Furthermore, it was confirmed that the solidification behavior could be sufficiently controlled by adjusting the location of the supercooling prevention material in the heat storage device.

実施例 2 CaC1□・6H20100重量部を40℃に加熱して
すべて融解した。
Example 2 100 parts by weight of CaC1□.6H20 was heated to 40°C to completely melt it.

そのCaCl2・6H20融液中にNaCl 2重量部
の単結晶を30秒間入れ、その後取り出して、5℃の冷
蔵庫中に置き、NaC1単結晶表面に付着したCaCl
2・6H20を凝固させて、過冷却防止材を得た。
A single crystal containing 2 parts by weight of NaCl was placed in the CaCl2.6H20 melt for 30 seconds, and then taken out and placed in a refrigerator at 5°C.
2.6H20 was solidified to obtain a supercooling prevention material.

この過冷却防止材5重量部を、CaCl2” 6H20
100重量部中に入れ、加熱および冷却を繰り返して融
解および凝固の挙動を観察した。
5 parts by weight of this supercooling prevention material was added to CaCl2" 6H20
The mixture was placed in 100 parts by weight and heated and cooled repeatedly to observe melting and solidification behavior.

CaCl2・6H20は、第1回目の凝固時からほとん
ど過冷却することなく、過冷却防止材表面から確実に結
晶化し、著しい過冷却防止機能を示した。
CaCl2.6H20 was reliably crystallized from the surface of the supercooling prevention material with almost no supercooling from the first solidification, and exhibited a remarkable supercooling prevention function.

さらに、蓄熱装置中での過冷却防止材の設置位置を工夫
することにより、凝固挙動も十分コントロールできるこ
とを確認した。
Furthermore, it was confirmed that the solidification behavior could be sufficiently controlled by adjusting the location of the supercooling prevention material in the heat storage device.

前述したように、本発明の過冷却防止材は、それぞれ所
定の蓄熱体に対して、第1回目の冷却時から確実に過冷
却を防止し、それ以後も安定して過冷却をほとんど起こ
さず蓄熱材を凝固させるという特徴を有し、従来過冷却
防止機能が劣ると考えられていた単結晶も、粉砕した微
粉末と同じかそれ以上の過冷却防止の機能を有すること
になり、それによって、蓄熱材の凝固のコントロールが
可能となると言う特徴を有している。
As mentioned above, the supercooling prevention material of the present invention reliably prevents supercooling from the first cooling of each predetermined heat storage body, and thereafter stably prevents supercooling from occurring. Single crystal, which has the characteristic of solidifying heat storage materials and was previously thought to have an inferior supercooling prevention function, now has the same or better supercooling prevention function than pulverized fine powder, and as a result, , it has the feature that it is possible to control the solidification of the heat storage material.

また、本発明の過冷却防止材に適用可能な蓄熱材と過冷
却防止用基材の組合せは、これまで述べてきた例に限定
されるものでないことは勿論である。
Moreover, it goes without saying that the combination of the heat storage material and the supercooling prevention base material that can be applied to the supercooling prevention material of the present invention is not limited to the examples described above.

本発明の過冷却防止材は、過冷却防止用基材表面に、蓄
熱材を被覆した構造であって、過冷却防止用基材と蓄熱
材の格別の制限がないことから、広い温度範囲の潜熱型
蓄熱材の過冷却防止に適用出来、さらにその製造方法も
容易であることから、潜熱型蓄熱材を応用した蓄熱シス
テムの実用化に与える影響は大きい。
The supercooling prevention material of the present invention has a structure in which the surface of the supercooling prevention base material is coated with a heat storage material, and since there are no particular restrictions on the supercooling prevention base material and the heat storage material, it can be used in a wide temperature range. Since it can be applied to the prevention of supercooling of latent heat type heat storage materials and the manufacturing method thereof is easy, it will have a great influence on the practical application of heat storage systems to which latent heat type heat storage materials are applied.

そして、本発明の製造方法によれば、上述のごとき過冷
却防止材を容易に得ることができる。
According to the manufacturing method of the present invention, the above-mentioned supercooling prevention material can be easily obtained.

Claims (1)

【特許請求の範囲】 1 融解潜熱を利用する蓄熱材で過冷却防止用基材の表
面の少なくとも一部分を被覆してなることを特徴とする
過冷却防止材。 2 蓄熱材として酢酸ナトリウム・3水塩(N a C
Hs COo ・3H20)を、また過冷却防止用基材
としてピロリン酸ナトリウム・10水塩(Na4P20
7+10H20)をそれぞれ用いることを特徴とする特
許請求の範囲第1項記載の過冷却防止材。 3 融解潜熱を利用する蓄熱材と過冷却防止用基材との
混合物の温度を前記蓄熱材の融解温度以上とし、前記過
冷却防止用基材を前記蓄熱材の解液より取り出して冷却
し、前記過冷却防止用基材の表面に前記蓄熱材を凝固付
着させることを特徴とする過冷却防止材の製造方法。
[Scope of Claims] 1. A supercooling prevention material, characterized in that at least a portion of the surface of a supercooling prevention base material is coated with a heat storage material that utilizes latent heat of fusion. 2 Sodium acetate trihydrate (N a C
Hs COo ・3H20) and sodium pyrophosphate decahydrate (Na4P20) as a base material for preventing supercooling.
7+10H20), respectively. The supercooling prevention material according to claim 1. 3. The temperature of a mixture of a heat storage material that uses latent heat of fusion and a supercooling prevention base material is set to be higher than the melting temperature of the heat storage material, and the supercooling prevention base material is taken out from the solution of the heat storage material and cooled. A method for producing a supercooling prevention material, comprising solidifying and adhering the heat storage material to the surface of the supercooling prevention substrate.
JP56038969A 1980-10-27 1981-03-17 Supercooling prevention material and its manufacturing method Expired JPS5827301B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP56038969A JPS5827301B2 (en) 1981-03-17 1981-03-17 Supercooling prevention material and its manufacturing method
US06/315,456 US4381245A (en) 1980-10-27 1981-10-27 Supercooling inhibitor and process for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56038969A JPS5827301B2 (en) 1981-03-17 1981-03-17 Supercooling prevention material and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS57153079A JPS57153079A (en) 1982-09-21
JPS5827301B2 true JPS5827301B2 (en) 1983-06-08

Family

ID=12539980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56038969A Expired JPS5827301B2 (en) 1980-10-27 1981-03-17 Supercooling prevention material and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5827301B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562501U (en) * 1992-01-21 1993-08-20 美智子 湊 Simple pressed flower making equipment
JPH10237434A (en) * 1997-02-28 1998-09-08 Sumika Plast Kk Production of heat storage material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5899696A (en) * 1981-12-07 1983-06-14 Matsushita Electric Ind Co Ltd Heat-accumulating material
JPS59138290A (en) * 1983-01-28 1984-08-08 Nok Corp Heat-accumulation material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562501U (en) * 1992-01-21 1993-08-20 美智子 湊 Simple pressed flower making equipment
JPH10237434A (en) * 1997-02-28 1998-09-08 Sumika Plast Kk Production of heat storage material

Also Published As

Publication number Publication date
JPS57153079A (en) 1982-09-21

Similar Documents

Publication Publication Date Title
CA2164504A1 (en) Process for manufacturing an antiperspirant stick
CA1179117A (en) Heat storage material
US4331556A (en) Heat storage material
JPS5827301B2 (en) Supercooling prevention material and its manufacturing method
JPH0151515B2 (en)
JPH02127493A (en) Heat storage material
JP2003034785A (en) Method for manufacturing thermal storage medium
JPS6114283A (en) Thermal energy storage material composition
US4381245A (en) Supercooling inhibitor and process for preparing the same
JPS5922986A (en) Heat-accumulating material
GB2055054A (en) Combination of chemicals and method for generating heat at a controlled temperature and a hot pack containing such a combination
JP4252118B2 (en) Method for producing supercooling inhibitor of salt hydrate
JP2002030280A (en) Method for producing granule of agent for preventing supercooling of salt hydrate
JPS617379A (en) Production of thermal energy storage element
JP3774530B2 (en) Manufacturing method of heat storage material
JPH021194B2 (en)
JPH0329108B2 (en)
CA1119404A (en) Heat storage material
JPH0554518B2 (en)
JPH03128987A (en) Latent heat storage material
JPS6367838B2 (en)
JPS62132532A (en) Method for granulating latent heat type heat storage material
JPS61278588A (en) Heat storing material
JP2836179B2 (en) Latent heat storage material
JPS6213480A (en) Method of granulating heat storing material