JPH0151515B2 - - Google Patents

Info

Publication number
JPH0151515B2
JPH0151515B2 JP55150517A JP15051780A JPH0151515B2 JP H0151515 B2 JPH0151515 B2 JP H0151515B2 JP 55150517 A JP55150517 A JP 55150517A JP 15051780 A JP15051780 A JP 15051780A JP H0151515 B2 JPH0151515 B2 JP H0151515B2
Authority
JP
Japan
Prior art keywords
supercooling
nach
coo
hydrated salt
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55150517A
Other languages
Japanese (ja)
Other versions
JPS5774380A (en
Inventor
Takahiro Wada
Shoichi Ishihara
Ryoichi Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP55150517A priority Critical patent/JPS5774380A/en
Priority to US06/315,456 priority patent/US4381245A/en
Publication of JPS5774380A publication Critical patent/JPS5774380A/en
Publication of JPH0151515B2 publication Critical patent/JPH0151515B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、融解潜熱を利用した潜熱蓄熱材の製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a latent heat storage material using latent heat of fusion.

Na2SO4・10H2Oなどのような水和塩を蓄熱材
の主成分として用いる際に、凝固時に潜熱を有効
に取り出すためには、融解・凝固を順調に行わせ
る必要があり、このため過冷却防止材が少量,水
和塩中に加えられるのが常である。ここで過冷却
防止材とは、蓄熱材中にあつて、溶解し去ること
なく液体状態の水和塩がその融点よりわずかでも
冷却された時にただちに不均質核発生作用を発揮
して、前記水和塩の微少固体をその表面で生成
し、固化を促進する作用を有するものである。
When using hydrated salts such as Na 2 SO 4 and 10H 2 O as the main component of a heat storage material, melting and solidification must occur smoothly in order to effectively extract latent heat during solidification. Therefore, a small amount of supercooling inhibitor is usually added to the hydrated salt. Here, the supercooling prevention material is a material that is present in the heat storage material and immediately exerts a heterogeneous nucleation effect when the hydrated salt in the liquid state is cooled even slightly below its melting point without dissolving away, and the It has the effect of producing fine solids of Japanese salt on its surface and promoting solidification.

ところで、過冷却防止材は、通常粉末状の小さ
い粒子であり、また不均質核発生作用であること
を考慮すると、その粒子は、できるだけ細かく、
表面積が大きくなるようにする方がよい。しか
し、あまり微細な粉末を水和塩に添加したので
は、液体状態の水和塩とうまくなじまずに、水和
塩の融液表面に浮いてしまつたり、また液体状態
の水和塩中にうまく沈んでも、過冷却防止機能を
果たさなかつたりする。過冷却防止材を含有して
いるにもかかわらず過冷却状態にある水和塩も、
1度何らかの方法で凝固させてやると、以後ずつ
と安定して融解と凝固を繰り返す。また過冷却防
止材としてかなり大きな粒子を用いる時にも水和
塩としてNaCH3COO・3H2Oを用い、過冷却防
止材としてNa4P2O7・10H2Oを用いた際には、
しばしば、第1回目の冷却の際、過冷却が破れ
ず、室温まで冷却されてしまう。この過冷却状態
にあるNaCH3COO・3H2Oと、Na4P2O7
10H2Oの混合物も、一度何らかの方法で凝固さ
せてやると以後安定して融解及び凝固を繰り返
す。
By the way, the supercooling prevention material is usually small particles in powder form, and considering that it has a heterogeneous nucleation effect, the particles should be as fine as possible.
It is better to have a larger surface area. However, if too fine a powder is added to the hydrated salt, it may not mix well with the liquid hydrated salt and may float on the surface of the hydrated salt melt, or may become mixed with the liquid hydrated salt. Even if it sinks well into the water, it may not function to prevent supercooling. Hydrated salt is in a supercooled state even though it contains a supercooling prevention agent.
Once solidified by some method, it will steadily repeat melting and solidification. Also, when using fairly large particles as a supercooling preventive agent, NaCH 3 COO・3H 2 O is used as the hydrated salt, and Na 4 P 2 O 7・10H 2 O is used as the supercooling preventive agent.
Often, during the first cooling, supercooling is not broken and the product is cooled to room temperature. NaCH 3 COO・3H 2 O in this supercooled state and Na 4 P 2 O 7
Once a mixture of 10H 2 O is solidified by some method, it repeats melting and solidification stably.

そのため、このような水和塩と過冷却防止材を
混合して実際蓄熱槽中に収納して蓄熱材として用
いる場合、水和塩と過冷却防止材の混合物を、一
度蓄熱材の融解する温度まで加熱し、再び冷却し
て過冷却がうまく破れるかどうか確認し、過冷却
が破れない際には、何らかの方法で、過冷却を破
り凝固させなければならない。このため、多くの
時間及び労力を必要とし、実用上から好ましいこ
とではない。
Therefore, when such a mixture of hydrated salt and supercooling prevention material is actually stored in a heat storage tank and used as a heat storage material, the mixture of hydrated salt and supercooling prevention material is heated to the temperature at which the heat storage material melts. If the supercooling cannot be broken, then some method must be used to break the supercooling and solidify it. This requires a lot of time and effort, which is not desirable from a practical standpoint.

本発明は、第1回目から確実に、過冷却がほと
んどなく凝固する潜熱蓄熱材の製造方法を提供す
るものである。本発明の特徴は、少量の水和塩と
過冷却を防止する基材を混合し、少なくとも前記
水和塩の融解する温度まで加熱し、再び冷却して
凝固させ、基材の表面に前記水和塩の結晶を付着
させた成形体をつくり、この成形体の1部又は全
部を前記水和塩中に添加混合することにある。
The present invention provides a method for producing a latent heat storage material that reliably solidifies from the first time with almost no supercooling. A feature of the present invention is that a small amount of hydrated salt and a base material that prevents supercooling are mixed, heated to at least a temperature at which the hydrated salt melts, and cooled again to solidify, so that the surface of the base material is coated with the water. The method involves preparing a molded body to which Japanese salt crystals are attached, and adding and mixing part or all of this molded body to the hydrated salt.

本発明の潜熱蓄熱材の製造方法を、水和塩とし
て酢酸ナトリウム3水塩NaCH3COO・3H2O(融
点58℃)、過冷却を防止する基材としてピロリン
酸ナトリウム10水塩Na4P2O7・10H2Oを用いた
場合について説明する。
The method for producing the latent heat storage material of the present invention is carried out using sodium acetate trihydrate NaCH 3 COO·3H 2 O (melting point 58°C) as a hydrated salt and sodium pyrophosphate decahydrate Na 4 P as a base material for preventing supercooling. The case where 2 O 7 · 10H 2 O is used will be explained.

NaCH3COO・3H2O100重量部とNa4P2O7
10H2O60重量部を同一の容器に収納し、70℃に
加熱して、NaCH3COO・3H2Oをすべて融解し
た。その時、Na4P2O7・10H2O粒子は
NaCH3COO・3H2Oの下部に沈積した。それを
再び冷却して、NaCH3COO・3H2Oを凝固させ、
また過冷却の破れない場合には、NaCH3COO・
3H2Oの種結晶を用いて凝固させ、
NaCH3COO・3H2OとNa4P2O7・10H2Oから成
る成形体を得た。この成形体全部または一部を切
り出して、過冷却防止材として用いた。
NaCH 3 COO・3H 2 O 100 parts by weight and Na 4 P 2 O 7
60 parts by weight of 10H 2 O was placed in the same container and heated to 70°C to melt all of the NaCH 3 COO·3H 2 O. At that time, Na 4 P 2 O 7・10H 2 O particles are
NaCH 3 COO·3H 2 O was deposited at the bottom. Cool it again to solidify NaCH 3 COO・3H 2 O,
In addition, if supercooling does not break, NaCH 3 COO・
Solidify using 3H 2 O seed crystals,
A molded body consisting of NaCH 3 COO·3H 2 O and Na 4 P 2 O 7 ·10H 2 O was obtained. All or part of this molded body was cut out and used as a supercooling prevention material.

前記製造方法で得られた過冷却防止材2重量部
をNaCH3COO・3H2O100重量部と混合し、70℃
まで加熱して、NaCH3COO・3H2Oをすべて融
解した。ところで、過冷却防止材も
NaCH3COO・3H2OとNa4P2O7・10H2Oから成
るため、その中のNaCH3COO・3H2Oが融解す
る。そのため過冷却を防止する基材である
Na4P2O7・10H2Oがもとのバラバラの細かな粒
子になり、NaCH3COO・3H2O融液中に分散分
布することになる。そして、このNa4P2O7
10H2Oが過冷却を防止する基材として作用する。
このNa4P2O7・10H2O粒子は一度表面上に
NaCH3COO・3H2O結晶を形成したことがある
ため、全く、NaCH3COO・3H2Oの結晶を粒子
表面で形成したことのないNa4P2O7・10H2Oに
比較してはるかにすぐれた過冷却防止機能を有す
る。この原因については現在明らかではないが、
一度表面でNaCH3COO・3H2Oの結晶を形成し
たNa4P2O7・10H2O粒子表面には、
NaCH3COO・3H2Oが再び融解してしまつた後
も、何らかの痕跡が残り、それが有効に
NaCH3COO・3H2Oの結晶化に作用するものと
考えられる。
2 parts by weight of the supercooling preventive material obtained by the above manufacturing method was mixed with 100 parts by weight of NaCH 3 COO・3H 2 O, and the mixture was heated to 70°C.
The solution was heated until all NaCH 3 COO.3H 2 O was melted. By the way, supercooling prevention material also
Since it consists of NaCH 3 COO・3H 2 O and Na 4 P 2 O 7・10H 2 O, NaCH 3 COO・3H 2 O in it melts. Therefore, it is a base material that prevents supercooling.
Na 4 P 2 O 7 · 10H 2 O becomes the original fine particles and is dispersed in the NaCH 3 COO · 3H 2 O melt. And this Na 4 P 2 O 7
10H 2 O acts as a base material to prevent supercooling.
This Na 4 P 2 O 7・10H 2 O particle is once on the surface.
Since NaCH 3 COO・3H 2 O crystals have been formed, compared to Na 4 P 2 O 7・10H 2 O, which has never formed NaCH 3 COO・3H 2 O crystals on the particle surface. It has a much better supercooling prevention function. The cause of this is currently not clear, but
On the surface of Na 4 P 2 O 7 10H 2 O particles that once formed NaCH 3 COO 3H 2 O crystals on the surface,
Even after NaCH 3 COO・3H 2 O has melted again, some trace will remain and it will be effective.
It is thought that it acts on the crystallization of NaCH 3 COO・3H 2 O.

本発明の製造方法による潜熱蓄熱材は、第1回
目から確実に過冷却が破れ、蓄熱材として機能す
ると言う特徴の他に、過冷却防止材が成形体であ
るため、過冷却防止基材の取り扱いが容易になる
と言う特徴も有する。このことは一般に成形体を
扱う方が粉体を扱うより容易であることより明ら
かである。そのため本発明の潜熱蓄熱材の製造方
法は、前に説明した水和塩としてNaCH3COO・
3H2Oと、過冷却を防止する基材として
Na4P2O7・10H2Oとの組合せを含めて、融解潜
熱を利用した蓄熱材と、過冷却を防止するための
基材のあらゆる組合せに対して有効なものであ
る。
The latent heat storage material produced by the manufacturing method of the present invention is characterized in that supercooling is reliably broken from the first time and it functions as a heat storage material. It also has the feature of being easy to handle. This is clear from the fact that it is generally easier to handle compacts than powders. Therefore, the method for producing the latent heat storage material of the present invention uses NaCH 3 COO.
3H 2 O and as a base material to prevent supercooling
It is effective for all combinations of heat storage materials that utilize latent heat of fusion and base materials for preventing supercooling, including combinations with Na 4 P 2 O 7 and 10H 2 O.

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

実施例 1 塩化ストロンチウム6水塩SrCl2・6H2O100重
量部と、水酸化ストロンチウム8水塩Sr
(OH)2・8H2O50重量部を同一の容器に収納し、
70℃に加熱してSrCl2・6H2Oをすべて融解した。
それを再び冷却して、SrCl2・6H2Oを固化し、
SrCl2・6H2OとSr(OH)2・8H2Oから成る成形体
を得た。その成形体2重量部を過冷却防止材とし
て、SrCl2・6H2O100重量部と混合して蓄熱材と
して用いたところ、安定して融解及び凝固を繰り
返し、蓄熱材として十分に機能した。
Example 1 Strontium chloride hexahydrate SrCl 2 6H 2 O 100 parts by weight and strontium hydroxide octahydrate Sr
(OH) 2・8H 2 Store 50 parts by weight of O in the same container,
It was heated to 70°C to melt all the SrCl 2 .6H 2 O.
Cool it again to solidify SrCl 2 6H 2 O,
A molded body consisting of SrCl 2 .6H 2 O and Sr(OH) 2 .8H 2 O was obtained. When 2 parts by weight of the molded product was mixed with 100 parts by weight of SrCl 2 .6H 2 O as a supercooling prevention material and used as a heat storage material, it repeatedly melted and solidified stably and functioned satisfactorily as a heat storage material.

実施例 2 NaCH3COO・3H2O100重量部とNa4P2O7
10H2O40重量部を同一の容器に収納し、75℃に
加熱して、NaCH3COO・3H2Oをすべて融解し
た。それが再び冷却して、NaCH3COO・3H2O
を固化し、NaCH3COO・3H2OとNa4P2O7
10H2Oから成る成形体を得た。この成形体で容
器の下部に接していたところは、ほとんど
Na4P2O7・10H2Oから成り、この部分を過冷却
防止材として使用するため、1.5重量部切り出し、
NaCH3COO・3H2O100重量部と混合して蓄熱材
として用いた。
Example 2 100 parts by weight of NaCH 3 COO・3H 2 O and Na 4 P 2 O 7
40 parts by weight of 10H 2 O was placed in the same container and heated to 75°C to melt all of the NaCH 3 COO·3H 2 O. When it cools again, NaCH 3 COO 3H 2 O
solidified to form NaCH 3 COO・3H 2 O and Na 4 P 2 O 7
A molded body made of 10H 2 O was obtained. Most of the parts of this molded body that were in contact with the bottom of the container
Consisting of Na 4 P 2 O 7・10H 2 O, 1.5 parts by weight of this part was cut out to be used as a supercooling prevention material.
It was mixed with 100 parts by weight of NaCH 3 COO.3H 2 O and used as a heat storage material.

この蓄熱材は、第1回目から安定して融解、及
び凝固を繰り返し、蓄熱材として十分に機能し
た。
This heat storage material repeatedly melted and solidified stably from the first time, and functioned satisfactorily as a heat storage material.

前述したように、本発明の製造方法による潜熱
蓄熱材は、第1回目の冷却時から確実に過冷却が
破れ、それ以後も安定して過冷却することなく機
能すると言う特徴を有し、さらに過冷却防止材が
成形体であるため、従来の粉末の過冷却防止材に
比較してはるかに取り扱いやすくなつている。そ
のため本発明の潜熱蓄熱材の製造方法は、水和塩
とその水和塩の過冷却を防止するための基材のあ
らゆる組合せに対して有効なものであり、本発明
の製造方法による潜熱蓄熱材は、空調装置用の蓄
熱装置だけでなく、蓄熱式保温器等の蓄熱を利用
したあらゆる方面に応用可能なものである。
As mentioned above, the latent heat storage material produced by the manufacturing method of the present invention has the characteristics that supercooling is reliably broken from the first cooling and that it functions stably without supercooling thereafter. Since the supercooling prevention material is a compact, it is much easier to handle compared to conventional powder supercooling prevention materials. Therefore, the method for producing a latent heat storage material of the present invention is effective for all combinations of hydrated salts and base materials for preventing supercooling of the hydrated salts, and The material can be applied not only to heat storage devices for air conditioners, but also to all kinds of applications that utilize heat storage, such as thermal storage type heat insulators.

Claims (1)

【特許請求の範囲】[Claims] 1 水和塩が酢酸ナトリウム3水塩、又は塩化ス
トロンチウム6水塩であり、前記水和塩の過冷却
を防止するための基材がピロリン酸ナトリウム10
水塩又は水酸化ストロンチウム8水塩であり、前
記基材と前記水和塩を混合して、少なくとも前記
水和塩の融解する温度まで加熱し、再び冷却して
基材の表面に前記水和塩の付着した成形体をつく
り、この成形体を前記水和塩に添加混合する潜熱
蓄熱材の製造方法。
1 The hydrated salt is sodium acetate trihydrate or strontium chloride hexahydrate, and the base material for preventing supercooling of the hydrated salt is sodium pyrophosphate 10
hydrate salt or strontium hydroxide octahydrate, the base material and the hydrated salt are mixed, heated to at least a temperature at which the hydrated salt melts, and cooled again to coat the surface of the base material with the hydrated salt. A method for producing a latent heat storage material, which comprises making a molded body to which salt is attached, and adding and mixing this molded body to the hydrated salt.
JP55150517A 1980-10-27 1980-10-27 Production of supercooling inhibitor Granted JPS5774380A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP55150517A JPS5774380A (en) 1980-10-27 1980-10-27 Production of supercooling inhibitor
US06/315,456 US4381245A (en) 1980-10-27 1981-10-27 Supercooling inhibitor and process for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55150517A JPS5774380A (en) 1980-10-27 1980-10-27 Production of supercooling inhibitor

Publications (2)

Publication Number Publication Date
JPS5774380A JPS5774380A (en) 1982-05-10
JPH0151515B2 true JPH0151515B2 (en) 1989-11-02

Family

ID=15498584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55150517A Granted JPS5774380A (en) 1980-10-27 1980-10-27 Production of supercooling inhibitor

Country Status (1)

Country Link
JP (1) JPS5774380A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237434A (en) * 1997-02-28 1998-09-08 Sumika Plast Kk Production of heat storage material

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0101181B1 (en) * 1982-07-15 1986-02-12 Ic Gas International Limited Heat storage materials, and method of heat exchange therewith
IE55100B1 (en) * 1982-08-12 1990-05-23 Edeco Holdings Ltd Thermochemical energy storage
JP2002030280A (en) * 2000-07-14 2002-01-31 Sumitomo Chem Co Ltd Method for producing granule of agent for preventing supercooling of salt hydrate
JP2013087276A (en) * 2011-10-14 2013-05-13 Yoshinobu Yamaguchi Form of latent heat storage body
JP2014058681A (en) * 2013-10-08 2014-04-03 Yoshinobu Yamaguchi Form of latent heat storage body
JP2014059141A (en) * 2013-11-25 2014-04-03 Yoshinobu Yamaguchi Latent heat storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237434A (en) * 1997-02-28 1998-09-08 Sumika Plast Kk Production of heat storage material

Also Published As

Publication number Publication date
JPS5774380A (en) 1982-05-10

Similar Documents

Publication Publication Date Title
EP0074612B1 (en) Heat-storing apparatus
JPH0151515B2 (en)
US4331556A (en) Heat storage material
KR850001786B1 (en) Reversible liquid/solid phase change compositions
JPS5827301B2 (en) Supercooling prevention material and its manufacturing method
JPH09241624A (en) Material for storage of cryogenic energy
JPS5922986A (en) Heat-accumulating material
US4381245A (en) Supercooling inhibitor and process for preparing the same
JPH10237434A (en) Production of heat storage material
GB2055054A (en) Combination of chemicals and method for generating heat at a controlled temperature and a hot pack containing such a combination
JP3440700B2 (en) Latent heat storage material
JPS617379A (en) Production of thermal energy storage element
JPS60155285A (en) Thermal energy storage material composition
JPS581714B2 (en) Heat storage agent composition
JP4572613B2 (en) Prevention of caking of magnesium nitrate
JP2002030280A (en) Method for producing granule of agent for preventing supercooling of salt hydrate
JPS5821942B2 (en) Heat storage agent composition
JPS6151079A (en) Thermal energy storage material
JPH03128987A (en) Latent heat storage material
JPS59170181A (en) Heat accumulative agent composition
JPS6367838B2 (en)
JPS63137982A (en) Heat storage material composition
JPS6351478B2 (en)
JPH0315119B2 (en)
JPH021194B2 (en)