JP2013087276A - Form of latent heat storage body - Google Patents

Form of latent heat storage body Download PDF

Info

Publication number
JP2013087276A
JP2013087276A JP2011239587A JP2011239587A JP2013087276A JP 2013087276 A JP2013087276 A JP 2013087276A JP 2011239587 A JP2011239587 A JP 2011239587A JP 2011239587 A JP2011239587 A JP 2011239587A JP 2013087276 A JP2013087276 A JP 2013087276A
Authority
JP
Japan
Prior art keywords
heat storage
heat
latent heat
melting point
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011239587A
Other languages
Japanese (ja)
Inventor
Yoshinobu Yamaguchi
義信 山口
Michiko Yamaguchi
美智子 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011239587A priority Critical patent/JP2013087276A/en
Publication of JP2013087276A publication Critical patent/JP2013087276A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Building Environments (AREA)
  • Central Heating Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a form of a latent heat storage material, which uses a latent heat storage composition having harmonized various latent heat storage materials, has good efficiency of heat transfer applied to cooling and heating, air conditioning, and hot-water supply according to the aptitude of the heat storage materials, is compact, and exhibits a high-density and high-efficiency heat transfer function with the view of a heat source and the like for cooling and heating and hot-water supply, in housing, building, agriculture, and the like when necessary by storing atmospheric heat and solar heat in the heat storage body with inexpensive nighttime power.SOLUTION: The latent heat storage material is subjected to melting point adjustment so as to be applied to the purpose of applications, wherein in respective composition materials, transition points are changed in respective ranges, such as a range in which the melting point is 32°C or less (mainly 7-20°C), a range in which the melting point is 58.5°C or less (mainly 35-58°C), and a range in which the melting point is 93.5°C or less (mainly 70-85°C). An incision having a square-shaped or circular cross-sectional shape, proportional to the total thickness, is formed in the middle between soft, thin, lightweight, and impermeable synthetic resin sheets. A plurality of independent hollow structures are supported in a parallel state and constructed by monolithic injection molding. The latent heat storage body is obtained by injecting respective latent heat storage compositions into the hollow structures and filling and sealing the same.

Description

本発明は、各系固有の融点で相変化し、凝固潜熱を有する硫酸ナトリウム系の蓄熱密度が389(MJ/m)融点32.4℃の融解熱246(KJ/Kg)・酢酸ナトリウム系蓄熱密度が364(MJ/m)融点58.5℃の融解熱251(KJ/Kg)の包晶型及び各種の明礬系の蓄熱密度が400(MJ/m)で融点94℃の融解熱232(KJ/Kg)の調和型を有する潜熱蓄熱組成物を用いた潜熱蓄熱体である、該各系の適性に応じて、暖冷房空調及び給湯用に適用する伝熱効率が良好な潜熱蓄熱材形態である。定廉な夜間電力で大気熱や太陽熱を該蓄熱体に貯めて、必要時住宅やビル、農業等の冷暖房及び給湯の熱源等を目的に小型で高密度、高効率な熱伝達機能を発揮する潜熱蓄熱材の形態を提供する。In the present invention, a sodium sulfate system having a solidification latent heat and a heat storage density of 389 (MJ / m 3 ), a melting point of 32.4 ° C., a heat of fusion 246 (KJ / Kg). Heat storage density 364 (MJ / m 3 ) Melting point 58.5 ° C melting heat 251 (KJ / Kg) peritectic type and various alum system heat storage density 400 (MJ / m 3 ) melting point 94 ° C melting A latent heat storage body using a latent heat storage composition having a harmonious type of heat 232 (KJ / Kg), and having a good heat transfer efficiency applied to heating / cooling air conditioning and hot water supply according to the suitability of each system It is a material form. Atmospheric and solar heat is stored in the heat storage body with low-cost nighttime electricity, and a small, high-density, high-efficiency heat transfer function is demonstrated for the purpose of air conditioning and hot water supply for houses, buildings, agriculture, etc. when necessary. Provide a form of latent heat storage material.

蓄熱の手段に、従来から蓄熱材の容器はポリエチレンやポリプロピレン等合成樹脂製になるブロ−成型になる容器の形態が、球状、中空板状や、押出成型の包装フィルムによる手段が代表的である。夜間電力を利用した直接付設方式の床暖房等に実用化されてきた。しかし、蓄熱材本来の熱量や所要の性能に係る温度伝達性に課題があり、保有潜熱温度の性能を発揮できていなかった。理由は保有熱容量に比べ、温度伝導度か小さく、取出し熱流量の確保には、温度取入口と出口に温度差が生じる、調整上熱媒体の流量調整を必要とし、貯蓄装置の大型化は避けられなかった。又、貯湯の課題として、温度差の大きい冬季、特に外気温が0℃時の貯湯槽は自然放熱による温度ロスは毎時約0.5℃低下する事が知られている。貯湯槽の特性が温度成層型であれば、一日の熱損失は内外温度差、貯湯槽の表面積と外気温度にさらされる接触面積の影響を受けて、残存湯量に比例して、熱損失も増大していた。周囲温度=供給水温=10℃の条件下で、熱損失は理論上の必要量熱量Kcalに対し熱損失率は実に38.8%に達するとの建築協会の研究がある。需要傾向は多機能化で湯量の需要増でタンクの大型化により、設置場所の選定を困難にしていた。蓄熱を保有しないヒ−トポンプは、単独では性能上、立ち上がりの温度追従にタイムラグが生じるなど温度利用で利便性を欠く不都合な課題も抱えていた。
Conventionally, as a heat storage means, a container of a heat storage material is typically a blow-molded container made of a synthetic resin such as polyethylene or polypropylene, and a spherical, hollow plate, or an extrusion-molded packaging film is typical. . It has been put into practical use for floor heating, etc. that is directly attached using nighttime power. However, there is a problem in the heat transfer material inherent heat quantity and the temperature transferability related to the required performance, and the performance of the retained latent heat temperature has not been demonstrated. The reason is that the thermal conductivity is smaller than the stored heat capacity, and in order to secure the extraction heat flow, there is a temperature difference between the temperature intake and the outlet, and adjustment of the flow rate of the heat medium is necessary for adjustment, avoiding the enlargement of the storage device I couldn't. Further, as a hot water storage problem, it is known that the temperature loss due to natural heat dissipation is reduced by about 0.5 ° C. per hour in a hot water storage tank where the temperature difference is large in winter, especially when the outside air temperature is 0 ° C. If the characteristics of the hot water tank are temperature stratified, the heat loss per day is affected by the difference between the internal and external temperature, the surface area of the hot water tank and the contact area exposed to the outside air temperature, and the heat loss is proportional to the remaining hot water volume. It was increasing. Under the condition of ambient temperature = supply water temperature = 10 ° C., there is a study by the Architectural Institute of Japan that the heat loss actually reaches 38.8% of the theoretical required amount of heat Kcal. The demand trend was to make it difficult to select the installation location due to the increased functionality, increased demand for hot water, and larger tanks. Heat pumps that do not have heat storage alone have disadvantages in terms of performance, such as inconvenience that lacks convenience in use of temperature, such as a time lag in temperature follow-up.

特公告2890197  Special Notice 2890197 特公告2566445  Special Notice 2566445 特開平10−237433  JP-A-10-237433 特開2006−75579  JP 2006-75579 A 特開昭57−198780  JP-A-57-198780 特開昭59−197486  JP 59-197486 特開昭57−074380  JP 57-074380 特開昭57−074380  JP 57-074380 特開昭63−135747  JP-A-63-135747 特開2010−121814  JP 2010-121814 A 財団法人日本建築学会建築研究会  The Architectural Institute of Architectural Institute of Japan

本発明の蓄熱装置に採用の潜熱蓄熱材は物質固有の融点が変化する事なく、液化した状態から温度が融点より下がると、凝固のエントロピ−生成状態が終了するまで、潜熱を放熱して、質量に応じたエネルギ−の放出と吸収を行う。また融解時は蓄熱物質(1)が完全に液化するまで、熱を吸収する性状の可逆性を保有する。該蓄熱装置に使用する電解水和組成物(1)の系は水の容量に比べ、比重で1.45倍以上、周囲温度=供給水温=10℃の条件時、△T/10℃差の単位熱量は水の約3倍であり、コンパクトで熱量が大きい利点があり、容器の小型化による放熱表面負荷を削減できる。また該蓄熱組成物は各々が独立した中空層構造(1)内に担持され、熱媒体(2)と該蓄熱体の接触面積及び断面の熱伝達抵抗値を改善し温度伝達効率を促進する。この試みにより、熱抵抗率負荷を軽減して、温度伝達効率を改善し熱供給機能を向上する。又装置の小型化は熱損失を軽減し、定廉な装置を提供する利点がある。既存の従来型の貯湯槽との所要熱量比て約70%削減が可能との試算根拠があり、省スペ−ス、省エネルギ−に寄与する。  The latent heat storage material employed in the heat storage device of the present invention does not change the specific melting point of the substance, and when the temperature falls below the melting point from the liquefied state, it dissipates the latent heat until the solidification entropy generation state ends, Release and absorb energy according to mass. Moreover, at the time of melting, it retains the reversibility of the property of absorbing heat until the heat storage material (1) is completely liquefied. The system of the electrolytic hydration composition (1) used in the heat storage device has a difference of ΔT / 10 ° C. when the specific gravity is 1.45 times or more in comparison with the capacity of water and the ambient temperature = feed water temperature = 10 ° C. The unit heat quantity is about three times that of water, and there is an advantage that the heat quantity is compact and the heat quantity is large, and the heat radiation surface load can be reduced by downsizing the container. The heat storage composition is supported in each of the independent hollow layer structures (1) to improve the contact area between the heat medium (2) and the heat storage body and the heat transfer resistance value of the cross section, thereby promoting the temperature transfer efficiency. This attempt reduces the thermal resistivity load, improves the temperature transfer efficiency, and improves the heat supply function. Further, downsizing of the apparatus has the advantage of reducing the heat loss and providing an inexpensive apparatus. There is a basis for trial calculation that it can be reduced by about 70% compared to the required amount of heat compared with the existing conventional hot water tank, which contributes to space and energy savings.

本発明の潜熱蓄熱組成物(1)の種類は低温域に採用する硫酸ナトリウム系は融点32℃以下から7℃の範囲である。中温度域に酢酸ナトリウム系は融点57.5℃以下から35℃の転移点の範囲であり、高温度域には各種の明礬系水和物は融点94℃であり、摂氏94℃以下から75℃の利用に有用である。多岐に渉る熱源の内、特に冷凍ヒ−トポンプチラ−による低温度の5℃から太陽熱、圧縮ヒ−トポンプの回収熱70〜90℃での熱利用に適応性を所要し、除湿乾燥に係る冷房/暖房/給湯の蓄熱用装置として有用である。  As for the kind of the latent heat storage composition (1) of the present invention, the sodium sulfate type employed in the low temperature range has a melting point of 32 ° C. or lower to 7 ° C. In the middle temperature range, the sodium acetate type has a transition point range from a melting point of 57.5 ° C. or less to 35 ° C., and in the high temperature range, various alum hydrates have a melting point of 94 ° C., from 94 ° C. or less to 75 ° C. Useful for use in ° C. Of the various heat sources, especially the low temperature 5 ° C by the refrigeration heat pump chiller, the solar heat, the heat recovery from the compression heat pump 70 to 90 ° C is required for adaptability, and the cooling for dehumidification drying Useful as a heat storage device for heating / heating / hot water.

本発明の各該潜熱蓄熱水和物質は水との密度比で平均1.4倍以上、△T/10℃時の所要熱量と放熱量は1.6倍から5.0倍と大きく、当該蓄熱に係る装置の小型化ができる。該各系蓄熱物質は物質固有の融点で吸熱して融解、融点以下で潜熱を放熱しながら凝固の熱反応作用を顕すので、吸熱と放熱は可逆的な状態(相)変化が完了するまで、所要の融点付近で一定温度の潜熱放熱を持続する性状を示す。本発明は単独又は相和した混合物を主材に、調理調合した各系の水和物を適用できる。本発明の一例とする該放熱体の内、酢酸ナトリウム水和物の性状理論値は融点58.5℃、潜熱量60Kcal/kgは包晶型であり、融解の過程は高温である。結果、融解/凝固等の熱履歴過程で分子間分離や過飽和に係る過冷却が発生する、尚、固体の熱伝導度が0.35m.k程度と熱抵抗による伝熱係数は氷の約35%程度等と効率化に係る課題を抱えていた。  Each of the latent heat storage hydrate substances of the present invention has an average density ratio of 1.4 times or more with water, and the required heat and heat release at ΔT / 10 ° C. are as large as 1.6 to 5.0 times. The size of the device related to heat storage can be reduced. Each of these heat storage materials absorbs and melts at the specific melting point of the substance, reveals the thermal reaction action of solidification while dissipating the latent heat below the melting point, so that the endothermic and heat dissipation is complete until the reversible state (phase) change is completed. It exhibits the property of maintaining a constant temperature of latent heat release near the required melting point. The present invention is applicable to hydrates of each system prepared by cooking with a main material of a single or a mixed mixture. Among the heat radiating body as an example of the present invention, the theoretical value of sodium acetate hydrate has a melting point of 58.5 ° C., a latent heat of 60 Kcal / kg is a peritectic type, and the melting process is a high temperature. As a result, supercooling related to intermolecular separation or supersaturation occurs in the process of thermal history such as melting / solidification, and the thermal conductivity of the solid is 0.35 m. The heat transfer coefficient due to the thermal resistance of about k was about 35% of ice, and had problems related to efficiency.

潜熱蓄熱組成材は蓄熱体(1)として、熱媒体(2)の接触表面積率と蓄熱材固有の熱伝導度により接触面の積に比例して温度伝達効率は決定されるから、固有の温度伝達抵抗を緩和する有効手段として、該潜熱蓄熱組成物と外部負荷接触値、即ち、容器厚を最適値化と該潜熱蓄熱材の伝熱の効率化処置が課題であった。容器厚を削減することで、温度伝達効率を改善可能とするが、一方所要熱量の不足が発生する。この不足量の確保の手段に該容器になる蓄熱体を何層にも積層することで補う。温度伝達効率化に、1.容器表面積の拡大と確保、2.質量の増量と確保の相乗効果で達成を可能にする。結果、系固有の熱伝導抵抗を減少させる手段により、エントロピ−の生成を短縮し、COP向上にも寄与する。しかし、一般的に電解性水和物の内、酢酸ナトリウム水和物は相分離や過冷却が顕著で特異な分子構造から系単独での機能で蓄熱材としての機能は持続できない。対応として、他系にも共通的連鎖機能を所持する添加剤としてパリゴスカイト、スメクタイト、ゼオライト、セピオラト等の精製物中の調合手段により解決している。また融点以下に降温しても凝固しない過冷却現象の防止に核生成材として、耐熱性に優れる各種コハク酸・フッ化リチウム・酢酸リチウム・フッ化カリウム複合物・明礬・硫酸コバルト・硼酸等から適栓されるを各系に単独又は複合して、適応する有効性を確立している。一方の各種明礬系は溶解液は酸性であり、耐食課題の解決が先行したが、蓄熱体及び蓄熱槽を合成樹脂に置換えてることで、熱履歴や蓄熱装置機器の保全確保と低コストを達成する。  Since the latent heat storage composition material is a heat storage body (1), the temperature transfer efficiency is determined in proportion to the product of the contact surface by the contact surface area ratio of the heat medium (2) and the thermal conductivity inherent to the heat storage material. As effective means for alleviating the transfer resistance, the latent heat storage composition and the external load contact value, that is, the container thickness has been optimized, and the heat transfer efficiency of the latent heat storage material has been an issue. By reducing the container thickness, it is possible to improve the temperature transfer efficiency, but there is a shortage of required heat. The means for securing the deficiency is supplemented by stacking a number of layers of the heat storage body to be the container. To improve temperature transfer efficiency: 1. Enlarge and secure container surface area. Achieved by the synergistic effect of increasing and securing mass. As a result, the generation of entropy is shortened by means for reducing the inherent heat conduction resistance of the system, which contributes to the improvement of COP. However, among the electrolytic hydrates, sodium acetate hydrate is generally subject to phase separation and supercooling, and cannot function as a heat storage material because of its unique molecular structure. As a countermeasure, it is solved by a blending means in a purified product such as palyskite, smectite, zeolite, sepiolate as an additive having a common chain function in other systems. Also, as a nucleation material to prevent the supercooling phenomenon that does not solidify even when the temperature falls below the melting point, various heat-resistant succinic acid, lithium fluoride, lithium acetate, potassium fluoride composites, alum, cobalt sulfate, boric acid, etc. Establishing the effectiveness of adapting to each system alone or in combination. On the other hand, the solution is acidic and the solution to the corrosion resistance problem has been preceded. However, by replacing the heat storage body and heat storage tank with synthetic resin, the maintenance of heat history and heat storage device equipment is ensured and low cost is achieved. To do.

本発明の潜熱蓄熱体に採用するは容器は軟質シ−ト間に中空間を一体に成型した中空(2)内に蓄熱組成物を挿入充填し、内蔵の支持体(1)がポリエチレン(PE)、ポリプロピレン(PP)、ポリカ−ボネ−ト(PC)、ポリフタル酸エステル、硬質アルミニウムより選択した素材容器を採用する。  The container used for the latent heat storage body of the present invention is a container in which a heat storage composition is inserted and filled into a hollow (2) in which a middle space is integrally formed between soft sheets, and a built-in support (1) is made of polyethylene (PE ), Polypropylene (PP), polycarbonate (PC), polyphthalate, and hard aluminum.

採用の主材が硫酸ナトリウム水和物系、酢酸ナトリウム水和物系、各種明礬水和物系になる。該各系組成物(1c)は固有の融点以上で液化し、それ以下では凝固の可逆的エントロピ−を生成する。熱源及び負荷から送られるエネルギ−は熱媒体を介して蓄熱材に温度伝達される。即ち、熱媒体の温度(2)が蓄熱組成物固有の融点より高ければ、蓄熱体(1)は温度熱を吸収しながら液化して、蓄熱状態を保ち、系の融点温度より低くければ、原子の組み替えにより物質の融点の凝固潜熱量を放熱し固形化と共に放熱は完了する。エントロピ−生成過程で出入りする潜熱を冷暖房や給湯に利用する。放熱後は再加熱により融解の繰り返しの可逆性を有する。  The main materials used are sodium sulfate hydrate, sodium acetate hydrate, and various alum hydrates. Each system composition (1c) liquefies above its inherent melting point, below which it generates reversible entropy of coagulation. Energy transmitted from the heat source and the load is transmitted to the heat storage material through the heat medium. That is, if the temperature (2) of the heat medium is higher than the specific melting point of the heat storage composition, the heat storage body (1) liquefies while absorbing the heat of heat, maintains the heat storage state, and if it is lower than the melting point temperature of the system, The recombination of the atoms releases the solidification latent heat at the melting point of the substance, and the heat release completes with solidification. The latent heat that enters and exits the entropy generation process is used for air conditioning and hot water supply. After heat dissipation, it has reversibility of repeated melting by reheating.

即ち、熱の出入りは該系の潜熱蓄熱材(1)と熱媒体(2)との間で、温度差を介して、可逆的に熱吸収と放熱が行われる。従って所要の蓄熱体の使用量(数)を可変することで、負荷に適正な対応を可能し、熱媒体(2)と蓄熱材(1)の効率的な熱伝達を達成する事ができる。所要熱量の増量と相俟って、熱伝達機能の高度化と熱流量負荷に対応した温度と流量能力を効果的に発揮する。  In other words, heat is absorbed and released in a reversible manner through a temperature difference between the latent heat storage material (1) and the heat medium (2) of the system. Therefore, by varying the required amount (number) of the heat storage body, it is possible to appropriately cope with the load and to achieve efficient heat transfer between the heat medium (2) and the heat storage material (1). Combined with the increase in required heat, it effectively demonstrates the heat transfer function and the temperature and flow capacity corresponding to the heat flow load.

熱媒体と蓄熱体の接触面を介して、蓄熱材への温度伝達で熱の受渡しを行う。熱伝導効率の向上手段として、熱媒体と接触する蓄熱体の厚みを良好な許容厚に設定して、温度伝達抵抗を抑制する。また該蓄熱体の積層効果により熱媒体との接触面の拡大と保持熱量の増量と温度伝達効率の向上を達成できる。一般的に融解は熱伝導度に比例し、熱抵抗に反比例する、熱伝導λと温度伝導率はa=λ/PCの関係原則に起因し、蓄熱体の単位数量の増減に関わる、即ち、蓄熱量の高密度化と高出入力により、設置機器等のCOPの向上に寄与する。従来の球状の合成樹脂プロ−成型カプセルやボ−ドに比べて、単位あたりの蓄熱の温度伝達能を約5倍から16倍に改善し、省スペ−ス化を促進する。実施において、内外温度差△T20℃で、容積140lの蓄熱材の潜熱量と水の比熱量の比較に措ける高温水70℃の熱量は7,000Kcal/Klに対して、該、該系の58℃時の潜熱体5mm×容器量の135lは13.800Kcal/Klであり、密度に於いて保有熱量差は約2倍に値する優位性を発揮し、省スペ−スと省エネ成果が期待できる。  Heat is transferred by transferring the temperature to the heat storage material through the contact surface between the heat medium and the heat storage body. As a means for improving the heat conduction efficiency, the thickness of the heat accumulator that comes into contact with the heat medium is set to a favorable allowable thickness to suppress the temperature transfer resistance. In addition, it is possible to achieve an increase in the contact surface with the heat medium, an increase in the amount of retained heat, and an improvement in temperature transmission efficiency due to the effect of stacking the heat storage elements. Generally, melting is proportional to thermal conductivity, and inversely proportional to thermal resistance. Thermal conduction λ and temperature conductivity are related to the increase / decrease of the unit quantity of the heat accumulator due to the principle of a = λ / PC. Contributes to the improvement of COP of installed equipment, etc. by increasing the density of heat storage and high input / output. Compared to conventional spherical synthetic resin pro-molded capsules and boards, the heat transfer capacity of heat storage per unit is improved from about 5 times to 16 times to promote space saving. In the implementation, the heat quantity of high-temperature water 70 ° C. for comparing the latent heat quantity of the heat storage material with a volume of 140 l and the specific heat quantity of water is 7,000 Kcal / Kl at an internal / external temperature difference ΔT 20 ° C. The latent heat of 5 mm at 58 ° C × 135 l of the container amount is 13.800 Kcal / Kl, and the difference in the amount of heat held in the density is about twice as great, and space saving and energy saving results can be expected. .

熱源及び負荷に係わる潜熱蓄熱材(1)に容器容積に限定されないが、厚み選択例として5mm厚を使用の場合の熱抵抗幅はほぼ水と同等乃至し接近した伝熱効果で良好な吸放熱効果が得られる。潜熱蓄熱容器(1)の両面で熱媒体との熱接触で融解/放熱(1)の伝達の効率を向上できる。採用の蓄熱材酢酸ナトリウム系(1)は所要熱量60Kcal/Kg56℃の定量を定時間内に多量に熱供給機能を得た。一般的に水和物塩は包晶型が多く、融解に融点より高い加熱を必要とするが、調和型変更処置(1c)の併用による熱抵抗を軽減する手段が効果的である。実験値は記載しないが、特に明礬系は調和型であり、所望の加熱温度も降温処置融点に近接できる。又該系にポリカ−ボネ−ト樹脂又は金属アルミニウムの使用により100℃以上の高温に耐え得る事も実証した。太陽熱や夜間電力を動力に大気熱を該蓄熱容器に貯める手段としても、単位潜熱量が大きく、温度伝導度に優れる潜熱型蓄熱装置の構築が容易である。量産メリットで低価格の装置の供給と小型化による利用範囲を拡大して、各分野の冷暖房給湯設備の省スペ−ス化に寄与する。  The latent heat storage material (1) related to the heat source and load is not limited to the container volume, but the heat resistance width when using a 5 mm thickness as an example of thickness selection is almost equal to or close to that of water, and good heat absorption and radiation An effect is obtained. The efficiency of transmission of melting / dissipating heat (1) can be improved by thermal contact with the heat medium on both surfaces of the latent heat storage container (1). The adopted heat storage material sodium acetate type (1) obtained a heat supply function in a large amount within a fixed amount of time with a predetermined heat amount of 60 Kcal / Kg at 56 ° C. In general, the hydrate salt has many peritectic types and requires heating higher than the melting point for melting, but means for reducing the thermal resistance by the combined use of the harmonic change treatment (1c) is effective. Although experimental values are not described, the alum system is particularly harmonious, and the desired heating temperature can be close to the temperature lowering treatment melting point. It has also been demonstrated that the system can withstand high temperatures of 100 ° C. or higher by using polycarbonate resin or metallic aluminum. As a means for storing atmospheric heat in the heat storage container using solar heat or nighttime power, it is easy to construct a latent heat storage device having a large unit latent heat amount and excellent temperature conductivity. It will contribute to the space-saving of air conditioning and hot water supply equipment in various fields by expanding the range of use by supplying low-priced equipment and downsizing with mass production merit.

本発明は、該蓄熱材を中空管内に注入して潜熱蓄熱体(1)とする手段に、液体真空充填方法や点滴ノズル注入法や再固形形状化充填法が採用できる。液体方式は予め、調製した該潜熱蓄熱組成になる溶解物を真空置換機能を応用し、液状の該組成物の充填を行う。固体方式は、予め同様に調製した該潜熱蓄熱組成になる溶解物を固形に形状化したのち、容器空間に挿入する固形化タブレット方式を採用して生産性に対処できる。尚、該蓄熱体は複数を組合わせる積層ユニット化が容易であり、該蓄熱体により構成される装置は熱量の増減等のプロセスで、分割設置やコンパクト化等の簡素化が容易で、大きい熱容量の特徴を有する。更に蓄熱体の増減で構築する装置の機能の効率化を向上する。例えば蓄熱装置の素材はFRP等複合樹脂製やプラスチックタンクの単体の採用すれば、低コストで腐食を防止し、土中への直接埋設や床下・地下室に設置すると断熱保温効果や未利用スペ−スの活用等、多様な断熱手法を可能にして寒冷地での需要効果がある。ヒ−トポンプや廃熱利用装置に組み込んで、寒冷地や太陽熱を熱源とする除湿冷却機能のタイムラグを補う蓄熱装置として有用である。  In the present invention, a liquid vacuum filling method, a drip nozzle injection method, or a resolidified filling method can be adopted as means for injecting the heat storage material into the hollow tube to obtain the latent heat storage body (1). In the liquid method, the prepared liquid having the latent heat storage composition is applied to the liquid composition by applying a vacuum replacement function. The solid method can cope with the productivity by adopting a solidified tablet method in which the dissolved material having the latent heat storage composition prepared in advance is shaped into a solid and then inserted into the container space. In addition, the heat storage body can be easily formed into a laminated unit that combines a plurality of units, and the device constituted by the heat storage body can be easily simplified, such as divided installation or compaction, by a process such as increase or decrease in the amount of heat, and has a large heat capacity. It has the characteristics of. Furthermore, the efficiency improvement of the function of the apparatus constructed | assembled by increase / decrease in a thermal storage body is improved. For example, if the material of the heat storage device is made of a composite resin such as FRP or a single plastic tank, corrosion can be prevented at low cost, and if it is buried directly in the soil or installed under the floor or basement, the heat insulation effect and unused space Various heat insulation methods such as the use of hot water are possible, and there is a demand effect in cold regions. It is incorporated as a heat pump or a waste heat utilization device, and is useful as a heat storage device that compensates for the time lag of the dehumidifying and cooling function using a cold district or solar heat as a heat source.

該蓄熱体の突起物(3)は蓄熱装置内に積層して設置する蓄熱体(1)の密着を防止して、積層物間に熱媒体との接触流路(2)の間隙作用を目的に付帯している。接触面積に比例して、該蓄熱材と熱媒体の温度伝導を接触温度流量の確保で効率を向上できる。突起物(3)の設定手段はその形状、数や先付又/或いは先付後付の手段に限定されない。  The protrusion (3) of the heat storage body prevents adhesion of the heat storage body (1) stacked and installed in the heat storage device, and serves as a gap action of the contact flow path (2) with the heat medium between the stacks. Attached to. In proportion to the contact area, the efficiency of heat conduction between the heat storage material and the heat medium can be improved by ensuring the contact temperature flow rate. The setting means for the projection (3) is not limited to its shape, number, front-end and / or front-end / post-end means.

は入熱及び放熱を行う潜熱蓄熱材を収納する一体成型の中空孔の構成を拡大した断面図である。軟質シ−ト(1a)と中空孔を支えて仕切る柱(1b)よりなる空間で、蓄熱材(1c)を充填する開口断面図である。FIG. 3 is an enlarged cross-sectional view of a structure of an integrally formed hollow hole that houses a latent heat storage material that performs heat input and heat dissipation. It is opening sectional drawing filled with a thermal storage material (1c) in the space which consists of a soft sheet | seat (1a) and the pillar (1b) which supports and partitions a hollow hole. は潜熱蓄熱材を充填した蓄熱体の全体構成を示す斜図である。此処では図示しないが、潜熱蓄熱体(1)は注入口ともにシ−ルドが施されている。These are the oblique views which show the whole structure of the thermal storage body filled with the latent heat storage material. Although not shown here, the latent heat storage body (1) is shielded at both inlets. は蓄熱体(1)を複数を積層した状態を示し、該積層密着防止用部位(3)を示し、熱媒体(2)の流路を確保して、積層又或いは並列により、外部または負荷への温度伝達流量路を形成した状態を示す。Indicates a state in which a plurality of heat accumulators (1) are laminated, indicates the laminated adhesion prevention part (3), secures a flow path of the heat medium (2), and is laminated or parallel to the outside or a load. The state which formed the temperature transmission flow path of this is shown.

本発明の実施例である。
本発明に採用するA〜Bの内、選ばれる酢酸ナトリウム系を適性に調整した組成物の実施例である。比熱0.35[Kcal/Kg/℃]密度平均1.42で放熱量に換算を表1に蓄熱材重量として示す。シ−トの中空間内に蓄熱材(1)を充墳密封して試料とした。加熱温水ヒ−タ−で75℃に昇温した温水の流速を電磁ポンプで一定流量に設定して、吸熱及び放熱の性状について加熱器の入口温度と出口温度をデ−タ−ロガ−で測定した計測値を表1に示す。熱量の所要はDSC計測方法とほぼ、一致した値で結果から実施例に採用の該系(1)の熱量は元相理論数値に近いものである。尚、酢酸ナトリウム3水塩の融点調整になる組成物試料(1)を作成して、繰り返しの実施例では実用を想定して熱履歴の試験を行い、性能の効果について詳細は計測表2に示す。
△T=20℃環境温度差に措いて実施した該系になる潜熱蓄熱体の計測結果は系の原型理論値とほぼ近い値を示した。表1に標記するA記号は、試料1保持容器の蓄熱材は酢酸ナトリウム3水塩組成物、B記号は、試料2同ブロ−成型構造体と酢酸ナトリウム3水塩実施に措いての試料。S、水道水を示す。
It is an Example of this invention.
It is an Example of the composition which adjusted the sodium acetate type | system | group chosen among AB employ | adopted to this invention appropriately. The specific heat is 0.35 [Kcal / Kg / ° C.] The average heat density is 1.42, and the conversion to heat release is shown in Table 1 as the heat storage material weight. A heat storage material (1) was filled and sealed in the middle space of the sheet to prepare a sample. The flow rate of hot water heated to 75 ° C with a heated hot water heater is set to a constant flow rate with an electromagnetic pump, and the inlet and outlet temperatures of the heater are measured with a data logger for the characteristics of heat absorption and heat dissipation. Table 1 shows the measured values. The amount of heat required is almost the same as the DSC measurement method, and the amount of heat of the system (1) employed in the examples is close to the original phase theoretical value. In addition, a composition sample (1) that adjusts the melting point of sodium acetate trihydrate is prepared, and in the repeated examples, a thermal history test is performed assuming practical use. Show.
ΔT = 20 ° C. The measurement result of the latent heat storage body implemented by taking into account the environmental temperature difference showed a value almost close to the original theoretical value of the system. The symbol A shown in Table 1 is a sodium acetate trihydrate composition as the heat storage material of the sample 1 holding container, and the symbol B is a sample prepared for the implementation of the sample 2 same blow-molded structure and sodium acetate trihydrate. S, indicating tap water.

適性に調整の潜熱蓄熱体(1)を積層した蓄熱装置に、FRP製(4)6l試料体積内に試料単位:幅300mm/長600mm/厚0.5mm)を1.2g×3枚(3.6Kg)を積層し、該積層間を2mm或いは摘栓な間隔で熱媒体の流路を確保した装着を表1より選ばれる。該、系固有の融点を有する酢酸ナトリウム水和物を調整して成る潜熱放熱組成物(1)を定量6lの装置に装填した。同じく系固有の融点を有する酢酸ナトリウム水和物を調整して成る潜熱放熱組成物(1)を合成樹脂製ブロ−容器に単位3000ml(4.3Kg)総計重量4.3Kgを水量6lを満たした容器に装着して、熱量体積を6lとした。実施例の潜熱蓄熱材については表1に示す。A,B,Sの各装置に加熱器を設置して、水温を75℃に昇温水を電動ポンプで各試料に循環し、A、Bの熱交換機能について計測では熱伝導度に表2に示す差異を生じた。加熱装置の温水出口と取水口、該装置の入水、出口及び本体に温度センサ−を接続して温度デ−タ−ロガ−により計測。n水量の流量計を取水口に設置し、集水ヘッダ−の出口n水量/秒を計測し、放熱/吸熱の機能に係る系の熱量、融点、及び装置内部温度の項目A,B,Sの平均数値を表2に示す。  1.2g x 3 pieces (3 units of sample: width 300mm / length 600mm / thickness 0.5mm) in a 6L sample volume made of FRP (4) in a heat storage device in which the latent heat storage body (1) adjusted to suitability is laminated .6 kg), and a mounting that secures the flow path of the heat medium at a gap of 2 mm or between the layers is selected from Table 1. The latent heat radiation composition (1) prepared by adjusting sodium acetate hydrate having the inherent melting point of the system was charged into a 6 l apparatus. Similarly, a latent heat dissipating composition (1) prepared by adjusting sodium acetate hydrate having a unique melting point of the system was filled in a synthetic resin blow container with a unit of 3000 ml (4.3 kg) and a total weight of 4.3 kg with a water volume of 6 liters. It was attached to a container and the calorie volume was 6 l. It shows in Table 1 about the latent heat storage material of an Example. A heater is installed in each of the A, B, and S devices, the water temperature is set to 75 ° C., the heated water is circulated to each sample by an electric pump, and the heat exchange function of A and B is measured in terms of thermal conductivity in Table 2. The difference shown was made. A temperature sensor is connected to the hot water outlet and intake port of the heating device, the incoming water of the device, the outlet, and the main body, and measurement is performed with a temperature data logger. n Amount of water flow meter installed at the water outlet, measuring the outlet n water volume / second of the water collection header, items A, B, S of the heat quantity, melting point, and internal temperature of the system related to the function of heat dissipation / endotherm Table 2 shows the average numerical values.

太陽熱、大気熱、廃熱等を利用する潜熱蓄熱材として、高熱量保持の特性と温度伝熱効率の向上で、従来の1/2以下のコンパクト化で、定廉な蓄熱装置化を可能にし、省電力化と温暖化効果ガスの抑制効果に貢献する。各産業及び農業用施設や住宅用の冷暖房及び給湯用蓄熱設備として供給する。As a latent heat storage material that uses solar heat, atmospheric heat, waste heat, etc., it has a high heat retention characteristic and improved temperature heat transfer efficiency. Contributes to power saving and the effect of suppressing greenhouse gases. Supplied as heat storage facilities for air conditioning and hot water supply for industrial and agricultural facilities and houses.

図1〜図3に係る符号
1〜潜熱蓄熱体/1a〜軟質シ−ト・1b〜独立中空間を支える柱・1c〜潜熱蓄熱組成物・2〜熱媒体及び流水経路・3〜突起物部位
【配列表フリ−テキスト】
1 to 3 reference numeral 1-latent heat storage body / 1a-soft sheet-1b-pillar supporting an independent medium space-1c-latent heat storage composition-2 heat medium and flowing water path-3 projection parts [Sequence Listing Free Text]

【配列表】

Figure 2013087276
Figure 2013087276
【配列表】
Figure 2013087276
[Sequence Listing]
Figure 2013087276
Figure 2013087276
[Sequence Listing]
Figure 2013087276

Claims (5)

潜熱蓄熱材とする各々の組成材で融点が摂氏32℃以下(主に7℃〜20℃)の範囲、58.5℃以下(主に35℃〜58℃)の範囲、93.5℃以下(主に70℃〜85℃)の各範囲で転移点を変更して、用途目的に適応するように融点調整を施した潜熱蓄熱材を軟質で軽薄軽量な不透過性合成樹脂シ−ト間の中間に総厚に比例した断面の径状が角又は円状の切口を成し、独立した中空構造複数を並列状に担持した一体射出成型で構成された該中空構造内に、各々の潜熱蓄熱組成物を注入充填し、密閉してなる潜熱蓄熱体である。該シ−トの一方の面に突起部を配置付帯する潜熱蓄熱体に係る特許請求に関する。  Each composition material used as a latent heat storage material has a melting point in the range of 32 ° C. or lower (mainly 7 ° C. to 20 ° C.), 58.5 ° C. or lower (mainly 35 ° C. to 58 ° C.), or 93.5 ° C. or lower. Between the impervious synthetic resin sheets that are soft, light, thin, and lightweight, using a latent heat storage material that has a transition point changed in each range (mainly 70 ° C to 85 ° C) and the melting point adjusted to suit the purpose of use. In the middle of the hollow structure formed by integral injection molding in which the diameter of the cross section proportional to the total thickness forms a square or circular cut, and a plurality of independent hollow structures are supported in parallel, each latent heat It is a latent heat storage body that is filled with a heat storage composition and sealed. The present invention relates to a claim related to a latent heat storage body in which a protrusion is disposed on one surface of the sheet. 融点32℃の組成物が硫酸ナトリウム水和物、融点57.5℃の組成物が酢酸ナトリウム水和物であり、融点94℃の組成物が明礬水和物である。各該組成物の使用目的に機能調整剤が各主材100重量部に対して、相分離阻止剤と破過冷却阻止剤及び転移点変更に係る調製剤の添加量が各0.1重量%以上30重量%の範囲を添加混合してなる潜熱蓄熱材に係る特許請求第1項記載に関する。  A composition having a melting point of 32 ° C. is sodium sulfate hydrate, a composition having a melting point of 57.5 ° C. is sodium acetate hydrate, and a composition having a melting point of 94 ° C. is alum hydrate. For each purpose of use of the composition, the amount of addition of the phase separation inhibitor, the breakthrough cooling inhibitor, and the preparation agent for changing the transition point is 0.1% by weight with respect to 100 parts by weight of the main component for each functional ingredient. The present invention relates to claim 1 relating to a latent heat storage material obtained by adding and mixing the range of 30% by weight or more. 分離防止剤が、合成ゼオライト・パリゴルスカイト・アタパルジャイト・セピオライト・合成スメクタイトで微細な多孔質や繊維状のセラミックスであり、各々の粒度が0.1μから100メッシュの範囲を単独又は複合物を各々0.1重量%以上30重量%の範囲で調合の潜熱蓄熱材に係る特許請求第1項及び第2項の記載に関する。  Anti-separation agents are synthetic zeolite, palygorskite, attapulgite, sepiolite, synthetic smectite, fine porous and fibrous ceramics, each having a particle size in the range of 0.1 μ to 100 mesh. The present invention relates to claims 1 and 2 relating to a latent heat storage material prepared in a range of 1 wt% to 30 wt%. 破過冷却促進に硼酸・コハク酸・フッ化物(リチウム、カリウム、ナトリウム)・酢酸リチウム・明礬・キレ−ト材系(クベロンエチレンジアミン四酢酸/2Na塩ニトリロトリ酢酸・2Na塩トリエタノ−ルアミン)塩類(塩化カリウム/リチウム/ナトリウム)から選ばれるを0.1重量%以上30重量%の範囲で調合を各々の組成物に適性量添加混合し調合の潜熱蓄熱材とする。温度変調材にアンモニウム塩・硝酸ナトリウムを用いた蓄熱材調製に係る特許請求第1項、3項記載に関する。  Boronic acid, succinic acid, fluoride (lithium, potassium, sodium), lithium acetate, alum, chelate material (cuberon ethylenediaminetetraacetic acid / 2Na salt nitrilotriacetic acid, 2Na salt triethanolamine) A suitable amount is added to each composition in the range of 0.1 wt% to 30 wt% selected from potassium chloride / lithium / sodium) and mixed to obtain a latent heat storage material. The present invention relates to claims 1 and 3 relating to preparation of a heat storage material using ammonium salt / sodium nitrate as a temperature modulation material. 容器が、軟質で軽薄軽量の合成樹脂製シ−ト間の中空間に複数の同空間が並列して構成の一体型成型物でる。単体/或いは異なる合成樹脂加工を押出射出成型で有効総厚は2.5mm〜15mmの範囲でシ−ルド処理が施されたポリエチレン、ポリプロピレン、ポリカ−ボネ−ト、ポリフタレン酸エステル等の合成樹脂、或いは硬質アルミニウムを素材とする。積層時の熱媒体の流路を確保する突起物を板面に付帯する蓄熱材容器に係る特許請求第1項記載に関する。  The container is a single-piece molded product having a structure in which a plurality of the same spaces are arranged in parallel between the hollow spaces between the soft, light and light synthetic resin sheets. Single or / or different synthetic resin processing by extrusion injection molding Effective total thickness of 2.5 mm to 15 mm, and a synthetic resin such as polyethylene, polypropylene, polycarbonate, polyphthalate, etc. Alternatively, hard aluminum is used as the material. The present invention relates to claim 1 relating to a heat storage material container in which a protrusion for securing a flow path of a heat medium during lamination is attached to a plate surface.
JP2011239587A 2011-10-14 2011-10-14 Form of latent heat storage body Pending JP2013087276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011239587A JP2013087276A (en) 2011-10-14 2011-10-14 Form of latent heat storage body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011239587A JP2013087276A (en) 2011-10-14 2011-10-14 Form of latent heat storage body

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2013221577A Division JP2014058681A (en) 2013-10-08 2013-10-08 Form of latent heat storage body
JP2013242821A Division JP2014059141A (en) 2013-11-25 2013-11-25 Latent heat storage device

Publications (1)

Publication Number Publication Date
JP2013087276A true JP2013087276A (en) 2013-05-13

Family

ID=48531514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011239587A Pending JP2013087276A (en) 2011-10-14 2011-10-14 Form of latent heat storage body

Country Status (1)

Country Link
JP (1) JP2013087276A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015079891A1 (en) * 2013-11-26 2017-03-16 シャープ株式会社 Heat storage material, heat storage member using the same, storage container, transport / storage container, building material, building
CN107072121A (en) * 2017-05-18 2017-08-18 平湖阿莱德实业有限公司 A kind of quick soaking energy storage radiator structure for eliminating heat wave peak
JP2017161192A (en) * 2016-03-11 2017-09-14 パナソニックIpマネジメント株式会社 Heat storage device and hot water generation device
WO2018168340A1 (en) 2017-03-13 2018-09-20 東邦瓦斯株式会社 Latent-heat storage material composition and latent-heat storage tank
US10119768B2 (en) 2013-08-29 2018-11-06 Panasonic Intellectual Property Management Co., Ltd. Heat storage device and heat storage module including the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5774380A (en) * 1980-10-27 1982-05-10 Matsushita Electric Ind Co Ltd Production of supercooling inhibitor
JPS57198780A (en) * 1981-05-30 1982-12-06 Pentel Kk Heat-accumulating composition
JPS59197486A (en) * 1983-04-26 1984-11-09 Agency Of Ind Science & Technol Composition for heat energy storage
JPS63135747A (en) * 1986-11-26 1988-06-08 Yoshinobu Yamaguchi Heat accumulating body
JPS63178191A (en) * 1987-01-16 1988-07-22 Nok Corp Composite heat storage article
JPH08218063A (en) * 1995-02-10 1996-08-27 Asahi Denka Kogyo Kk Latent heat-storing material composition
JPH10237433A (en) * 1997-02-24 1998-09-08 Netsu Riyou Kaihatsu Kk Latent heat preserving material composition
JP2010121814A (en) * 2008-11-18 2010-06-03 Panasonic Corp Heat storage device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5774380A (en) * 1980-10-27 1982-05-10 Matsushita Electric Ind Co Ltd Production of supercooling inhibitor
JPS57198780A (en) * 1981-05-30 1982-12-06 Pentel Kk Heat-accumulating composition
JPS59197486A (en) * 1983-04-26 1984-11-09 Agency Of Ind Science & Technol Composition for heat energy storage
JPS63135747A (en) * 1986-11-26 1988-06-08 Yoshinobu Yamaguchi Heat accumulating body
JPS63178191A (en) * 1987-01-16 1988-07-22 Nok Corp Composite heat storage article
JPH08218063A (en) * 1995-02-10 1996-08-27 Asahi Denka Kogyo Kk Latent heat-storing material composition
JPH10237433A (en) * 1997-02-24 1998-09-08 Netsu Riyou Kaihatsu Kk Latent heat preserving material composition
JP2010121814A (en) * 2008-11-18 2010-06-03 Panasonic Corp Heat storage device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10119768B2 (en) 2013-08-29 2018-11-06 Panasonic Intellectual Property Management Co., Ltd. Heat storage device and heat storage module including the same
JPWO2015079891A1 (en) * 2013-11-26 2017-03-16 シャープ株式会社 Heat storage material, heat storage member using the same, storage container, transport / storage container, building material, building
JP2017161192A (en) * 2016-03-11 2017-09-14 パナソニックIpマネジメント株式会社 Heat storage device and hot water generation device
WO2018168340A1 (en) 2017-03-13 2018-09-20 東邦瓦斯株式会社 Latent-heat storage material composition and latent-heat storage tank
US11306237B2 (en) 2017-03-13 2022-04-19 Toho Gas Co., Ltd. Latent-heat storage material composition and latent-heat storage tank
CN107072121A (en) * 2017-05-18 2017-08-18 平湖阿莱德实业有限公司 A kind of quick soaking energy storage radiator structure for eliminating heat wave peak
CN107072121B (en) * 2017-05-18 2023-07-04 平湖阿莱德实业有限公司 Quick soaking energy storage heat radiation structure for eliminating heat wave crest

Similar Documents

Publication Publication Date Title
Nie et al. Review on phase change materials for cold thermal energy storage applications
Lizana et al. Advanced low-carbon energy measures based on thermal energy storage in buildings: A review
Du et al. A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges
Socaciu Thermal energy storage with phase change material
CN102777874B (en) Phase change heat accumulation system for generating steam directly and preparation method of phase change heat accumulation agent
Liu et al. Review on solar collector systems integrated with phase‐change material thermal storage technology and their residential applications
JP2013087276A (en) Form of latent heat storage body
JP2006329604A (en) Dry type heat-exchanging thermal accumulator
JP2007225268A (en) Latent heat accumulator provided with heat exchanging function
WO2019061689A1 (en) Cross-season cold and heat storage system
Pasupathy et al. Phase Change Material Based ThermalStorage for Energy Conservation inBuilding Architecture
WO2012139338A1 (en) Lithium battery electric core module and design method of battery package cooling system
Kiplagat et al. Enhancement of heat and mass transfer in solid gas sorption systems
WO2013069318A1 (en) Solar water heater
US11241932B2 (en) Adsorption system
US11029099B2 (en) System and method for thermochemical storage of energy
EP3601923B1 (en) Enhanced tcm production and use
Shukla et al. Latent Heat-Based Thermal Energy Storage Systems: Materials, Applications, and the Energy Market
Pakalka et al. Analysis of possibilities to use phase change materials in heat exchangers-accumulators
JP2014058681A (en) Form of latent heat storage body
Hirano Thermal Energy Storage and Transport
Narayanan et al. Recent advances in adsorption-based heating and cooling systems
JP2014059141A (en) Latent heat storage device
Anand et al. Thermal Energy Storage Using Phase Change Materials: An Overview
Sharma et al. High Temperature Energy Storage and Phase Change Materials: A Review

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130523

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130827