JP2007225268A - Latent heat accumulator provided with heat exchanging function - Google Patents

Latent heat accumulator provided with heat exchanging function Download PDF

Info

Publication number
JP2007225268A
JP2007225268A JP2006075579A JP2006075579A JP2007225268A JP 2007225268 A JP2007225268 A JP 2007225268A JP 2006075579 A JP2006075579 A JP 2006075579A JP 2006075579 A JP2006075579 A JP 2006075579A JP 2007225268 A JP2007225268 A JP 2007225268A
Authority
JP
Japan
Prior art keywords
heat
heat storage
latent
composition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006075579A
Other languages
Japanese (ja)
Inventor
So Yamaguchi
創 山口
Michiko Yamaguchi
美智子 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006075579A priority Critical patent/JP2007225268A/en
Publication of JP2007225268A publication Critical patent/JP2007225268A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Details Of Fluid Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a latent heat accumulation composition and a heat exchange type heat accumulator capable of making a tank and the accumulator, compact in size capable of regulating easily a heat accumulating capacity, and capable of increasing a unit heat accumulation amount. <P>SOLUTION: This latent heat accumulation composition is a composition comprising a sodium acetate hydrate of repeating heat sink/radiation within a range of 83 kcal/l of a required heat quantity at 57°C in the generation of entropy. This heat exchange type heat accumulator is one with sealed with a water flow pipe 2 having aluminum heat transfer blades (fins) 3 in a heat accumulation container 4 and the latent heat accumulation composition, and heat pumped up by a heat pump using inexpensive night electric power is accumulated through the water flow pipe 2 to be used for heating, air conditioning and hot-water supply. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、系固有の融点で相変化で出入りする潜熱の単位熱量が60cal/gと融点58.5℃を有する潜熱蓄熱組成物を用いた暖房及び給湯用の熱交換型蓄熱装置である。安価な夜間電力を利用してヒートポンプで大気熱エネルギーを該蓄熱装置に貯めて、必要時の住宅やビルの暖房や給湯に熱の供給を行う、高効率な熱交換機能を具備する蓄熱装置を得る。  The present invention is a heat exchange type heat storage device for heating and hot water supply using a latent heat storage composition having a unit heat quantity of latent heat entering and exiting by phase change at a system specific melting point and having a melting point of 58.5 ° C. A heat storage device equipped with a high-efficiency heat exchange function that uses inexpensive nighttime electricity to store atmospheric heat energy in the heat storage device with a heat pump and supplies heat to the heating and hot water supply of houses and buildings when necessary obtain.

蓄熱の手段に大規模貯湯槽を除き、従来から一般的に金属製やFRPなど合成樹脂製が用いられている。大気熱を吸収した冷媒を超高圧で圧縮して、発生する熱で、高温水を作るヒートポンプが提案されて、電力の3倍以上の熱効率(COP)で給湯や暖房に実用化している。この方法は選択される自然媒体の使用により従来に比べて、90℃付近の高温水を製造する能力があり、温水45℃の貯湯に比べて、約40%貯湯能力を向上させている。しかしながら高温貯湯の課題として、温度差の大きい冬季、特に外気温が0℃時の貯湯槽は自然放熱による温度ロスは毎時約0.5℃低下する事が知られている。貯湯槽の特性が完全押出し方式であれば、一日の熱損失は内外温度差、貯湯槽の表面積と外気温度にさらされる接触面積の影響を受けて、残存湯量に比例して熱損失も増大していた。周囲温度=供給水温=10℃の条件下で、熱損失は理論上の必要量熱量Kcalに対し熱損失率は実に38.8%に達する事が知られている。しかしながら、需要傾向は多機能化で湯量の需要増大で大型化が進み、設置場所の選定を困難にしている。一方、蓄熱機能を保有しないヒートポンプは、単独では性能上、立ち上がりの温度追従にタイムラグが生じるなど利便性に不都合な課題も抱えていた。  Except for a large-scale hot water tank as a means for storing heat, conventionally, a metal or a synthetic resin such as FRP has been used. A heat pump that compresses a refrigerant that has absorbed atmospheric heat with ultra-high pressure and generates high-temperature water using the generated heat has been proposed and has been put to practical use in hot water supply and heating with a thermal efficiency (COP) that is more than three times the electric power. This method has the ability to produce high-temperature water near 90 ° C. as compared to the conventional method by using a selected natural medium, and improves hot water storage capacity by about 40% compared to hot water stored at 45 ° C. in hot water. However, it is known as a problem of high-temperature hot water storage that the temperature loss due to natural heat dissipation is reduced by about 0.5 ° C. per hour in the hot water storage tank where the temperature difference is large, especially in the case of an outdoor temperature of 0 ° C. If the hot water storage tank is fully extruded, the daily heat loss is affected by the temperature difference between the inside and outside, the surface area of the hot water tank and the contact area exposed to the outside air temperature, and the heat loss increases in proportion to the remaining hot water volume. Was. Under the condition of ambient temperature = feed water temperature = 10 ° C., it is known that the heat loss actually reaches 38.8% of the theoretical required amount of heat Kcal. However, the demand trend is multifunctional, and the demand for hot water increases, resulting in an increase in size, making it difficult to select an installation location. On the other hand, a heat pump that does not have a heat storage function has problems that are inconvenient in terms of performance, such as a time lag in temperature tracking at the stand-up.

発明が解決しょうとする課題Problems to be solved by the invention

本発明の蓄熱装置に採用の潜熱蓄熱材は物質固有の融点が変化する事なく、液化した状態から温度が融点より下がると、エントロピーの生成状態が終了するまで、潜熱を放熱して質量に応じたエネルギーの放出と吸収を行う。また融解時は蓄熱物質(1)が完全に液化するまで、熱を吸収する性状の可逆性を保有する。該蓄熱装置に使用する電解水和組成物(1)の系は水の容量に比べて比重で1.42倍、周囲温度=供給水温=10℃の条件時、内外温度差10℃時の単位熱量は水の約3倍でありコンパクトで熱量が大きい利点があり、装置小型化することで放熱負荷を削減できる。該、熱交換方式の特徴に使用の水質が他の物質による汚染の影響を排除する。すなわち送水管内(2)は常に外部より高圧が維持される状態で汚染浸透を防止できる。従って衛生及び生理上の安全性が確保できる。また該装置は内部に装着するチューブ翼支持構造体(3)に蓄熱材(1)が担持されるので、熱媒体(2)との接触面積が増大して熱交換速度が高まり、単位熱流量も著しく向上して、ヒートポンプの利便性や熱供給能力も更に向上する。また小型化で表面積による熱損失を減少できる。従来型の貯湯タンク体積に比べて約45%軽減、省スペース、省エネルギーに寄与する。  The latent heat storage material employed in the heat storage device of the present invention does not change the specific melting point of the substance, and when the temperature falls from the liquefied state to the temperature lower than the melting point, it dissipates the latent heat until the end of the entropy generation state, depending on the mass. Release and absorb energy. Moreover, at the time of melting, it retains the reversibility of the property of absorbing heat until the heat storage material (1) is completely liquefied. The system of the electrolytic hydration composition (1) used in the heat storage device is a unit when the specific gravity is 1.42 times the capacity of water, the ambient temperature is equal to the supply water temperature = 10 ° C, and the internal / external temperature difference is 10 ° C. The amount of heat is about three times that of water, and it has the advantage of being compact and having a large amount of heat. The quality of the water used in the heat exchange system eliminates the influence of contamination by other substances. That is, in the water pipe (2), contamination penetration can be prevented while maintaining a high pressure from the outside. Therefore, hygiene and physiological safety can be ensured. In addition, since the heat storage material (1) is carried on the tube blade support structure (3) mounted inside the apparatus, the contact area with the heat medium (2) is increased, the heat exchange rate is increased, and the unit heat flow rate is increased. As a result, the convenience and heat supply capacity of the heat pump are further improved. Also, heat loss due to surface area can be reduced by downsizing. Compared to the conventional hot water storage tank volume, it is reduced by about 45%, contributing to space and energy savings.

本発明の装置内に具備する潜熱放熱物質(1)の酢酸ナトリウム水和物の元原融点は58.5℃である。圧縮型ヒートポンプで加熱能力70〜85℃の機能を有する機器の温度帯に適合性を保有して、暖房や給湯用の蓄熱装置に有用。  The original original melting point of sodium acetate hydrate of the latent heat dissipating material (1) provided in the apparatus of the present invention is 58.5 ° C. It is compatible with the temperature range of equipment that has a heating capacity of 70 to 85 ° C with a compression heat pump, and is useful for heat storage devices for heating and hot water supply.

潜熱蓄熱材(1)の水和物は水との密度比で1.42倍以上、△T10℃の所要熱量及び放熱量で1.6倍から5.0倍と大きく、蓄熱にかかる装置の小型化を可能とした。該蓄熱物質は物質固有の融点で吸熱して融解、放熱しながら凝固の熱反応を顕すもので、吸熱と放熱は可逆的な状態変化が終了するまで、大きい蓄熱量と一定温度を持続する性状を有している。本発明は単独又は相和した混合物を主材に、独自に調理調合した系の水和物を適用して運用した。該放熱体の酢酸ナトリウム水和塩の性状の理論値は融点58.5℃、潜熱量60カロリー/グラムである。しかしながら、一般的に電解質水和物(1)には程度の差はあるが、固体の熱伝導度は0.35m.kと良好ではなかった。  The latent heat storage material (1) hydrate has a density ratio with water of 1.42 times or more, and ΔT10 ° C required heat amount and heat release amount is 1.6 times to 5.0 times larger. Miniaturization is possible. The heat storage material absorbs and melts and dissipates heat at the inherent melting point of the material, revealing the thermal reaction of solidification, and the heat absorption and heat dissipation maintain a large amount of heat storage and constant temperature until the reversible state change is completed. have. In the present invention, a hydrate of a system prepared by cooking independently was applied to a main material of a single or a mixed mixture. The theoretical value of the properties of the sodium acetate hydrate salt of the radiator is a melting point of 58.5 ° C. and a latent heat of 60 calories / gram. However, generally, the electrolyte hydrate (1) has a degree of difference, but the thermal conductivity of the solid is 0.35 m. k was not good.

手段として通水管(2)に担持する熱伝導翼(3)の単位当たりの使用数量を可変することで、蓄熱材(1)と熱媒(2)の熱伝導表面積の接触単位を拡大したり減少できる手段を用いて解決している。すなわち、系の熱交換時の表面抵抗を減少させる方法を用いて、エントロピーの生成を大幅に短縮し、集熱成果を上げる事ができる。また蓄熱組成物に耐熱及び防錆処置と構造体にイオン化腐食防止を採用して、熱履歴機能、機器の安定保全を確保し、省スペース蓄熱装置の特徴を有する。
特許第2890197号 特許第2566445号 特開平10−237433
As a means, the contact unit of the heat conduction surface area of the heat storage material (1) and the heat medium (2) can be expanded by changing the quantity of heat conduction blades (3) carried on the water pipe (2) per unit. It is solved by using means that can be reduced. That is, by using a method for reducing the surface resistance during the heat exchange of the system, the generation of entropy can be greatly shortened and the heat collection result can be improved. In addition, the heat storage composition adopts heat and rust prevention treatment and ionized corrosion prevention for the structure, ensuring the heat history function, stable maintenance of equipment, and has the features of space saving heat storage device.
Japanese Patent No. 2890197 Japanese Patent No. 2566445 JP-A-10-237433

研究文献4Research Literature 4

日本建築学会学術研究資料Architectural Institute of Japan Academic Research Materials

課題を解決するための手段Means for solving the problem

本発明の熱交換容器に選択される部位の通水管及び該管(2)に担持する熱伝導の素材が良好な金属翼(3)及びこれを内蔵する容器等にCu、AL、SUS、Feより選択して用いることができる。  Cu, AL, SUS, Fe in the water pipe of the part selected for the heat exchange container of the present invention, the metal blade (3) having good heat conduction material carried on the pipe (2), and the container containing the same It can be selected and used.

採用の主材が酢酸ナトリウム水和物系(1)であり、潜熱蓄熱組成物(1)は固有の融点以上で液化し、それ以下では凝固の可逆的エントロピーを生成する。熱源及び負荷から送られるエネルギーは通水管を介して担持する熱伝導翼から蓄熱材に熱伝達される。すなわち、通水温度(2)が蓄熱組成物固有の融点より高ければ、蓄熱組成物(1)は熱を吸収しながら液化して、蓄熱状態を保ち、系の融点温度より低くくなれば、原子の組み替えにより物質の融点の熱量を放熱して、凝固(固化)と共に放熱は完了する。エントロピーの生成過程で出入りする潜熱を暖房や給湯に利用する。放熱後は再加熱により繰り返し使用できる。  The main material adopted is the sodium acetate hydrate system (1), and the latent heat storage composition (1) liquefies above its inherent melting point, below which it generates reversible entropy of solidification. The energy sent from the heat source and the load is transferred to the heat storage material from the heat conduction blade carried through the water pipe. That is, if the water flow temperature (2) is higher than the specific melting point of the heat storage composition, the heat storage composition (1) liquefies while absorbing heat, maintains the heat storage state, and becomes lower than the melting point temperature of the system, The amount of heat at the melting point of the substance is released by recombination of atoms, and the release of heat is completed with solidification (solidification). The latent heat that enters and exits the entropy generation process is used for heating and hot water supply. After heat dissipation, it can be used repeatedly by reheating.

すなわち、熱の出入りは該系の蓄熱材(1)と通水管(2)に担持した熱伝達翼(3)を介して、蓄熱材(1)と熱媒(2)間で可逆的に蓄熱及び放熱の熱交換が行われる。所要する熱伝達翼(3)の使用数を可変する手段、すなわち熱媒体(2)及び蓄熱材(1)との単位接触面積を増大すれば、熱交換の速度が高まり、熱流量負荷に対応した給湯、暖房、空気調和へ効果的に対応する。  That is, heat enters and exits reversibly between the heat storage material (1) and the heat medium (2) via the heat storage blade (3) carried on the heat storage material (1) and the water flow pipe (2). And heat exchange for heat dissipation. If the unit contact area between the heat transfer blade (3) and the heat medium (2) and the heat storage material (1) is increased, the heat exchange speed can be increased to cope with the heat flow load. It effectively responds to hot water supply, heating and air conditioning.

発明の効果The invention's effect

本発明は熱源から熱媒体(流水)が通水管(2)を通じて蓄熱容器内に導入し、該通水管に銅やアルミなどの熱伝導が良好な金属翼(3)を複数担持した支持体(以下「チューブ翼支持体)と呼ぶ)と該支持体(3)に潜熱蓄熱物(1)が担持される事でより蓄熱材(1)と熱媒(2)の接触面積が増加して蓄熱/放熱の熱交換の効率が更に向上する。安価な夜間電力を利用してヒートポンプでくみ上げた熱媒を流通する通水管に担持した金属翼(3)を介して、内在する潜熱蓄熱部(1)に貯めて負荷使用時にヘッダー(6)で効率よく集量して供給される。カプセル蓄熱交換方式に比べて、単位あたりの蓄熱容量を約30%以上増量となり、省スペース化を促進した。例えば内外温度差△T20℃の設定において、容積100lの蓄熱材の潜熱量と水の比熱量の比較に措ける高温水85℃の熱量は6,500Kcal/Klに対して、該、該系の58℃時の潜熱量は8,520Kcal/Klであり、保有熱量差は約2,000Kcal/Klに達する。また省スペースによる熱損失の削減と省エネを達成した。本発明は、小単位(ユニット)の組み合わせ方式により、メンテナンス及び設置施工性を容易にする外、所要熱量の増減、分割設置を簡単に行えるなど、コンパクト化と大容量の特徴を有する。温水の供給/蓄熱の熱交換性能はチューブ翼支持体(3)に蓄熱材が担持されて、接触面積を保持しているので、熱媒体(2)給湯分水、集水ヘッダー(6)に設置の温度センサーによる制御でポンプや電磁調整弁を制御して効率的な温度管理と給配水量の供給を行う手段で解決している。更に複数のユニットを採用すれば機能を倍増できる。設置において床下や屋根裏など、これまで未利用スペース場所の活用と対応を可能としている。多彩な断熱手法を可能とする構造特性を生かして、結露防止や寒冷地の熱損失を減少させて、ヒートポンプ蓄熱装置としての寒冷地向け特徴を有するものである。  In the present invention, a heat medium (running water) from a heat source is introduced into a heat storage container through a water pipe (2), and the water pipe carries a plurality of metal blades (3) having good heat conduction such as copper and aluminum ( (Hereinafter referred to as “tube blade support”) and the support (3) carrying the latent heat storage material (1) increases the contact area between the heat storage material (1) and the heat medium (2), thereby storing heat. / The heat exchange efficiency of heat dissipation is further improved through the latent heat storage part (1) that is present through the metal blade (3) carried on the water flow pipe that circulates the heat medium pumped by the heat pump using cheap nighttime power. The amount of heat storage per unit is increased by about 30% or more compared to the capsule heat storage exchange system, and space saving is promoted. For example, in a setting of an internal / external temperature difference ΔT20 ° C., a heat storage material with a volume of 100 l The amount of heat of 85 ° C high-temperature water for comparison between the amount of latent heat and the specific heat of water is 6,500 Kcal / Kl, while the amount of latent heat at 58 ° C of the system is 8,520 Kcal / Kl, The difference reaches about 2,000 Kcal / Kl.Also achieved the reduction of heat loss and energy saving due to space saving.The present invention not only facilitates maintenance and installation workability by combining small units (units), It has the features of compactness and large capacity, such as increase / decrease of required heat quantity and easy installation of divided parts, etc. The heat exchange performance of hot water supply / heat storage is supported by the heat storage material on the tube blade support (3). The temperature of the heat medium (2) hot water supply diversion and collection header (6) is controlled by the temperature sensor installed in the heating medium (2) to control the pump and electromagnetic regulating valve for efficient temperature management and supply of water supply and distribution Means to do In addition, multiple units can be used to double the functions, making it possible to utilize and respond to previously unused spaces such as under floors and attics during installation. By taking advantage of this, it is possible to prevent condensation and reduce heat loss in cold regions, and to have features for cold regions as a heat pump heat storage device.

該装置内(4)に通水管(2)の流れ方向に従って、直角に担持した複数の熱伝達翼支持体(3)に該蓄熱材(1)が密着する状態で充填し、接触面積を保持して装着される。接触面積に比例して該蓄熱材(1)と熱媒体(2)の熱伝導効果が更に向上する。すなわち翼数(3)の増減調整で所要流量の確保や効率的な給湯及び暖房の負荷を補う。  According to the flow direction of the water pipe (2) in the apparatus (4), the heat storage material (1) is filled in close contact with a plurality of heat transfer blade support members (3) supported at right angles to maintain the contact area. To be installed. The heat conduction effect of the heat storage material (1) and the heat medium (2) is further improved in proportion to the contact area. That is, the increase / decrease adjustment of the number of blades (3) ensures the required flow rate and compensates for efficient hot water supply and heating loads.

本発明の実施例である。
本発明に採用するA〜Bの内、選ばれる酢酸ナトリウム系を適性に調整した組成物の実施例である。比熱0.35[Kcal/Kg/℃]密度平均1.42で放熱量に換算するに表1に蓄熱材重量を示す。該チューブ翼式熱交換蓄熱容器に充填密封試料とした。電気ヒーターで75℃に昇温した温水の流速を電磁ポンプで一定流量に設定して、吸熱及び放熱の性状について加熱器の入口温度と出口温度をデーターロガーで測定した計測値を表1に示す。熱量の所要はDSC計測方法とほぼ、一致した値で結果から実施例に採用の該系(1)の熱量は元相理論数値に近いものであった。尚、酢酸ナトリウム3水塩の融点調整になる組成物試料(1)を作成して、繰り返しの実施例では実用を想定して熱履歴の試験を行い、性能の効果について詳細は計測表2に示す。
△T=20℃環境温度に措いて実施した該系になる潜熱蓄熱体の計測結果は系の原型理論値とほぼ近い値を示した。表1に標記するA記号は、試料1チューブ翼支持体と酢酸ナトリウム3水塩組成物、B記号は、試料2カプセル構造体と酢酸ナトリウム3水塩実施に措いての試料。S、水道水のみ(比較用)

Figure 2007225268
It is an Example of this invention.
It is an Example of the composition which adjusted the sodium acetate type | system | group chosen among AB employ | adopted to this invention appropriately. Table 1 shows the weight of the heat storage material in terms of heat dissipation with a specific heat of 0.35 [Kcal / Kg / ° C.] density average of 1.42. The tube-wing heat exchange heat storage container was used as a sealed sample. Table 1 shows the measured values of the temperature at the inlet and outlet of the heater measured by the data logger for the heat absorption and heat dissipation properties with the flow rate of hot water heated up to 75 ° C by an electric heater set to a constant flow rate by an electromagnetic pump. . The amount of heat required was almost the same as the DSC measurement method, and the amount of heat of the system (1) employed in the examples was close to the theoretical value of the original phase. In addition, a composition sample (1) that adjusts the melting point of sodium acetate trihydrate is prepared, and in the repeated examples, a thermal history test is performed assuming practical use. Show.
ΔT = 20 ° C. The measurement result of the latent heat storage body, which was implemented under the environment temperature, showed a value almost close to the original theoretical value of the system. The symbol A in Table 1 is the sample 1 tube blade support and sodium acetate trihydrate composition, and the symbol B is the sample 2 capsule structure and sample for the implementation of sodium acetate trihydrate. S, tap water only (for comparison)
Figure 2007225268

熱交換を有する蓄熱装置として、鉄製容器(4)6,000mlの体積内にアルミ製熱伝導翼(寸法幅150/高50/厚0.5mm×n)を通水管の流れ方向に対して、直角に5mm間隔で担持しているを支持体(3)を装着したを表1より選ばれる。該、系固有の融点を有する酢酸ナトリウム水和物を調整して成る潜熱放熱組成物(1)を定量5l(7Kg)を充填した。同じく系固有の融点を有する酢酸ナトリウム水和物を調整して成る潜熱放熱組成物(1)をプラスチック製カプセル容器に単位250g総計重量2,250gを水量2.750mlを満たしたした容器に装着して、体積を6,000mlとした。実施例の潜熱蓄熱材については表1に示す。以上A,B,Sの各装置に電気式加熱器を設置して、水温を75℃に昇温水を電動ポンプで各試料に循環し、A、Bの熱交換機能について計測では熱伝導度に表2に示す差異を生じた。加熱装置の温水出口と取水口、該装置の入水、出口及び本体に温度センサーを接続して温度データーロガーにより計測した。水量の流量計を取水口に設置し、集水ヘッダーの出口水量/秒を計測した。放熱/吸熱の機能に係る系の熱量、融点、及び装置内部温度の項目A,B,Sの平均数値を表2に示す。

Figure 2007225268
As a heat storage device having heat exchange, an aluminum heat conduction blade (size width 150 / height 50 / thickness 0.5 mm × n) is passed through a volume of 6,000 ml in an iron container (4) with respect to the flow direction of the water pipe. Table 1 shows that the support (3) is carried at right angles at intervals of 5 mm. The latent heat radiation composition (1) prepared by adjusting sodium acetate hydrate having a specific melting point of the system was charged with a fixed amount of 5 l (7 Kg). Similarly, the latent heat dissipating composition (1) prepared by adjusting sodium acetate hydrate having a specific melting point is mounted in a plastic capsule container, and a unit of 250 g in a total weight of 2,250 g is filled in a container filled with 2.750 ml of water. The volume was 6,000 ml. It shows in Table 1 about the latent heat storage material of an Example. As described above, an electric heater is installed in each of the A, B, and S devices, the water temperature is set to 75 ° C., the heated water is circulated to each sample by an electric pump, and the heat exchange function of A and B is measured in terms of thermal conductivity. The differences shown in Table 2 were made. A temperature sensor was connected to the hot water outlet and intake port of the heating device, the water inlet and outlet of the device, and the main body, and the temperature was measured with a temperature data logger. A water flow meter was installed at the water outlet, and the outlet water volume / second of the water collection header was measured. Table 2 shows the average values of items A, B, and S of the heat quantity, melting point, and internal temperature of the system related to the function of heat dissipation / endotherm.
Figure 2007225268

発明の効果The invention's effect

熱源及び負荷に拘わる金属製通水管(2)に熱伝導が良好な金属翼(3)の必要数を担持した支持体と該支持体に潜熱蓄熱組成物(1)が接触した状態で担持した内設構成により、熱媒(2)や融解潜熱(1)からのエネルギーを効率よく供給する。採用の蓄熱材酢酸ナトリウム系(1)は所要熱量60cal/gを一定温度56℃を一定時間放熱を維持する熱供給機能を有する。夜間電力を利用して熱源機で大気熱を該蓄熱容器に貯める運用方法として、潜熱割合の大きい熱交換型蓄熱装置。蓄熱量と熱交換供給機能で装置の小型化で省スペースに寄与する。  A metal water pipe (2) related to a heat source and a load was supported in a state where the necessary number of metal blades (3) having good heat conduction was supported and the latent heat storage composition (1) in contact with the support. The internal configuration efficiently supplies energy from the heat medium (2) and the latent heat of fusion (1). The adopted heat storage material sodium acetate type (1) has a heat supply function of maintaining a heat release of a required heat amount of 60 cal / g at a constant temperature of 56 ° C. for a fixed time. A heat exchange type heat storage device having a large latent heat ratio as an operation method for storing atmospheric heat in the heat storage container with a heat source device using nighttime power. The amount of heat storage and heat exchange supply function contribute to space saving by downsizing the device.

の図面は熱を取り入れたり、放熱する熱交換蓄熱単体の斜図である。熱源機より導かれる熱流水を通水する金属製通水管(2)に担持したアルミ熱伝導翼(3)の複数を配置した支持体に潜熱蓄熱組成物(1)が担持した状態で充足してなる熱交換機能を具足してなる蓄熱装置の構成斜図である。This drawing is a perspective view of a heat exchange heat storage unit that takes in heat or dissipates heat. Satisfied in a state where the latent heat storage composition (1) is supported on a support body in which a plurality of aluminum heat conduction blades (3) supported on a metal water pipe (2) that conducts hot running water led from a heat source device is supported. It is a configuration oblique view of a heat storage device that is provided with a heat exchange function. は通水管(2)と放熱翼(3)の配置を示す熱交換蓄熱装置の平面図である。These are top views of the heat exchange heat storage apparatus which shows arrangement | positioning of a water flow pipe (2) and a radiation blade (3). は集熱/分水ヘッダー(6)に接続した熱交換蓄熱単体を重積した構成を示すユニット断面図。These are unit sectional drawings which show the structure which accumulated the heat exchange heat storage single-piece | unit connected to the heat collecting / dividing header (6).

符号の説明Explanation of symbols

図1〜図3に係る符号
1〜潜熱蓄熱組成物/潜熱放熱
2〜通水導入用流通パイプ及び熱媒体
3〜アルミ製等伝熱翼/担持した支持体
4〜蓄熱容器部
5〜ユニット断熱材
6〜集熱/分水ヘッダー
1 to FIG. 3, reference numeral 1-latent heat storage composition / latent heat radiation 2-flow pipe for introducing water flow and heat medium 3-aluminum heat transfer blade / supported support 4-heat storage container 5-unit heat insulation Material 6-Heat Collection / Diversion Header

Claims (2)

熱源及び負荷部等に外接する通水管と蓄熱材の充填用に開閉自在な開口部を有して、密閉される容器内に良好な伝達金属翼の複数が通水管に担持された支持体と該支持体に融点で相変化により吸放熱する系に電解質水和塩の調整混合物が担持した状態で充填された熱交換機能を具備した潜熱蓄熱装置に関する。  A water pipe that circumscribes the heat source and the load section, and a support body that has an opening that can be freely opened and closed for filling the heat storage material, and a plurality of good transmission metal blades are carried on the water pipe in a sealed container; The present invention relates to a latent heat storage device having a heat exchange function in which a system that absorbs and dissipates heat by phase change at the melting point is loaded in a state in which an adjustment mixture of electrolyte hydrate is supported. 相変化する調整混合化合物の100重量%に対してCHCOONa結晶とHOの混合重量比60対40のの範囲にある系が混合比70重量%以上、パリゴルスカイトの構造式が(Mg,AL)SiO10(OH)・4HO又は水和マグネシウムシリケートの構造式が2MgO・3SiO・nHOを主成分とした系が多孔質繊維状セラミックスで各々の粒度が0.1μから100メッシュの範囲から選ばれるを単独又は複合して、0.01〜20重量%、コハク酸、HOOC(CHCOOH又はLiFから選ばれるを0.01〜10重量%、ベンゾトリアゾールC1.0〜10%の範囲で構成される調整混合物を充填になる請求項1に関する。A system in which the mixing weight ratio of CH 3 COONa crystals and H 2 O is 60 to 40 with respect to 100% by weight of the adjusted mixed compound undergoing phase change has a mixing ratio of 70% by weight or more, and the structural formula of palygorskite is (Mg, AL) 2 SiO 10 (OH) · 4H 2 O or hydrated magnesium silicate is a porous fibrous ceramic whose main component is 2MgO · 3SiO 2 · nH 2 O and each particle size is from 0.1 μm. Selected from the range of 100 mesh, alone or in combination, 0.01 to 20% by weight, selected from succinic acid, HOOC (CH 2 ) 2 COOH or LiF, 0.01 to 10% by weight, benzotriazole C 2 It relates to claim 1, which is filled with a conditioning mixture composed of H 3 N 3 1.0 to 10%.
JP2006075579A 2006-02-21 2006-02-21 Latent heat accumulator provided with heat exchanging function Pending JP2007225268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006075579A JP2007225268A (en) 2006-02-21 2006-02-21 Latent heat accumulator provided with heat exchanging function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006075579A JP2007225268A (en) 2006-02-21 2006-02-21 Latent heat accumulator provided with heat exchanging function

Publications (1)

Publication Number Publication Date
JP2007225268A true JP2007225268A (en) 2007-09-06

Family

ID=38547244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006075579A Pending JP2007225268A (en) 2006-02-21 2006-02-21 Latent heat accumulator provided with heat exchanging function

Country Status (1)

Country Link
JP (1) JP2007225268A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059141A (en) * 2013-11-25 2014-04-03 Yoshinobu Yamaguchi Latent heat storage device
CN104422325A (en) * 2013-08-22 2015-03-18 上海工电能源科技有限公司 Straight pipe and circular barrel type heat accumulator and manufacturing method thereof
CN106403289A (en) * 2016-11-16 2017-02-15 广东万家乐燃气具有限公司 Condensation heat exchange device
KR101815958B1 (en) * 2016-11-25 2018-02-21 한국과학기술원 Passive containment cooling system for pressurized water reactor using phase-change material
CN108413797A (en) * 2018-05-04 2018-08-17 大连理工大学 Rib-type phase transformation stores heat release integral heat exchanger
CN110514047A (en) * 2019-09-26 2019-11-29 北京民利储能技术有限公司 A kind of more equipment joint distributed trough-electricity thermal storage and energy accumulation devices
CN110686340A (en) * 2019-09-26 2020-01-14 洛阳伟东智慧能源工程有限公司 Multilayer composite heat pump energy storage device
CN110686309A (en) * 2019-09-26 2020-01-14 洛阳伟东智慧能源工程有限公司 Multi-scene energy heat supply system based on multilayer composite energy storage device and supply method
CN111811017A (en) * 2020-07-20 2020-10-23 北京市伟业供热设备有限责任公司 Step heat storage and supply system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516035A (en) * 1978-07-20 1980-02-04 Mitsubishi Electric Corp Heat storage material
JPH04260794A (en) * 1991-02-15 1992-09-16 Technol Res Assoc Super Heat Pump Energ Accum Syst Heat accumulator and corrosion preventing method therefor
JPH1121257A (en) * 1997-04-07 1999-01-26 Novartis Ag Catalyst for aldol type reaction
JP2001172617A (en) * 1999-12-20 2001-06-26 Nkk Corp TETRA-n-BUTYLAMMONIUM BROMIDE HYDRATE-BASED HEAT STORAGE MATERIAL
JP2005337664A (en) * 2004-05-31 2005-12-08 Daikin Ind Ltd Heat storage unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516035A (en) * 1978-07-20 1980-02-04 Mitsubishi Electric Corp Heat storage material
JPH04260794A (en) * 1991-02-15 1992-09-16 Technol Res Assoc Super Heat Pump Energ Accum Syst Heat accumulator and corrosion preventing method therefor
JPH1121257A (en) * 1997-04-07 1999-01-26 Novartis Ag Catalyst for aldol type reaction
JP2001172617A (en) * 1999-12-20 2001-06-26 Nkk Corp TETRA-n-BUTYLAMMONIUM BROMIDE HYDRATE-BASED HEAT STORAGE MATERIAL
JP2005337664A (en) * 2004-05-31 2005-12-08 Daikin Ind Ltd Heat storage unit

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104422325A (en) * 2013-08-22 2015-03-18 上海工电能源科技有限公司 Straight pipe and circular barrel type heat accumulator and manufacturing method thereof
JP2014059141A (en) * 2013-11-25 2014-04-03 Yoshinobu Yamaguchi Latent heat storage device
CN106403289A (en) * 2016-11-16 2017-02-15 广东万家乐燃气具有限公司 Condensation heat exchange device
KR101815958B1 (en) * 2016-11-25 2018-02-21 한국과학기술원 Passive containment cooling system for pressurized water reactor using phase-change material
CN108413797A (en) * 2018-05-04 2018-08-17 大连理工大学 Rib-type phase transformation stores heat release integral heat exchanger
CN110514047A (en) * 2019-09-26 2019-11-29 北京民利储能技术有限公司 A kind of more equipment joint distributed trough-electricity thermal storage and energy accumulation devices
CN110686340A (en) * 2019-09-26 2020-01-14 洛阳伟东智慧能源工程有限公司 Multilayer composite heat pump energy storage device
CN110686309A (en) * 2019-09-26 2020-01-14 洛阳伟东智慧能源工程有限公司 Multi-scene energy heat supply system based on multilayer composite energy storage device and supply method
CN110514047B (en) * 2019-09-26 2024-01-26 北京民利储能技术有限公司 Multi-equipment combined distributed off-peak electricity heat storage and energy storage device
CN111811017A (en) * 2020-07-20 2020-10-23 北京市伟业供热设备有限责任公司 Step heat storage and supply system and method
CN111811017B (en) * 2020-07-20 2022-03-01 北京热力装备制造有限公司 Step heat storage and supply system and method

Similar Documents

Publication Publication Date Title
JP2007225268A (en) Latent heat accumulator provided with heat exchanging function
Abokersh et al. Review of the phase change material (PCM) usage for solar domestic water heating systems (SDWHS)
Purohit et al. Inorganic salt hydrate for thermal energy storage application: A review
Lin et al. Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials
Liu et al. Review on solar collector systems integrated with phase‐change material thermal storage technology and their residential applications
JP2006329604A (en) Dry type heat-exchanging thermal accumulator
CN104879831B (en) A kind of solar energy phase transition wall heat pump heat distribution system
CN101004308A (en) Cold, heat accumulator of composite phase change
SE532504C2 (en) Thermal solar collector for supply of heat and / or cooling
Han et al. Preparation and application of composite EG/Ba (OH) 2· 8 H2O form‐stable phase change material for solar thermal storage
Tony Recent frontiers in solar energy storage via nanoparticles enhanced phase change materials: Succinct review on basics, applications, and their environmental aspects
JP2008020177A (en) Heat storage system
JP4159975B2 (en) Energy storage type heat pump water heater
CN201000294Y (en) Composite phase-change cold-storage heat accumulator
CN109659644A (en) A kind of self radiation type emergency cell group of its composition of phase-change accumulation energy monomer
JP2005164124A5 (en)
JP2013087276A (en) Form of latent heat storage body
CN111350292A (en) Multi-energy complementary composite phase-change energy-storage wall system
Li et al. Thermochemical energy conversion behaviour in the corrugated heat storage unit with porous metal support
AU2017201791A1 (en) Phase change material composition
CN101254447A (en) Method for producing gas hydrated compound and device
CN209515928U (en) A kind of self radiation type emergency cell group
CN201116844Y (en) Heat-pipe reinforced metal hydride heat-storage device
Hirano Thermal energy storage and transport
Moulakhnif et al. Renewable approaches to building heat: exploring cutting-edge innovations in thermochemical energy storage for building heating

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090210

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130