JPS63178191A - Composite heat storage article - Google Patents

Composite heat storage article

Info

Publication number
JPS63178191A
JPS63178191A JP62007727A JP772787A JPS63178191A JP S63178191 A JPS63178191 A JP S63178191A JP 62007727 A JP62007727 A JP 62007727A JP 772787 A JP772787 A JP 772787A JP S63178191 A JPS63178191 A JP S63178191A
Authority
JP
Japan
Prior art keywords
heat storage
storage material
heat
conductive polymer
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62007727A
Other languages
Japanese (ja)
Other versions
JP2524988B2 (en
Inventor
Yasuyori Sasaki
康順 佐々木
Tomio Matsumoto
松本 富夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP62007727A priority Critical patent/JP2524988B2/en
Publication of JPS63178191A publication Critical patent/JPS63178191A/en
Application granted granted Critical
Publication of JP2524988B2 publication Critical patent/JP2524988B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/023Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Surface Heating Bodies (AREA)

Abstract

PURPOSE:To obtain a small-sized composite heat storage article with controlled agglomeration of the heat storage material due to repeated heat cycles, by using a conductive polymeric material and a latent-heat storage material. CONSTITUTION:A polymeric material comprising rubber (e.g., ethylene/propylene rubber) or resin (e.g., PE), and conductive particles comprising metal or carbon black particles are dissolved or dispersed in a solvent, to which a latent-heat storage material (e.g., a powder of CH3COONa.1OH2O-NaHPO3 heat storage material) having a latent heat of 30-90cal/g is added to form a dispersion. This dispersion in poured into a flat-panel mold and the solvent is allowed to evaporate, thus giving a composite heat storage article in sheet form.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は複合蓄熱体に関し、特に、全体を小型とする
ことのできる複合蓄熱体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a composite heat storage body, and particularly to a composite heat storage body that can be made compact as a whole.

〔従来技術およびその問題点〕[Prior art and its problems]

一般に、冷房および暖房用の蓄熱材料は、蓄熱材料の単
体では役に立たず、熱交換系のシステムとして機能して
いるので、一般には熱媒体の通路に置く場合か、あるい
は蓄熱材層に熱交換器を入れて置く場合のように外部熱
源との間の熱交換を必要としている。
In general, heat storage materials for cooling and heating are not useful on their own, but function as a heat exchange system. It requires heat exchange with an external heat source, such as when the

このために冷房および暖房装置の全体が大型化してしま
いコスト高となり、特に、蓄熱材料を保温材や家庭用暖
房器として使用している場合には小型とすることが要求
されているにも係わらず大型化してしまうという問題点
を有していた。
For this reason, the overall size of the cooling and heating equipment becomes large, resulting in high costs.In particular, when heat storage materials are used as heat insulators or home heaters, there is a demand for miniaturization. However, there was a problem in that it became large in size.

この発明は前記のような従来のもののもつ問題点を解決
したものであって、全体を小型とすることのできる複合
蓄熱体を提供することを目的とする。
This invention solves the problems of the conventional ones as described above, and aims to provide a composite heat storage body that can be made compact as a whole.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題点を解決するためにこの発明は、導電性高分
子材料と潜熱型蓄熱材とを複合して構成する手段を採用
したものである。
In order to solve the above-mentioned problems, the present invention adopts a means of combining a conductive polymer material and a latent heat type heat storage material.

〔作用〕[Effect]

この発明は前記の手段を採用したことにより、成形し易
く任意の形状とすることができるとともに、長時間に渡
って保温効果を発揮することができることとなる。
By employing the above-mentioned means, the present invention can be easily molded into any desired shape, and can exhibit a heat retention effect for a long period of time.

〔実施例] 以下、図面に示すこの発明の実施例について説明する。〔Example] Embodiments of the invention shown in the drawings will be described below.

この発明は、複合蓄熱体を潜熱型蓄熱材と導電性高分子
材料とから構成するものであり、まず、この発明で用い
られる潜熱型蓄熱材の例としては、有機系にあっては、
炭素数が10以上の直鎖状炭化水素、連鎖の高級アルコ
ール、連鎖の脂肪酸、連鎖の脂肪酸エステルなどがあり
、潜熱量は30〜50cal/gである。
In this invention, a composite heat storage body is constructed from a latent heat type heat storage material and a conductive polymer material. First, as an example of the latent heat type heat storage material used in this invention, in the organic type,
There are linear hydrocarbons having 10 or more carbon atoms, chain higher alcohols, chain fatty acids, chain fatty acid esters, etc., and the amount of latent heat is 30 to 50 cal/g.

また、無機系では多くの水和物にみられ、例えば、塩化
カルシウム・6水和物、炭酸ナトリウム・IO水和物、
硫酸ナトリウム・10水和物、リン酸水素2ナトリウム
・12水和物、硝酸亜鉛・6水和物、硝酸カルシウム・
6水和物、チオ硫酸ナトリウム・5水和吻、硝酸ニッケ
ル・6水和物、酢酸ナトリウム・3水和物等があり、潜
熱量は30〜90 c a I / gである。
In addition, it is found in many inorganic hydrates, such as calcium chloride hexahydrate, sodium carbonate IO hydrate,
Sodium sulfate decahydrate, disodium hydrogen phosphate decahydrate, zinc nitrate hexahydrate, calcium nitrate
There are hexahydrate, sodium thiosulfate pentahydrate, nickel nitrate hexahydrate, sodium acetate trihydrate, etc., and the latent heat amount is 30 to 90 ca I/g.

また、導電性高分子材料としては、高分子材料の中に導
電性粒子を充填することにより、体積固有抵抗値が10
−3〜103Ω・lの材料を用いる。
In addition, as a conductive polymer material, by filling the polymer material with conductive particles, the volume resistivity value can be increased to 10.
-3 to 103Ω·l material is used.

この場合、抵抗値は前記導電性粒子として金属を用いた
場合には、その充填量を変えることにより10−3〜1
03Ω・1の範囲で調整することができ、また、カーボ
ンブラックを用いた場合には10’ −10”Ω・Ωの
範囲となる。
In this case, when metal is used as the conductive particles, the resistance value can be adjusted from 10-3 to 1 by changing the filling amount.
It can be adjusted in the range of 0.3Ω·1, and when carbon black is used, it is in the range of 10′-10″Ω·Ω.

上記の場合、導電性粒子の充填量が増えるにつれて抵抗
値が低くなり、そして、充填された導電性粒子の連鎖を
通して電気が流れることとなる。
In the above case, the resistance value decreases as the amount of filled conductive particles increases, and electricity flows through the chain of filled conductive particles.

この導電性粒子分散モデルを第1図に示し、電圧の印加
方向は任意である。
This conductive particle dispersion model is shown in FIG. 1, and the direction of voltage application is arbitrary.

また、導電性粒子を充填する場合でなく、第2図に示す
ように高分子材料1と導電性皮膜または金属板2との積
層を行なった場合であっても良いものである。
Furthermore, instead of filling the conductive particles, the polymer material 1 and the conductive film or metal plate 2 may be laminated as shown in FIG.

上記の各場合の発熱量は通常のジュール熱であるので電
圧に比例し、電流の2乗に比例する・こととなる。
Since the amount of heat generated in each of the above cases is normal Joule heat, it is proportional to the voltage and proportional to the square of the current.

蓄熱材の高分子材料への分散方法としては、高分子材料
が液状(オリゴマーまたは未架橋)または溶液の場合に
は、簡単な撹拌装置により混ぜることが可能である。
As a method for dispersing the heat storage material into the polymeric material, if the polymeric material is liquid (oligomer or uncrosslinked) or solution, it can be mixed using a simple stirring device.

例えば、CHs COONa ・3 Hz ONaHP
O,系蓄熱材の粉末(平均粒径0.15mm)をEPD
Mのトルエン溶液に分散することができ、高分子材料が
ロールミルなどの混合機が使える場合、すなわち、ゴム
状物質であれば、このような方法でも良いものである。
For example, CHs COONa ・3 Hz ONaHP
O, type heat storage material powder (average particle size 0.15 mm) is EPD
If the polymer material can be dispersed in a toluene solution of M and a mixer such as a roll mill can be used, that is, if it is a rubbery material, such a method may be used.

また、高分子材料中に分散しないで蓄熱材と積層したり
、蓄熱材を高分子膜(シート)で包み込んでも良いもの
である。
Alternatively, the heat storage material may be laminated with the heat storage material without being dispersed in the polymer material, or the heat storage material may be wrapped in a polymer film (sheet).

但し、蓄熱材と複合する高分子材料は蓄熱材が加熱され
て液状となった時、その流失を抑制する機能をもってい
なければならず、そのために、高分子材料のガラス転移
温度が蓄熱材の融点よりも高いこと、高分子材料の融点
が蓄熱材の融点よりも高いこと、および、高分子材料は
熱硬化型または加硫可能なゴムであって三次元網目構造
であること、のうちの1つ以上の条件が必要となる。
However, the polymeric material composited with the heat storage material must have the ability to suppress the loss of the heat storage material when it is heated and becomes liquid. The melting point of the polymer material is higher than the melting point of the heat storage material, and the polymer material is a thermosetting or vulcanizable rubber and has a three-dimensional network structure. One or more conditions are required.

また、保温材を用いる場合に、保温材は、一般的には熱
伝導率の小さいものが有効であり、高分子材料、セラミ
ックスおよび多孔質材料、不織布などが用いられる。保
温材を用いることにより、放熱速度を小さくすることが
できる。
Furthermore, when a heat insulating material is used, it is generally effective to use a heat insulating material with low thermal conductivity, and polymer materials, ceramics, porous materials, nonwoven fabrics, and the like are used. By using a heat insulating material, the heat dissipation rate can be reduced.

したがって、蓄熱材から放出された熱が徐々に使えるよ
うになるので長時間に渡って所定の温度に保つことがで
きるが、この場合の温度上昇は低くなるものである。
Therefore, the heat released from the heat storage material can be used gradually, so that a predetermined temperature can be maintained for a long time, but the temperature rise in this case is low.

[実験例−1(a)] まず、この実験で使用した巳PDMの配合組成を示すと
、 EP(エチレンプロピレンゴム)22 ・・・・・・100重量都(日本合成ゴム製)ケッチン
ブラックEC・・・・・・15重量部亜鉛華(特3号)
  ・・・・・・5重量部S         ・・・
・・・1.5重量部促進剤 ペンタメチレンジチオカルバミン酸ヒベリジン塩・・・
・・・2重量部 上記組成のEPDMを200gと、トルエン1000g
とを21の撹拌機付きフラスコに入れ、EPDMが十分
溶解するまで撹拌した(24時間)。
[Experiment Example-1 (a)] First, the blending composition of the Snake PDM used in this experiment is as follows: EP (ethylene propylene rubber) 22...100 Ketchin Black EC (manufactured by Japan Synthetic Rubber)・・・・・・15 parts by weight Zinc white (Special No. 3)
...5 parts by weight S...
...1.5 parts by weight Accelerator pentamethylene dithiocarbamate hiberidine salt...
...2 parts by weight 200g of EPDM having the above composition and 1000g of toluene
were placed in a flask equipped with a stirrer (No. 21) and stirred until the EPDM was sufficiently dissolved (24 hours).

つぎに、蓄熱材としてC)(z COON a・3Ht
 O/NaHPO4(重量比96/4)の粉末(平均粒
径0. 15gm)を90gを加え、1時間、撹拌混合
した。
Next, as a heat storage material C) (z COON a・3Ht
90 g of O/NaHPO4 (weight ratio 96/4) powder (average particle size 0.15 gm) was added and mixed with stirring for 1 hour.

混合後、この溶液をテフロン平板型に流し込みトルエン
を減圧下(40mHg)にて蒸発させ、100X60X
20+wの板状に成形し、そして、この板を10kg/
c−の圧力下で80°Cにて30分間熱処理することで
前記EPDMを加硫して複合蓄熱体を得た。
After mixing, pour this solution into a Teflon plate mold, evaporate the toluene under reduced pressure (40 mHg), and
Formed into a plate shape of 20+w, and this plate weighed 10kg/
The EPDM was vulcanized by heat treatment at 80° C. for 30 minutes under a pressure of c- to obtain a composite heat storage body.

この複合蓄熱体の成形シートに電極用の銀ペースト(ド
ータイトD−550(ff倉化成■製))を5■巾塗布
し、リード線を出し、50Hz、20Vの交流を印加し
た(第3図参照)。
A 5-inch width of silver paste for electrodes (Dotite D-550 (manufactured by FF Kura Kasei)) was applied to the molded sheet of this composite heat storage body, lead wires were taken out, and an alternating current of 50 Hz and 20 V was applied (Fig. 3). reference).

この交流の印加後のシートの測温点での温度変化を第4
図に示す。
The temperature change at the temperature measurement point of the sheet after the application of this alternating current is measured by the fourth
As shown in the figure.

この場合、蓄熱材の融点は58.5°C1高分子材料と
してEPDM(加硫シート、寸法、100x50X10
閤)とした。
In this case, the melting point of the heat storage material is 58.5°C. The polymer material is EPDM (vulcanized sheet, dimensions: 100x50x10
閤).

そして、実験の結果として、比較例−1(実験例−1(
a)のうちの蓄熱材を含まないゴムシート)と比較する
と蓄熱材の潜熱により一定の温度を維持していることが
わかり、効果が認められた。
As a result of the experiment, Comparative Example-1 (Experimental Example-1)
When compared with (a), a rubber sheet that does not contain a heat storage material, it was found that a constant temperature was maintained due to the latent heat of the heat storage material, and the effect was recognized.

[実験例−1(ロ)] 前記実験例−1(a)で作成した蓄熱体を、多孔率40
%のPTFEシート(厚さ1.5am)で被覆した複合
蓄熱体を得た。
[Experimental Example 1 (b)] The heat storage body prepared in Experimental Example 1(a) was prepared with a porosity of 40
% PTFE sheet (thickness 1.5 am) was obtained.

前記実験例−1(a)と同様に、複合蓄熱体の表面の中
央部の測温点での温度を測定したところ、第4図に示す
ように、保温性があり、蓄熱材の放熱による温度上昇を
長時間に渡って維持していることが確かめられた。
In the same manner as in Experimental Example 1 (a) above, the temperature at the temperature measurement point in the center of the surface of the composite heat storage material was measured, and as shown in Figure 4, it was found that it had heat retaining properties and was due to the heat radiation of the heat storage material. It was confirmed that the temperature increase was maintained for a long time.

但し、表面温度は実験例−1(a)に比べて低いが、長
時間に渡って一定の温度を保持した。
However, although the surface temperature was lower than that in Experimental Example 1(a), a constant temperature was maintained for a long period of time.

また、前記実験例−1(b)において、比較例としては
実験例−1(a)のうちの蓄熱材を入れないゴムシート
を作成し、加熱、放熱を同様に、ゴム表面の中央部の測
温点での温度計測により調べ、この結果、通電停止後に
10秒で温度の低下が見られた。
In addition, in Experimental Example 1(b), as a comparative example, a rubber sheet without heat storage material in Experimental Example 1(a) was created, and heating and heat radiation were similarly applied to the central part of the rubber surface. The temperature was measured at the temperature measuring point, and as a result, a decrease in temperature was observed 10 seconds after the electricity supply was stopped.

これは実験例−1(a)の比較例−1と同様である。This is the same as Comparative Example 1 of Experimental Example 1(a).

すなわち、上記実験例−1(a)にあっては導電ゴムと
蓄熱材とで複合蓄熱体を構成したものであり、また、実
験例−1■)にあっては導電ゴムと蓄熱材と保温材とで
複合蓄熱体を構成したものであり、そして、比較例−1
としては加硫されている導電ゴムのみを用いた。
In other words, in Experimental Example 1(a) above, a composite heat storage body was constructed of conductive rubber and a heat storage material, and in Experimental Example 1(2), a conductive rubber, a heat storage material, and a heat insulator were constructed. Comparative Example-1
Only vulcanized conductive rubber was used.

[実験例−2〕 まず、この実験で使用したポリエチレン組成物の組成を
示すと、 ポリエチレン(マーレックス50) ・・・・・・70重量部 ポリエチレン(ヘキストPA560) ・・・・・・30重量部 ケッチンブラック・・・・・・16重量部上記組成のポ
リエチレン組成物200gと、トルエン1000gとを
22の撹拌機付きフラスコに入れ、液温を110°Cに
してポリエチレンをトルエンに十分溶解するまで撹拌し
た(2時間)。
[Experiment Example-2] First, the composition of the polyethylene composition used in this experiment is as follows: Polyethylene (Marlex 50) 70 parts by weight Polyethylene (Hoechst PA560) 30 parts by weight Part Kettin black...16 parts by weight 200 g of the polyethylene composition with the above composition and 1000 g of toluene were placed in a flask with a stirrer, and the liquid temperature was raised to 110°C until the polyethylene was sufficiently dissolved in the toluene. Stirred (2 hours).

つぎに、硝酸セルロースを1g加えて溶解し、続いて、
蓄熱材CH,COONa ・3H,O/NaHPO−(
重量比96/4)の粉末(平均粒径0.15鵬)を90
g加え、1時間、撹拌混合した。
Next, 1 g of cellulose nitrate was added and dissolved, and then,
Heat storage material CH, COONa ・3H, O/NaHPO-(
Powder (weight ratio 96/4) (average particle size 0.15) was added to 90
g and stirred and mixed for 1 hour.

前記蓄熱材は、80°Cで溶解し、球状になり、ポリエ
チレンのトルエン溶液中に分散していた。
The heat storage material melted at 80° C., became spherical, and was dispersed in a polyethylene toluene solution.

この混合物を80’Cに保温してある金型に流し込み、
トルエンを蒸発し、10’OX 100X2mのシート
を作成した。このようにして得られた複合蓄熱体を前記
実験例−1(a)および実験例−2(ロ)と同様にリー
ド線を出し、50Hz、25Vの交流を印加して発熱、
放熱特性を測定した。
Pour this mixture into a mold kept at 80'C,
Toluene was evaporated and a 10'OX 100X2m sheet was prepared. The composite heat storage body thus obtained was heated with a lead wire in the same manner as in Experimental Example 1 (a) and Experimental Example 2 (b), and an alternating current of 50 Hz and 25 V was applied to generate heat.
The heat dissipation characteristics were measured.

この交流の印加後のシートの温度変化を第5図に示す。FIG. 5 shows the temperature change of the sheet after application of this alternating current.

この場合、PE(ポリエチレン)の融点は126”C1
蓄熱材の融点は58°Cである。
In this case, the melting point of PE (polyethylene) is 126"C1
The melting point of the heat storage material is 58°C.

また、比較例−2としては実験例−2の蓄熱材および硝
酸セルロースを含まないものを用いた。
In addition, as Comparative Example 2, one that did not contain the heat storage material of Experimental Example 2 and cellulose nitrate was used.

そして、実験の結果として比較例−2と比較すると温度
の下降に長時間を要し、保温効果が認められた。
As a result of the experiment, when compared with Comparative Example 2, it took a long time to lower the temperature, and a heat retention effect was observed.

[実験例−3コ 前記実験例−2と同じポリエチレン組成物400gを1
60°Cに保温したニーグーに入れ、これに蓄熱剤とし
てカルナバワックス2号(融点82〜85.5°C)2
00gを入れ、40r−p−mで10分間混合した。
[Experiment Example 3] 400 g of the same polyethylene composition as in Experiment Example 2 was
Place in a Nigu kept at 60°C and add carnauba wax No. 2 (melting point 82-85.5°C) as a heat storage agent.
00g and mixed for 10 minutes at 40rpm.

この混合物を取り出し、熱プレス法により、1100X
100X10の板状に成形し、そして、前記各実験例と
同様にリード線を出し、50Hz、30Vの交流を印加
し、発熱、放熱特性を測定した。          
        4この交流の印加後のシートの温度変
化を第6図に示す。
This mixture was taken out and heated to 1100×
It was molded into a 100×10 plate shape, and the lead wires were taken out in the same manner as in each of the experimental examples described above, and an alternating current of 50 Hz and 30 V was applied to measure the heat generation and heat radiation characteristics.
4. Figure 6 shows the change in temperature of the sheet after the application of this alternating current.

この場合、比較例−3として前記実験例−2と同様なポ
リエチレン(PR)組成物を熱プレス法により100X
100X10+mの板状に成形したものを用いた。
In this case, as Comparative Example-3, a polyethylene (PR) composition similar to that of Experimental Example-2 was heated to 100×
A plate molded into a size of 100×10+m was used.

そして、実験の結果、比較例−3と比較すると温度の下
降に長時間を要し、保温効果が認められた。
As a result of the experiment, when compared with Comparative Example 3, it took a long time to lower the temperature, and a heat retention effect was observed.

〔発明の効果〕〔Effect of the invention〕

この発明は前記のように構成したことにより、蓄熱材を
融解する熱源を電気発熱にすることで、小型の蓄熱体と
することができ、導電性高分子と複合化することにより
、高分子の易成形性を生かしてシート状をはじめとして
任意の形状の蓄熱体を作ることができ、また、導電性高
分子に蓄熱材を分散せしめた場合、熱サイクルによる蓄
熱材の凝集を防止することができるなどのすぐれた効果
を存するものである。
With the above-described configuration, this invention can be made into a compact heat storage body by using electric heat as the heat source for melting the heat storage material, and by combining it with a conductive polymer, it can be made into a small heat storage body. Taking advantage of its easy formability, it is possible to create heat storage bodies of any shape, including sheet shapes, and when heat storage materials are dispersed in conductive polymers, it is possible to prevent agglomeration of the heat storage materials due to thermal cycles. It has excellent effects such as:

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は導電性粒子の分散モデルを示す図、第2図は導
電性高分子材料と導電性皮膜または金属板との積層状態
を示す図、第3図は成形シートを示す図1.第4図は実
験例−1の結果を示す図、第5図は実験例−2の結果を
示す図、第6図は実験例−3の結果を示す図である。 1・・・・・・導電性高分子材料 2・・・・・・導電性皮膜または金属板第1図 G ■ 第2図 と 第3図 銀ベースト 第4図 50Hz、20V交′R震圧、印加時間(min)第5
図 50Hz、25V交2.@H,cp7Io 14間(m
in)第6図 通 電 停 止
Fig. 1 shows a dispersion model of conductive particles, Fig. 2 shows a laminated state of a conductive polymer material and a conductive film or metal plate, and Fig. 3 shows a molded sheet. FIG. 4 is a diagram showing the results of Experimental Example-1, FIG. 5 is a diagram showing the results of Experimental Example-2, and FIG. 6 is a diagram showing the results of Experimental Example-3. 1... Conductive polymer material 2... Conductive film or metal plate Figure 1 G ■ Figures 2 and 3 Silver based Figure 4 50Hz, 20V AC'R seismic pressure , application time (min) 5th
Figure 50Hz, 25V AC 2. @H, cp7Io between 14 (m
in) Figure 6: Power outage

Claims (7)

【特許請求の範囲】[Claims] (1)導電性高分子材料と潜熱型蓄熱材とを複合して構
成したことを特徴とする複合蓄熱体。
(1) A composite heat storage body comprising a composite of a conductive polymer material and a latent heat type heat storage material.
(2)前記導電性高分子材料は、ゴムまたは樹脂に導電
性粒子を分散混合した導電性粒子分散導電性複合材であ
る特許請求の範囲第1項記載の複合蓄熱体。
(2) The composite heat storage body according to claim 1, wherein the conductive polymer material is a conductive composite material in which conductive particles are dispersed and mixed in rubber or resin.
(3)前記導電性高分子材料は、導電性皮膜または金属
を積層した導電性高分子複合材である特許請求の範囲第
1項記載の複合蓄熱体。
(3) The composite heat storage body according to claim 1, wherein the conductive polymer material is a conductive polymer composite material in which a conductive film or a metal is laminated.
(4)前記導電性高分子材料と前記蓄熱材とは、蓄熱材
の粉末を導電性高分子に分散混合して複合してある特許
請求の範囲第1項記載の複合蓄熱体。
(4) The composite heat storage body according to claim 1, wherein the conductive polymer material and the heat storage material are composited by dispersing and mixing heat storage material powder into the conductive polymer.
(5)前記導電性高分子材料と前記蓄熱材とは、蓄熱材
のマイクロカプセルを導電性高分子に分散混合して複合
してある特許請求の範囲第1項記載の複合蓄熱体。
(5) The composite heat storage body according to claim 1, wherein the conductive polymer material and the heat storage material are composited by dispersing and mixing microcapsules of the heat storage material into the conductive polymer.
(6)前記導電性高分子材料と前記蓄熱材とは、蓄熱材
を袋に封入して導電性高分子と積層して複合してある特
許請求の範囲第1項記載の複合蓄熱体。
(6) The composite heat storage body according to claim 1, wherein the conductive polymer material and the heat storage material are composited by enclosing the heat storage material in a bag and laminating it with the conductive polymer.
(7)前記導電性高分子材料と前記蓄熱材とは、蓄熱材
融液を導電性高分子に分散混合して複合してある特許請
求の範囲第1項記載の複合蓄熱体。
(7) The composite heat storage body according to claim 1, wherein the conductive polymer material and the heat storage material are composited by dispersing and mixing a heat storage material melt into a conductive polymer.
JP62007727A 1987-01-16 1987-01-16 Complex heat storage Expired - Lifetime JP2524988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62007727A JP2524988B2 (en) 1987-01-16 1987-01-16 Complex heat storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62007727A JP2524988B2 (en) 1987-01-16 1987-01-16 Complex heat storage

Publications (2)

Publication Number Publication Date
JPS63178191A true JPS63178191A (en) 1988-07-22
JP2524988B2 JP2524988B2 (en) 1996-08-14

Family

ID=11673741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62007727A Expired - Lifetime JP2524988B2 (en) 1987-01-16 1987-01-16 Complex heat storage

Country Status (1)

Country Link
JP (1) JP2524988B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991013839A2 (en) * 1990-03-07 1991-09-19 Paul Spiller Wilkins Improvements relating to heat retaining materials
KR100364766B1 (en) * 2000-03-02 2002-12-18 한국에너지기술연구원 Heating and heat storage apparatus using plastic for heat conduction and storage
NL1037049C2 (en) * 2009-06-19 2010-12-21 Capzo Internat B V HOLDER FILLED WITH HEAT ACCUMULATING PHASE TRANSITION MATERIAL.
JP2013087276A (en) * 2011-10-14 2013-05-13 Yoshinobu Yamaguchi Form of latent heat storage body
NL1039455C2 (en) * 2012-03-09 2013-09-10 Hendrik Glastra HOLDER FILLED WITH HEAT ACCUMULATING MATERIAL.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726389A (en) * 1980-07-24 1982-02-12 Ritsukaa Kk Inserting substance for preventing breakage of heat accumulating vessel
JPS6335286U (en) * 1986-08-25 1988-03-07

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726389A (en) * 1980-07-24 1982-02-12 Ritsukaa Kk Inserting substance for preventing breakage of heat accumulating vessel
JPS6335286U (en) * 1986-08-25 1988-03-07

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991013839A2 (en) * 1990-03-07 1991-09-19 Paul Spiller Wilkins Improvements relating to heat retaining materials
WO1991013839A3 (en) * 1990-03-07 1991-10-31 Paul Spiller Wilkins Improvements relating to heat retaining materials
KR100364766B1 (en) * 2000-03-02 2002-12-18 한국에너지기술연구원 Heating and heat storage apparatus using plastic for heat conduction and storage
NL1037049C2 (en) * 2009-06-19 2010-12-21 Capzo Internat B V HOLDER FILLED WITH HEAT ACCUMULATING PHASE TRANSITION MATERIAL.
WO2010147457A2 (en) 2009-06-19 2010-12-23 Capzo International B.V. Container filled with heat accumulating phase change material
WO2010147457A3 (en) * 2009-06-19 2011-11-03 Capzo International B.V. Container filled with heat accumulating phase change material
JP2013087276A (en) * 2011-10-14 2013-05-13 Yoshinobu Yamaguchi Form of latent heat storage body
NL1039455C2 (en) * 2012-03-09 2013-09-10 Hendrik Glastra HOLDER FILLED WITH HEAT ACCUMULATING MATERIAL.

Also Published As

Publication number Publication date
JP2524988B2 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
US3412358A (en) Self-regulating heating element
FI80820C (en) Self-regulating electric heating device
US5622792A (en) Additives for extruding polymer electrolytes
JPH0428743B2 (en)
JPS633422B2 (en)
US4742867A (en) Method and apparatuses for heat transfer
US9765201B2 (en) Composition of microwavable phase change material
KR101584450B1 (en) Phase change composition containing carbon nano materials and preparation method thereof
Su et al. Preparation and properties of ethylene-acrylate salt ionomer/polypropylene antistatic alloy
JPS63178191A (en) Composite heat storage article
JPS5918804B2 (en) heat sensitive element
US3700597A (en) Dielectric compositions
JPH01225663A (en) Conductive resin composition
JPS59122524A (en) Composition having positive temperature characteristics of resistance
JP2542233B2 (en) Planar heating element and method of manufacturing the same
WO2014064519A2 (en) A new composition of microwavable phase change material
JPH10199663A (en) Heat generating composition
JPS59219886A (en) Panel heater
JPS6237903A (en) Manufacture of positive resistance temperature coefficient heat generating resin composition
JP2610474B2 (en) Planar heating element and method of manufacturing the same
JPS58223209A (en) Conductive resin composition for panel heater
CN117777704A (en) Phase-change pouring sealant with high thermal conductivity and electrical insulation as well as preparation method and application thereof
JPS61198590A (en) Self-temperature controlling heater
JPH01304684A (en) Temperature self controlling heat radiating composition
JPH09237672A (en) Self-temperature control heating element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term