JPH01304684A - Temperature self controlling heat radiating composition - Google Patents

Temperature self controlling heat radiating composition

Info

Publication number
JPH01304684A
JPH01304684A JP13499888A JP13499888A JPH01304684A JP H01304684 A JPH01304684 A JP H01304684A JP 13499888 A JP13499888 A JP 13499888A JP 13499888 A JP13499888 A JP 13499888A JP H01304684 A JPH01304684 A JP H01304684A
Authority
JP
Japan
Prior art keywords
elastomer
carbon black
resin
crystalline resin
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13499888A
Other languages
Japanese (ja)
Inventor
Takahito Ishii
隆仁 石井
Tadataka Yamazaki
山崎 忠孝
Nobuyuki Hirai
伸幸 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13499888A priority Critical patent/JPH01304684A/en
Publication of JPH01304684A publication Critical patent/JPH01304684A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Thermistors And Varistors (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To prepare a temperature self controlling heat radiating composition with a good flexibility with low cost by mixing and kneading a crystalline resin, an elastomer having higher heat resistance than the resin, and a surface- graphitized carbon black. CONSTITUTION:A crystalline resin e.g., a low density polyethylene with melting point about 110 deg.C, an elastomer having higher heat resistance than the resin e.g., a chlorinated polyethylene-type thermally plastic elastomer in a prescribed amount respectively are mixed each other and pre-kneaded by a hot roll, a surface-graphitized inert carbon black in a prescribed amount is added to the mixture, and the resulting mixture is kneaded. By this work, the crystalline resin is retained in the three dimensional molecular chain of the elastomer while the resin is resolved in the elastomer and further the inert carbon black is retained in the solid solution of the resin and the elastomer. Due to the surface property of the carbon black, the carbon black is prevented from cohering when electricity is conducted between electrodes, and cross-linking effect as same as a costly cross-linking by a radioactive ray is attained. High flexibility of the composition can also be attained by addition of the elastomer.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電気カーペット等の暖房器具に用いられる自
己温度制御発熱体組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a self-temperature-controlling heating element composition for use in heating appliances such as electric carpets.

従来の技術 従来のこの稲の自己温度制御発熱体組成物は、低密度ポ
リエチレン等の結晶性樹脂と、モーグルL (CABO
T製、粒子径24m!、DBP吸油量60 a o /
 100 g、P H3,0)等の表面に官能基を有す
る活性カーボンブラックとを混練したのち放射線架橋し
て形成されていた。結晶性樹脂と、活性カーボンブラッ
クとを混練しただけの発熱体組成物では、電圧を連続的
に、あるいは、繰り返し印加すると抵抗値が徐々に増加
し、ついには全く発熱しなくなるという大きな課題を有
していた。
2. Prior Art The conventional self-temperature control heating element composition of this rice plant is composed of a crystalline resin such as low density polyethylene and Mogul L (CABO).
Made by T, particle size 24m! , DBP oil absorption 60 ao/
It was formed by kneading active carbon black having a functional group on the surface, such as 100 g, P H3,0), and then crosslinking with radiation. A heating element composition that is simply kneaded with crystalline resin and activated carbon black has a major problem in that when a voltage is applied continuously or repeatedly, the resistance value gradually increases and eventually no heat is generated at all. Was.

その原因としては、活性カーボンブラックが結晶性樹脂
中に均一に分散されることにより生じた、活性カーボン
ブラックと結晶性樹脂とから成る導通パスが、電圧の連
続・繰り返し印加により誘起される活性カーボンブラッ
クの部分的凝集(分散性の低下)により断たれるからと
考えられた。
The cause of this is that the activated carbon black is uniformly dispersed in the crystalline resin, resulting in a conductive path between the activated carbon black and the crystalline resin, which is induced by continuous and repeated application of voltage. This was thought to be due to partial aggregation of black (decreased dispersibility).

こうしたカーボンブラックの凝集は、それ自体の活性度
(すなわち、表面に極性官能基を有しかつこの数が多い
活性なカーボンブラックはど凝集力が大きい。)と、よ
り大きな要因として、カーボンブラックの分散媒である
結晶性樹脂の低い耐熱性に起因していると思われる。
This agglomeration of carbon black is caused by its own activity (that is, active carbon black with a large number of polar functional groups on its surface has a large cohesive force) and a larger factor of carbon black. This seems to be due to the low heat resistance of the crystalline resin that is the dispersion medium.

一段に、自己温度制御発熱体の発熱飽和温度は、結晶性
樹脂の融点よりも約2O−jo’c低く設定される。こ
れは、自己温度制御性(PTC特性)が結晶性樹脂の融
点における比容積の変化に起因しているからであり、適
正な温度設定と思われる。
Furthermore, the heat generation saturation temperature of the self-temperature-controlled heating element is set to be about 2O-jo'c lower than the melting point of the crystalline resin. This is because the self-temperature controllability (PTC characteristic) is caused by a change in specific volume at the melting point of the crystalline resin, and this seems to be an appropriate temperature setting.

しかしながら、この発熱飽和温度というものは、自己温
度制御性発熱体組成物の全体のマクロな温度であり、前
記導通パスを形成する結晶性樹脂部のミクロな温度は、
それ以上、場合によっては融点近傍に達していると思わ
れる。結晶性樹脂は、融点以上では急激な物性(カーボ
ンブラックの分散媒としては特に粘性)の低下を起こす
。よって、結晶性樹脂だけでは、カーボンブラックを分
散保持することは本質的に困雛であると思われる。
However, this exothermic saturation temperature is the macroscopic temperature of the entire self-temperature-controlling heating element composition, and the microscopic temperature of the crystalline resin portion forming the conductive path is
If the temperature exceeds that level, the melting point may be reached in some cases. When the crystalline resin exceeds its melting point, its physical properties (particularly viscosity when used as a dispersion medium for carbon black) rapidly decrease. Therefore, it seems that it is essentially difficult to disperse and maintain carbon black using only a crystalline resin.

このため、従来例に示したように、実用化されている発
熱体組成物は、結晶性樹脂と活性カーボンブラックとを
混練したのち、放射線架橋をして形成されていた。
For this reason, as shown in the conventional examples, heating element compositions that have been put into practical use are formed by kneading a crystalline resin and activated carbon black and then crosslinking the mixture with radiation.

放射線架橋の効果としては、結晶性樹脂の分子マトリッ
クスを2次元から3次元構造体にして耐熱性を向上させ
る(融点近傍での急激な物性低下を防止する。)ととも
に、結晶性樹脂と活性カーボンブラックとを化学的に結
合する(そのためには表面に極性官能基を有する活性カ
ーボンブラックを用いる必要があり、結晶性樹脂と活性
カーボンブラックの表面極性官能基が放射線により励起
されて反応する。)ことにより活性カーボンブラックが
凝集するのを阻止することと考えられた。
The effect of radiation crosslinking is to change the molecular matrix of the crystalline resin from a two-dimensional structure to a three-dimensional structure, thereby improving heat resistance (preventing rapid deterioration of physical properties near the melting point), as well as improving the structure of the crystalline resin and activated carbon. (For this purpose, it is necessary to use activated carbon black that has a polar functional group on its surface, and the crystalline resin and the surface polar functional group of the activated carbon black are excited by radiation and react.) This was thought to prevent activated carbon black from agglomerating.

発明が解決しようとする課題 ところが、従来の自己温度制御発熱体組成物は、設備費
の高い放射線架橋を行うためコストが高く、かつ、可撓
性に欠けるという課題を有していた。
Problems to be Solved by the Invention However, conventional self-temperature-controlling heating element compositions have problems in that they are expensive due to radiation crosslinking, which requires high equipment costs, and lack flexibility.

本発明は、かかる従来の課題を解消するもので、低コス
トで、かつ可撓性に富む自己温度制御発熱体組成物を提
供することを目的とする。
The present invention solves these conventional problems, and aims to provide a self-temperature-controlling heating element composition that is low in cost and highly flexible.

課題を解決する手段 上記課題を解決する為に、本発明の自己温度制御発熱体
組成物は、結晶性樹脂と、少なくとも前記結晶性樹脂よ
りも高耐熱性を有するエラストマーと、表面がグラファ
イト化された不活性カーボンブラックとから成るもので
ある。
Means for Solving the Problems In order to solve the above problems, the self-temperature-controlling heating element composition of the present invention comprises a crystalline resin, an elastomer having higher heat resistance than the crystalline resin, and a graphitized surface. and inert carbon black.

作  用 上記した構成によって、結晶性樹脂を3次元的な分子構
造を有する高耐熱性のエラストマーにより保持して、結
晶性樹脂の融点近傍、又は、その温度以上での急激な粘
性低下を防止して結晶性樹脂の耐熱性を見掛は上向上さ
せることができる。
Effect With the above-described structure, the crystalline resin is held by a highly heat-resistant elastomer having a three-dimensional molecular structure, thereby preventing a sudden drop in viscosity near or above the melting point of the crystalline resin. The heat resistance of the crystalline resin can be improved in appearance.

また凝集性の低い不活性カーボンブラックを用いた点と
合わせて、上記樹脂・エラストマー系に添加された不活
性カーボンブラックの凝集を阻止する。また、エラスト
マーを含有しているので可撓性(ゴム弾性)を付与する
という作用を有する。
In addition to the fact that inert carbon black with low agglomeration is used, aggregation of the inert carbon black added to the resin/elastomer system is prevented. Furthermore, since it contains an elastomer, it has the effect of imparting flexibility (rubber elasticity).

実施例 以下、本発明の自己温度制御発熱体組成物の一実施例に
ついて説明する。
EXAMPLE An example of the self-temperature-controlling heating element composition of the present invention will be described below.

結晶性樹脂として、例えば、スミカセンE−104(住
友化学■製、低密度ポリエチレン、融点110℃)と、
少なくとも前記結晶性樹脂よりも高耐熱性を有するエラ
ストマーとして、例えば、エラスレン(昭和油化■製、
塩素化ポリエチレン系熱可塑性エラストマー)とを等重
量秤取り170℃に設定した熱ロールで5回予備混練し
た後、表面がグラファイト化された不活性カーボンブラ
ックとして、14010B (三菱化成■製、粒子径8
4mu、DBP吸油量73 o a / 100 g、
PH10,5)  を所定量加えて、さらに、20回混
練して混線物を得た。なお、特性評価はこれをシート状
に熱ロールより取りだし、このシート間に、一対の銅線
を電極として1mm間隔で配置し、170℃で2時間加
圧成型して得た測定用発熱体を用いて行った。
As the crystalline resin, for example, Sumikasen E-104 (manufactured by Sumitomo Chemical ■, low density polyethylene, melting point 110 ° C.),
As an elastomer having higher heat resistance than at least the crystalline resin, for example, Elasthren (manufactured by Showa Yuka),
14010B (manufactured by Mitsubishi Kasei ■, particle size 8
4mu, DBP oil absorption 73 o a / 100 g,
A predetermined amount of PH10.5) was added thereto, and the mixture was further kneaded 20 times to obtain a mixed wire material. For characteristic evaluation, this was taken out in sheet form from a hot roll, a pair of copper wires were placed between the sheets as electrodes at 1 mm intervals, and the heating element for measurement was obtained by pressure molding at 170°C for 2 hours. I used it.

上記構成において、発熱体組成物内では、エラストマー
の3次元的な分子鎖内に、これと相溶して結晶性樹脂分
子が取り込まれ、さらに、この相溶体の中に不活性カー
ボンブラックが捕捉され、かつ均一に分散される。こう
して、結晶性樹脂単独では融点近傍、および、その温度
以上では急激に軟化・融解するのに対して、上記相溶体
組成物では高耐熱性のエラストマーの分子鎖により結晶
性樹脂が保持されるため、前記温度域においても高粘性
を維持することができる。
In the above configuration, within the heating element composition, crystalline resin molecules are incorporated into the three-dimensional molecular chains of the elastomer in a compatible manner, and inert carbon black is further captured in this compatible body. and uniformly distributed. In this way, while the crystalline resin alone rapidly softens and melts near and above its melting point, in the above-mentioned compatible composition, the crystalline resin is held by the molecular chains of the highly heat-resistant elastomer. , high viscosity can be maintained even in the above temperature range.

また、カーボンブラックの凝集が何故起こるのか、詳細
は不明であるが濡々検討した結果、我々は、表面に極性
官能基を有し、かつ、この数が多い活性なカーボンブラ
ックはど凝集性が強いことを見い出した。そのために、
本実施例に示したように、高温処理により表面がグラフ
ァイト化されて表面に極性官能基が全くない不活性カー
ボンブラックを用いたのである。
In addition, although the details of why carbon black agglomerates are unknown, we have investigated extensively and found that active carbon black, which has a large number of polar functional groups on its surface, has a high aggregation property. I found something strong. for that,
As shown in this example, inert carbon black whose surface was graphitized by high-temperature treatment and had no polar functional groups on its surface was used.

こうして、電極間に通電した際に生じようとするカーボ
ンブラックの凝集を放射線架橋同様に阻止するとともに
、エラストマー添加によりゴム弾性を付与するという作
用を有し、高価な放射線照射装置を用いることなく、安
価に、かつ可撓性に富む自己温度制御発熱体組成物を提
供できるという効果を有する。上記発熱体組成物は、1
00℃雰囲気中AC100V通電試験において、現在、
2000時間以上安定に発熱を継続している。なお、上
記実施例においては、結晶性樹脂とエラストマーが相溶
する場合をしめしたが、非相溶の場合でも同様の効果が
得られるが、非相溶の場合には高温時に相分離が起こる
可能性があり、その点では相溶系が好ましい。
In this way, it has the effect of preventing the agglomeration of carbon black that tends to occur when electricity is applied between the electrodes, similar to radiation crosslinking, and imparting rubber elasticity by adding an elastomer, without using expensive radiation irradiation equipment. This has the effect of providing a self-temperature-controlling heating element composition that is inexpensive and highly flexible. The above heating element composition comprises 1
Currently, in AC100V current test in 00℃ atmosphere,
The fever has continued stably for over 2000 hours. In addition, in the above example, the case where the crystalline resin and the elastomer are compatible is shown, but the same effect can be obtained even if they are incompatible, but if they are incompatible, phase separation occurs at high temperature. In this respect, a compatible system is preferable.

発明の効果 以上のように本発明の自己温度制御発熱体組成物によれ
ば、放射線架橋を必要とせず、低コストで、かつ、可撓
性に富む自己温度制御発熱体を提供できるという効果を
有する。
Effects of the Invention As described above, the self-temperature-controlling heating element composition of the present invention has the effect of providing a self-temperature-controlling heating element that does not require radiation crosslinking, is low cost, and is highly flexible. have

Claims (1)

【特許請求の範囲】[Claims] 結晶性樹脂と、少なくとも前記結晶性樹脂よりも高耐熱
性を有するエラストマーと、表面がグラファイト化され
た不活性カーボンブラックとから成る自己温度制御発熱
体組成物。
A self-temperature-controlling heating element composition comprising a crystalline resin, an elastomer having at least higher heat resistance than the crystalline resin, and inert carbon black whose surface is graphitized.
JP13499888A 1988-06-01 1988-06-01 Temperature self controlling heat radiating composition Pending JPH01304684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13499888A JPH01304684A (en) 1988-06-01 1988-06-01 Temperature self controlling heat radiating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13499888A JPH01304684A (en) 1988-06-01 1988-06-01 Temperature self controlling heat radiating composition

Publications (1)

Publication Number Publication Date
JPH01304684A true JPH01304684A (en) 1989-12-08

Family

ID=15141547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13499888A Pending JPH01304684A (en) 1988-06-01 1988-06-01 Temperature self controlling heat radiating composition

Country Status (1)

Country Link
JP (1) JPH01304684A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0658277A1 (en) * 1992-09-04 1995-06-21 Unisearch Ltd. Flexible, conducting plastic electrode and process for its preparation
US5780820A (en) * 1995-03-08 1998-07-14 Matsushita Electric Industrial Co., Ltd. Film-like heater made of high crystalline graphite film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0658277A1 (en) * 1992-09-04 1995-06-21 Unisearch Ltd. Flexible, conducting plastic electrode and process for its preparation
EP0658277A4 (en) * 1992-09-04 1995-12-20 Unisearch Ltd Flexible, conducting plastic electrode and process for its preparation.
US5780820A (en) * 1995-03-08 1998-07-14 Matsushita Electric Industrial Co., Ltd. Film-like heater made of high crystalline graphite film

Similar Documents

Publication Publication Date Title
JP3930905B2 (en) Conductive polymer composition and device
US4910389A (en) Conductive polymer compositions
US4388607A (en) Conductive polymer compositions, and to devices comprising such compositions
US4629869A (en) Self-limiting heater and resistance material
JPH0777161B2 (en) PTC composition, method for producing the same and PTC element
JPH08339904A (en) Positive temperature coefficient composition
EP0123540A2 (en) Conductive polymers and devices containing them
JP3882622B2 (en) PTC resistor
GB1597007A (en) Conductive polymer compositions and devices
KR920003015B1 (en) Temperature self controlling heat radiating composition
JPH08120182A (en) Ptc composition and panel heating material
JPH01304684A (en) Temperature self controlling heat radiating composition
Ghofraniha et al. Electrical conductivity of polymers containing carbon black
JP3140054B2 (en) Conductive polymer device
JPS5918804B2 (en) heat sensitive element
WO1990003651A1 (en) Conductive polymer composition
EP0138424A2 (en) Electrical devices comprising conductive polymers exhibiting ptc characteristics
JP2524988B2 (en) Complex heat storage
JPS59122524A (en) Composition having positive temperature characteristics of resistance
JPH01304682A (en) Temperature self controlling heat radiating body
JPH01304683A (en) Temperature self controlling heat radiating composition
GB2033707A (en) Conductive polymer compositions of an electrical device
JPH0311582A (en) Temperature self-controlling heat generator
JPH02170859A (en) Heating element composition
CA1176452A (en) Conductive polymer compositions containing fillers