JPH01304683A - Temperature self controlling heat radiating composition - Google Patents

Temperature self controlling heat radiating composition

Info

Publication number
JPH01304683A
JPH01304683A JP63134997A JP13499788A JPH01304683A JP H01304683 A JPH01304683 A JP H01304683A JP 63134997 A JP63134997 A JP 63134997A JP 13499788 A JP13499788 A JP 13499788A JP H01304683 A JPH01304683 A JP H01304683A
Authority
JP
Japan
Prior art keywords
elastomer
crystalline resin
resin
composition
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63134997A
Other languages
Japanese (ja)
Other versions
JP2543135B2 (en
Inventor
Takahito Ishii
隆仁 石井
Tadataka Yamazaki
山崎 忠孝
Nobuyuki Hirai
伸幸 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63134997A priority Critical patent/JP2543135B2/en
Priority to KR1019890007454A priority patent/KR920003015B1/en
Priority to DE68920479T priority patent/DE68920479T2/en
Priority to CA000601268A priority patent/CA1337012C/en
Priority to EP89109788A priority patent/EP0344734B1/en
Priority to US07/360,146 priority patent/US5196145A/en
Publication of JPH01304683A publication Critical patent/JPH01304683A/en
Application granted granted Critical
Publication of JP2543135B2 publication Critical patent/JP2543135B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Conductive Materials (AREA)
  • Resistance Heating (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To prepare a temperature self controlling heat radiating composition with a good flexibility with low cost by mixing and kneading a crystalline resin, an elastomer soluble with the resin, and a conductive powder. CONSTITUTION:A crystalline resin e.g., a low density polyethylene with melting point about 110 deg.C, an elastomer having higher heat resistance than the resin and soluble with the resin e.g., styrene-type thermally plastic elastomer in a prescribed amount respectively are mixed each other and pre-kneaded by a hot roll, a conductive powder, e.g., carbon black in a prescribed amount is added to the mixture, and the resulting mixtures is kneaded. By this work, the crystalline resin is retained in the elastomer having the three dimensional structure, the heat resistance of the crystalline resin is improved in appearance, the conductive powder is prevented from cohering, and due to the addition of the elastomer, rubber elasticity is added to the composition, and a desired composition is prepared without a costly process such as cross-linking by a radioactive ray.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、眠気カーペット等の暖房器具に用いられる自
己温度制御発熱体組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a self-temperature-controlling heating element composition for use in heating appliances such as drowsy carpets.

従来の技術 従来のこの種の自己温度制御発熱体組成物は、低密度ポ
リエチレン等の結晶性樹脂とカーボンブラック等の導電
性粒子とを混練・成型したのち放射線架橋をして形成さ
れていた。
BACKGROUND OF THE INVENTION Conventional self-temperature-controlling heating element compositions of this type have been formed by kneading and molding a crystalline resin such as low-density polyethylene and conductive particles such as carbon black, followed by radiation crosslinking.

結晶性樹脂と、導電性粒子とを混練しただけの発熱体組
成物では、電圧を連続的に、あるいは、繰り返し印加す
ると抵抗値が徐々に増加し、つぃには全く発熱しなくな
るという大きな課題を有していた。
A major problem with heating element compositions that are simply kneading crystalline resin and conductive particles is that when a voltage is applied continuously or repeatedly, the resistance value gradually increases, and eventually no heat is generated at all. It had

その原因としては、混線直後には、導電性粒子が結晶性
樹脂中に均一に分散されて、そのことにより生じた導電
性粒子と結晶性樹脂とから成る導通パスが、電圧の連続
・繰り返し印加によって誘起される導電性粒子の部分的
凝集(分散性の低下)により断たれるからと考えられた
The reason for this is that immediately after the crosstalk, the conductive particles are uniformly dispersed in the crystalline resin, and the resulting conductive path consisting of the conductive particles and the crystalline resin is continuously and repeatedly applied. This is thought to be due to the partial aggregation (decreased dispersibility) of conductive particles induced by this.

こうしたカーボンブラックの凝集は、カーボンブラック
の分散媒である結晶性樹脂の低い耐熱性に起因している
と思われる。一般に自己温度制御発熱体の発熱飽和温度
は、結晶性樹脂の融点よりも約20〜30℃低く設定さ
れる。これは自己温度制御性(PTC特性)が結晶性樹
脂の融点における比容積の変化に起因しているからであ
り、適正な温度設定と思われる。しかしながらこの発熱
飽和温度というものは、自己温度制御性発熱体組成物の
全体のマクロな温度であり、前記導通パスを形成する結
晶性樹脂部のミクロな温度は、それ以上、場合によって
は融点近傍に達していると思われる。結晶性樹脂は、融
点以上では急激な物性(カーボンブラックの分散媒とし
ては特に粘性)の低下を起こす。よって、結晶性樹脂だ
けでは、カーボンブラックを分散保持することは本質的
に困難であると思われる。
It is thought that such aggregation of carbon black is caused by the low heat resistance of the crystalline resin that is a dispersion medium for carbon black. Generally, the heat generation saturation temperature of the self-temperature-controlled heating element is set to be about 20 to 30° C. lower than the melting point of the crystalline resin. This is because the self-temperature control property (PTC characteristic) is caused by a change in specific volume at the melting point of the crystalline resin, and this seems to be an appropriate temperature setting. However, this exothermic saturation temperature is the macroscopic temperature of the entire self-temperature-controlling heating element composition, and the microscopic temperature of the crystalline resin part that forms the conductive path is higher than that, or in some cases near the melting point. seems to have reached. When the crystalline resin exceeds its melting point, its physical properties (particularly viscosity when used as a dispersion medium for carbon black) rapidly decrease. Therefore, it seems that it is essentially difficult to disperse and maintain carbon black using only a crystalline resin.

このため、従来例に示したように、実用化されている発
熱体組成物は、結晶性樹脂と導電性粒子とを混練したの
ち、放射線架橋をして形成されていた。放射線架橋の効
果としては、結晶性樹脂の分子鎖を2次元から3次元構
造体にして耐熱性を向上させて(融点近傍での急激な特
性、特に粘性低下を防止する。)、導電性粒子が凝集す
るのを阻止することにあると考えられた。
For this reason, as shown in the conventional examples, heating element compositions that have been put into practical use are formed by kneading a crystalline resin and conductive particles and then crosslinking them with radiation. The effect of radiation crosslinking is to change the molecular chains of the crystalline resin from two-dimensional to three-dimensional structures, improve heat resistance (prevent sudden drop in properties, especially viscosity, near the melting point), and conductive particles. It was thought that the purpose was to prevent the agglomeration of

発明が解決しようとする課題 しかしながら、従来の自己温度制御発熱体組成物は、設
備費の高い放射線架橋を行うためコストが高く、かつ可
撓性に欠けるという課題を有していた。
Problems to be Solved by the Invention However, conventional self-temperature-controlling heating element compositions have problems in that they are expensive due to radiation crosslinking, which requires high equipment costs, and lack flexibility.

本発明は、上記課題を解消し、低コストで、かつ可撓性
に富む自己温度制御発熱体組成物を提供するものである
The present invention solves the above problems and provides a self-temperature-controlling heating element composition that is low cost and highly flexible.

課題を解決する手段 上記課題を解決するため、本発明の自己温度制御発熱体
組成物は、結晶性樹脂と、少なくとも前記結晶性樹脂よ
りも高耐熱性を有し、かつ、前記結晶性樹脂に対して相
溶性を有するエラストマーと、導電性粒子とを混練して
なるものである。
Means for Solving the Problems In order to solve the above problems, the self-temperature-controlling heating element composition of the present invention comprises a crystalline resin, which has higher heat resistance than at least the crystalline resin, and which has a crystalline resin and a heat resistance higher than that of the crystalline resin. It is made by kneading an elastomer that is compatible with the elastomer and conductive particles.

作  用 本発明による自己温度制御発熱体組成物は、結晶性樹脂
と、これと相溶するエラストマーとをブレンドすること
により、3次元的な分子構造(分子ネットワーク)を有
するエラストマー中に結晶性樹脂が捕捉された、所謂、
相互貫入型樹脂組成物となっており、このエラストマー
の分子ネットワークにより、結晶性樹脂が融点近傍、又
は、その温度以上で急激な粘性低下をおこすのを防止し
て結晶性樹脂の耐熱性を見掛は上向上させることができ
る。よって、そこに添加された導電性粒子の凝集を阻止
する。またエラストマーを含有しているので可撓性(ゴ
ム弾性)を付与するという作用を有する。
Function The self-temperature-controlling heating element composition according to the present invention is produced by blending a crystalline resin and an elastomer that is compatible with the crystalline resin. was captured, the so-called
It is an interpenetrating resin composition, and the molecular network of this elastomer prevents the crystalline resin from rapidly decreasing in viscosity near or above the melting point, and allows the heat resistance of the crystalline resin to be evaluated. Hanging can be improved. Therefore, agglomeration of the conductive particles added thereto is prevented. Furthermore, since it contains an elastomer, it has the effect of imparting flexibility (rubber elasticity).

実施例 以下、本発明の自己温度制御発熱体組成物の一実施例に
付いて説明する。
EXAMPLE An example of the self-temperature-controlling heating element composition of the present invention will be described below.

結晶性樹脂として、例えばスミカセンE−104(住人
化学■製、低密度ポリエチレン、融点110℃)と、結
晶性樹脂と相溶するエラストマーとして、たとえば、ク
レイトンG1650(シェル化学■製、スチレン系熱可
塑性エラストマー)とを等重量秤取り170℃に設定し
た熱ロールで5回予備混練し、更にカーボンブラックの
ごとき導電性粒子を所定量加えて20回混練して自己温
度制御発熱体組成物を得た。なお、上記発熱体組成物の
特性評価は、これをシート状に熱ロールより取りだし、
このシート間に一対の銅線を電極として1mm間隔で配
置し、170℃で2時間加圧成型して得た測定用発熱体
により行った。
As a crystalline resin, for example, Sumikasen E-104 (manufactured by Sumika Kagaku ■, low density polyethylene, melting point 110°C), and as an elastomer compatible with the crystalline resin, for example, Kraton G1650 (manufactured by Shell Chemical ■, styrenic thermoplastic elastomer) were weighed and pre-kneaded 5 times using a hot roll set at 170°C, and a predetermined amount of conductive particles such as carbon black was added and kneaded 20 times to obtain a self-temperature-controlled heating element composition. . The characteristics of the above heating element composition were evaluated by taking it out in a sheet form from a heated roll, and
A pair of copper wires were placed between the sheets as electrodes at intervals of 1 mm, and a heating element for measurement was obtained by pressure molding at 170° C. for 2 hours.

上記構成において、発熱体組成物内では、エラストマー
の3次元的な分子ネットワーク内に、これと一部相溶し
て結晶性樹脂が入り込む。このため、結晶性樹脂単独で
は融点近傍、およびその温度以上では急激に軟化(融解
)するのに対して、前記相溶体組成物では高耐熱性のエ
ラストマーの分子鎖により、結晶性樹脂が保持されるた
め、前記温度域においても高粘性を維持することができ
る。よって、そこに添加された導電性粒子は前記相溶体
の分子鎖に捕捉された状態(均−分散系)になっている
と考えられる。
In the above configuration, in the heating element composition, the crystalline resin is partially compatible with the three-dimensional molecular network of the elastomer and enters therein. For this reason, while a crystalline resin alone rapidly softens (melts) near and above its melting point, in the compatible composition, the crystalline resin is held by the molecular chains of the highly heat-resistant elastomer. Therefore, high viscosity can be maintained even in the above temperature range. Therefore, it is considered that the conductive particles added thereto are trapped in the molecular chains of the compatible solution (uniformly dispersed system).

このため、電極間に通フした際に生じようとする導電性
粒子の凝集を放射線架橋をした場合と同様に阻止できる
とともに、エラストマー添加によりゴム弾性を付与する
作用を有し、放射線架橋のごときコストアップにつなが
る大型設備を用いることなく汎用設備で安価に、かつ、
可撓性に富む自己温度制御発熱体組成物を提供できると
いう効果を有する。
For this reason, it is possible to prevent the agglomeration of conductive particles that would otherwise occur when they pass between the electrodes, in the same way as radiation crosslinking, and the addition of an elastomer has the effect of imparting rubber elasticity, which is similar to radiation crosslinking. It can be done inexpensively using general-purpose equipment without using large equipment that increases costs, and
This has the effect of providing a highly flexible self-temperature-controlling heating element composition.

また、上記実施例のように、エラストマーとして熱可塑
性エラストマーをもちいると煩雑な架橋工程が不要で、
かつ汎用樹脂成型機を用いることができるという利点を
有する。
In addition, as in the above example, if a thermoplastic elastomer is used as the elastomer, a complicated crosslinking process is unnecessary.
It also has the advantage that a general-purpose resin molding machine can be used.

上記発熱体組成物は、100℃雰囲気中AC100v通
電試験において、現在、2000時間以上安定に発熱を
継続している。
The above heating element composition currently continues to generate heat stably for more than 2000 hours in an AC 100V current test in a 100°C atmosphere.

なお、上記実施例においては、結晶性樹脂、エラストマ
ーとして低密度ポリエチレン、スチレン系熱可塑性エラ
ストマーをもちいたが、これに限定するものでなく、お
互いに相溶する組合せ(溶解度パラメータの差が3以内
)であれば良い。例えば、低密度ポリエチレンと相溶す
るエラストマーとしては、架橋EPR,塩素化ポリエチ
レンゴム等がある。
In the above examples, low density polyethylene and styrene thermoplastic elastomer were used as the crystalline resin and elastomer, but the invention is not limited to these. ) is fine. For example, examples of elastomers that are compatible with low density polyethylene include crosslinked EPR and chlorinated polyethylene rubber.

発明の効果 以上のように本発明の自己温度制御発熱体組成物によれ
ば、放射線架橋を必要とせず、低コストで、かつ、可撓
性に富む自己温度制御発熱体を提供できるという効果を
有する。
Effects of the Invention As described above, the self-temperature-controlling heating element composition of the present invention has the effect of providing a self-temperature-controlling heating element that does not require radiation crosslinking, is low cost, and is highly flexible. have

Claims (1)

【特許請求の範囲】[Claims] 結晶性樹脂と、少なくとも前記結晶性樹脂よりも高耐熱
性を有し、かつ前記結晶性樹脂に対して相溶性を有する
エラストマーと、導電性粒子とからなる自己温度制御発
熱体組成物。
A self-temperature-controlling heating element composition comprising a crystalline resin, an elastomer having at least higher heat resistance than the crystalline resin and having compatibility with the crystalline resin, and conductive particles.
JP63134997A 1988-06-01 1988-06-01 Self-temperature control heating element composition Expired - Lifetime JP2543135B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63134997A JP2543135B2 (en) 1988-06-01 1988-06-01 Self-temperature control heating element composition
KR1019890007454A KR920003015B1 (en) 1988-06-01 1989-05-31 Temperature self controlling heat radiating composition
DE68920479T DE68920479T2 (en) 1988-06-01 1989-05-31 Heating mass for self-regulation of the temperature.
CA000601268A CA1337012C (en) 1988-06-01 1989-05-31 Temperature self-controlling heating composition
EP89109788A EP0344734B1 (en) 1988-06-01 1989-05-31 Temperature self-controlling heating composition
US07/360,146 US5196145A (en) 1988-06-01 1989-06-01 Temperature self-controlling heating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63134997A JP2543135B2 (en) 1988-06-01 1988-06-01 Self-temperature control heating element composition

Publications (2)

Publication Number Publication Date
JPH01304683A true JPH01304683A (en) 1989-12-08
JP2543135B2 JP2543135B2 (en) 1996-10-16

Family

ID=15141526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63134997A Expired - Lifetime JP2543135B2 (en) 1988-06-01 1988-06-01 Self-temperature control heating element composition

Country Status (1)

Country Link
JP (1) JP2543135B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780820A (en) * 1995-03-08 1998-07-14 Matsushita Electric Industrial Co., Ltd. Film-like heater made of high crystalline graphite film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164763A (en) * 1986-01-14 1987-07-21 Matsushita Electric Ind Co Ltd Production of heat-generating resin composition having positive temperature coefficient of resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164763A (en) * 1986-01-14 1987-07-21 Matsushita Electric Ind Co Ltd Production of heat-generating resin composition having positive temperature coefficient of resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780820A (en) * 1995-03-08 1998-07-14 Matsushita Electric Industrial Co., Ltd. Film-like heater made of high crystalline graphite film

Also Published As

Publication number Publication date
JP2543135B2 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
JP2513659B2 (en) Conductive polymer composition
JP2810740B2 (en) PTC composition by grafting method
JPH0428743B2 (en)
EP0038718A1 (en) Conductive polymer compositions containing fillers
CA1294398C (en) Process for producing self-restoring overcurrent protective device by grafting method
KR920003015B1 (en) Temperature self controlling heat radiating composition
JPH01304683A (en) Temperature self controlling heat radiating composition
JP3525935B2 (en) Method for producing PTC composition
Ghofraniha et al. Electrical conductivity of polymers containing carbon black
JPH01304684A (en) Temperature self controlling heat radiating composition
JPH01304682A (en) Temperature self controlling heat radiating body
JP4957439B2 (en) Positive resistance temperature characteristic resistor
JPH028258A (en) Self-temperature control heating element composition
JPS6255533B2 (en)
JPH02170859A (en) Heating element composition
JPH0831554A (en) Panel heat radiating body
JPS63184303A (en) Manufacture of ptc compound
JPS6237903A (en) Manufacture of positive resistance temperature coefficient heat generating resin composition
JPH01181501A (en) Polymer ptc element
JPH0311582A (en) Temperature self-controlling heat generator
JPS61181860A (en) Temperature self-controlling electrically conductive polymer composition
JPS6225694B2 (en)
JPS6260202A (en) Manufacturing positive temperature coefficient heater resin composition
JPH02173069A (en) Production of heating element composition
JPS6034792B2 (en) heating element