JPH028258A - Self-temperature control heating element composition - Google Patents

Self-temperature control heating element composition

Info

Publication number
JPH028258A
JPH028258A JP63159983A JP15998388A JPH028258A JP H028258 A JPH028258 A JP H028258A JP 63159983 A JP63159983 A JP 63159983A JP 15998388 A JP15998388 A JP 15998388A JP H028258 A JPH028258 A JP H028258A
Authority
JP
Japan
Prior art keywords
crystalline resin
carbon black
heating element
elastomer
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63159983A
Other languages
Japanese (ja)
Inventor
Takahito Ishii
隆仁 石井
Tadataka Yamazaki
山崎 忠孝
Nobuyuki Hirai
伸幸 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63159983A priority Critical patent/JPH028258A/en
Priority to DE68920479T priority patent/DE68920479T2/en
Priority to EP89109788A priority patent/EP0344734B1/en
Priority to KR1019890007454A priority patent/KR920003015B1/en
Priority to CA000601268A priority patent/CA1337012C/en
Priority to US07/360,146 priority patent/US5196145A/en
Publication of JPH028258A publication Critical patent/JPH028258A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/027Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient consisting of conducting or semi-conducting material dispersed in a non-conductive organic material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/146Conductive polymers, e.g. polyethylene, thermoplastics

Abstract

PURPOSE:To obtain the subject low-cost composition, rich in flexibility by forming the composition from carbon black, a specific crystalline resin and specified elastomer. CONSTITUTION:The objective composition obtained by blending and kneading (A) carbon black having polar groups, such as hydroxyl groups or carbonyl groups, on the surface thereof with (B) a crystalline resin, such as high-density polyethylene, having polar functional groups (preferably maleic anhydride groups) having affinity with the surface of the component (A) introduced thereinto and (C) an elastomer, preferably styrene-based thermoplastic elastomer having higher heat resistance than that of the component (B), compatibility for the component (B) and polar functional groups having affinity for the surface of the component (A) introduced thereinto.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は正の抵抗温度係数(以下、PTC特性と称す)
を有する自己温度制御発熱体組成物に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention has a positive temperature coefficient of resistance (hereinafter referred to as PTC characteristic).
The present invention relates to a self-temperature-controlling heating element composition having the following.

従来の技術 従来のこの種の自己温度制御発熱体組成物は低密度ポリ
エチレン等の結晶性樹脂とカーボンブラックとを混練・
成型したのち放射線架橋をして形成されていた。
Prior art This type of conventional self-temperature-controlling heating element composition is made by kneading a crystalline resin such as low-density polyethylene and carbon black.
It was formed by radiation crosslinking after molding.

結晶性樹脂とカーボンブラックとを混練しただけの発熱
体組成物では電圧を連続的に、あるいは繰り返し印加す
ると抵抗値が徐々に増加し、ついには全く発熱しなくな
るという大きな課題を有していた。
A heating element composition made by simply kneading a crystalline resin and carbon black had a major problem in that when a voltage was applied continuously or repeatedly, the resistance value gradually increased, and eventually no heat was generated at all.

その原因としては、混練直後にはカーボンブラックが結
晶性樹脂中に均一に分散されて、そのことにより生じた
カーボンブラックと結晶性樹脂とから成る導通バスが電
圧の連続・繰り返し印加によって誘起されるカーボンブ
ラックの部分的凝集(分散性の低下)により断たれるか
らと考えられた。
The reason for this is that the carbon black is uniformly dispersed in the crystalline resin immediately after kneading, and a conductive bus consisting of the carbon black and the crystalline resin is induced by continuous and repeated application of voltage. This was thought to be due to partial aggregation of carbon black (decreased dispersibility).

こうしたカーボンブラックの凝集はこれの分散媒である
結晶性樹脂の低い耐熱性と、カーボンブラックと結晶性
樹脂との親和性の欠如に起因していると思われる。
Such agglomeration of carbon black is thought to be caused by the low heat resistance of the crystalline resin that is the dispersion medium and the lack of affinity between carbon black and the crystalline resin.

一般に、自己温度制御発熱体の発熱飽和温度は結晶性樹
脂の融点よりも約20〜30°C低く設定される。これ
はPTC特性が結晶性樹脂の融点における比容積の変化
に起因しているからであり、適正な温度設定と思われる
。しかしながら、この発熱飽和温度というものは自己温
度制御性発熱体組成物の全体のマクロな温度であり、前
記導通パスを形成する結晶性樹脂部のミクロな温度はそ
れ以上、場合によっては融点近傍に達していると思われ
る。結晶性樹脂は、融点以上では急激な物性(カーボン
ブラックの分散媒としては、特に粘性)の低下を起こす
。よって、結晶性樹脂だけではカーボンブラックを分散
保持することは本質的に困難であると思われる。さらに
この時カーボンブラックと結晶性樹脂間にカーボンブラ
ック同志の凝集力に勝る物理化学的な結合力(van−
der−Waars力、水素結合、等)がないとカーボ
ンブラックは容易に凝集する。
Generally, the heat generation saturation temperature of the self-temperature-controlled heating element is set to be about 20 to 30°C lower than the melting point of the crystalline resin. This is because the PTC characteristic is caused by a change in specific volume at the melting point of the crystalline resin, and this seems to be an appropriate temperature setting. However, this exothermic saturation temperature is the macroscopic temperature of the entire self-temperature-controlling heating element composition, and the microscopic temperature of the crystalline resin part that forms the conductive path is higher than that, and in some cases may be close to the melting point. seems to have been reached. When the crystalline resin exceeds its melting point, its physical properties (particularly viscosity when used as a dispersion medium for carbon black) rapidly decrease. Therefore, it seems to be essentially difficult to disperse and maintain carbon black using only a crystalline resin. Furthermore, at this time, there is a physicochemical bond between the carbon black and the crystalline resin (van-
der-Wars forces, hydrogen bonds, etc.), carbon black easily aggregates.

このため従来例に示したように、実用化されている発熱
体組成物は結晶性樹脂とカーボンブラックとを混練した
のち、放射線架橋をして形成されていた。放射線架橋の
効果としては、結晶性樹脂の分子鎖を2次元から3次元
構造体にしてこれの耐熱性を向上させる(融点近傍での
急激な物性、特に粘性低下を防止する)とともに、カー
ボンブランクと結晶性樹脂間に何らかの親和力を付与し
てカーボンブラックが凝集するのを阻止することにある
と考えられた。
For this reason, as shown in the conventional examples, the heating element compositions in practical use are formed by kneading a crystalline resin and carbon black and then crosslinking the mixture with radiation. The effect of radiation crosslinking is to change the molecular chains of the crystalline resin from a two-dimensional structure to a three-dimensional one, thereby improving its heat resistance (preventing a sudden drop in physical properties, especially viscosity, near the melting point), as well as improving carbon blanks. It was thought that the purpose was to impart some kind of affinity between the carbon black and the crystalline resin to prevent carbon black from agglomerating.

発明が解決しようとする課題 ところが、従来の自己温度制御発熱体組成物は設備費の
高い放射線架橋を行うためコストが高く、かつ可撓性に
欠けるという問題を有していた。
Problems to be Solved by the Invention However, conventional self-temperature-controlling heating element compositions have problems in that they are expensive due to radiation crosslinking, which requires high equipment costs, and lack flexibility.

本発明は、かかる従来の問題を解消し、低コストで、か
つ可撓性に富む自己温度制御発熱体組成物を提供するこ
とを目的とする。
The present invention aims to solve these conventional problems and provide a self-temperature-controlling heating element composition that is low in cost and highly flexible.

課題を解決するための手段 上記課題を解決するため、本発明の自己温度制御発熱体
組成物は、カーボンブラックと、カーボンブラック表面
と親和性を有する極性官能基が導入された結晶性樹脂と
、少なくとも前記結晶性樹脂よりも高耐熱性を有し、か
つ結晶性樹脂に対して相溶性を有するカーボンブランク
表面と親和性を有する極性官能基が導入されたエラスト
マーとを混練してなるものである。
Means for Solving the Problems In order to solve the above problems, the self-temperature-controlling heating element composition of the present invention comprises: carbon black; a crystalline resin into which a polar functional group having affinity with the carbon black surface is introduced; It is made by kneading an elastomer into which a polar functional group has an affinity with the carbon blank surface, which has higher heat resistance than at least the crystalline resin and is compatible with the crystalline resin. .

作   用 本発明による自己温度制御発熱体組成物は、極性官能基
が導入された結晶性樹脂と、これと相溶し、かつ高耐熱
性を有する極性官能基が導入されたエラストマーとをブ
レンドすることにより、3次元的な分子構造(分子ネッ
トワーク)を有するエラストマー中に結晶性樹脂が捕捉
された、所謂、相互貫入型樹脂組成物となっており、こ
のエラストマーの分子ネットワークにより、結晶性樹脂
が融点近傍、またはその温度以上で急激な粘性低下をお
こすのを防止して結晶性樹脂の耐熱性を見掛は上向上さ
せることができる。ここで高耐熱性を有するエラストマ
ーというものは、すくなくとも結晶性樹脂の融点以上の
温度における機械的強度(特に粘性)が結晶性樹脂の機
械的強度よりも大きいということである。また一般的に
、カーボンブランク表面には水酸基、カルボン酸基、カ
ルボニル基等の極性基が存在し、このようなカーボンブ
ランクと親和性を有する極性官能基が導入された結晶性
樹脂、およびエラストマーを用いているので、そこに添
加された導電性粒子の凝集を阻止することができる。ま
た、エラストマーを含有しているので可撓性(ゴム弾性
)を付与するという作用を有する。
Function: The self-temperature-controlling heating element composition according to the present invention blends a crystalline resin into which a polar functional group has been introduced and an elastomer into which a polar functional group has been introduced, which is compatible with the crystalline resin and has high heat resistance. This results in a so-called interpenetrating resin composition in which the crystalline resin is trapped in an elastomer with a three-dimensional molecular structure (molecular network), and the molecular network of this elastomer allows the crystalline resin to The apparent heat resistance of the crystalline resin can be improved by preventing a sudden drop in viscosity near or above the melting point. Here, an elastomer having high heat resistance means that its mechanical strength (particularly viscosity) at least at a temperature equal to or higher than the melting point of the crystalline resin is greater than the mechanical strength of the crystalline resin. Generally, polar groups such as hydroxyl groups, carboxylic acid groups, and carbonyl groups are present on the surface of carbon blanks, and crystalline resins and elastomers into which polar functional groups that have an affinity with such carbon blanks are Since the conductive particles are used, agglomeration of the conductive particles added thereto can be prevented. Furthermore, since it contains an elastomer, it has the effect of imparting flexibility (rubber elasticity).

実施例 以下、本発明の自己温度制御発熱体組成物の一実施例に
付いて説明する。
EXAMPLE An example of the self-temperature-controlling heating element composition of the present invention will be described below.

極性官能基が導入された結晶性樹脂として、例えばアト
マーH日310(三井石油化学(…製、無水マレイン酸
変性高密度ポリエチレン、融点130°C)と、結晶性
樹脂と相溶するエラストマーとしてたとえばタフチック
M1913(旭化成(…製、無水マレイン酸変性スチレ
ン系熱可塑性エラストマー)とを等重量秤取り170°
Cに設定した熱ロールで5回予備混練した後、カーボン
ブランクとして、例えばダイアブラックG(三菱化成(
書、粒子径80mμ、PH8,0)を所定量加えて20
回混練して自己温度制御発熱体組成物を得た。なお、上
記発熱体組成物の特性評価は、これをシート状に熱ロー
ルより取りだし、このシート間に一対の銅線を電極とし
て1mrn間隔で配置し、170°Cで2時間加圧成型
して得た測定用発熱体により行った。
As a crystalline resin into which a polar functional group has been introduced, for example, Atomer H-310 (Mitsui Petrochemical Co., Ltd., maleic anhydride-modified high-density polyethylene, melting point 130°C) is used, and as an elastomer that is compatible with the crystalline resin, for example, Equal weight of Toughtic M1913 (maleic anhydride-modified styrene thermoplastic elastomer manufactured by Asahi Kasei) was weighed at 170°.
After pre-kneading 5 times with a hot roll set to C, a carbon blank such as Diablack G (Mitsubishi Chemical
Add a predetermined amount of powder, particle size 80 mμ, pH 8.0)
The mixture was kneaded twice to obtain a self-temperature-controlled heating element composition. The characteristics of the above heating element composition were evaluated by taking it out in a sheet form from a hot roll, placing a pair of copper wires as electrodes at 1 mrn intervals between the sheets, and press-molding it at 170°C for 2 hours. The measurement was carried out using the obtained heating element for measurement.

上記構成において、発熱体組成物内ではエラストマーの
3次元的な分子ネットワーク内に、これと一部相溶して
結晶性樹脂が入り込む。このため結晶性樹脂単独では融
点近傍、およびその温度以上では急激に軟化(融解)す
るのに対して、前記相溶体組成物では高耐熱性のエラス
トマーの分子鎖により、結晶性樹脂が保持されるため、
前記温度域に於いても高粘性を維持することができる。
In the above configuration, in the heating element composition, the crystalline resin is partially compatible with the three-dimensional molecular network of the elastomer and enters therein. For this reason, while a crystalline resin alone will suddenly soften (melt) near and above its melting point, in the above-mentioned compatible composition, the crystalline resin is held by the molecular chains of the highly heat-resistant elastomer. For,
High viscosity can be maintained even in the above temperature range.

またカーボンブラックと、結晶性樹脂、および、エラス
トマーとは、極性官能基を介して物理的に結合している
。よってそこに添加されたカーボンブラックは前記相溶
体の分子鎖に捕捉された状態(均−分散系)になってい
ると考えられる。
Further, carbon black, crystalline resin, and elastomer are physically bonded via polar functional groups. Therefore, it is considered that the carbon black added thereto is trapped in the molecular chains of the compatible solution (uniformly dispersed system).

このため電極間に通電した際に生じようとするカーボン
ブラックの凝集を放射線架橋をした場合と同様に阻止で
きるとともに、エラストマー添加によりゴム弾性を付与
する作用を有し、放射線架橋のごときコストアップに繋
がる大型設備を用いることなく汎用設備で安価に、かっ
可撓性に富む自己温度制御発熱体組成物を提供できると
いう効果を有する。
Therefore, the agglomeration of carbon black that tends to occur when electricity is applied between the electrodes can be prevented in the same way as with radiation crosslinking, and the addition of an elastomer has the effect of imparting rubber elasticity, reducing the cost increase of radiation crosslinking. It has the effect of being able to provide a highly flexible self-temperature-controlling heating element composition at low cost using general-purpose equipment without using large-scale connected equipment.

また上記実施例のように、エラストマーとして熱可塑性
エラストマーをもちいると煩雑な架橋工程が不要で、か
つ汎用樹脂成型機を用いることができるという利点を有
する。
Further, as in the above embodiments, when a thermoplastic elastomer is used as the elastomer, there is an advantage that a complicated crosslinking process is unnecessary and a general-purpose resin molding machine can be used.

上記発熱体組成物は100°C雰囲気中AC100V通
電試験において、現在2000時間以上安定に発熱を継
続している。
The above heating element composition currently continues to generate heat stably for more than 2000 hours in an AC 100V current test in a 100°C atmosphere.

なお、上記実施例においては、結晶性樹脂、エラストマ
ーとして高密度ポリエチレン、スチレン系熱可塑性エラ
ストマーをもちいたが、これに限定するものでなく、お
互いに相溶する組合せ(溶解度パラメータの差が3以内
)であれば良い。例えば高密度ポリエチレンと相溶する
エラストマーとしては、架橋EPR1塩素化ポリエチレ
ンゴム等がある。
In the above examples, high-density polyethylene and styrene-based thermoplastic elastomer were used as the crystalline resin and elastomer, but the invention is not limited to these. ) is fine. For example, examples of elastomers that are compatible with high-density polyethylene include crosslinked EPR1 chlorinated polyethylene rubber.

発明の効果 以上のように本発明の自己温度制御発熱体組成物によれ
ば、放射線架橋を必要とせず、低コストで、かつ可撓性
に富む自己温度制御発熱体を提供できるという効果を有
する。
Effects of the Invention As described above, the self-temperature-controlling heating element composition of the present invention has the effect of providing a self-temperature-controlling heating element that does not require radiation crosslinking, is low cost, and is highly flexible. .

Claims (2)

【特許請求の範囲】[Claims] (1)カーボンブラックと、前記カーボンブラック表面
と親和性を有する極性官能基が導入された結晶性樹脂と
、少なくとも前記結晶性樹脂よりも高耐熱性を有し、か
つ前記結晶性樹脂に対して相溶性を有する前記カーボン
ブラック表面と親和性を有する極性官能基が導入された
エラストマーとからなる自己温度制御発熱体組成物。
(1) carbon black, a crystalline resin into which a polar functional group having affinity with the surface of the carbon black has been introduced, and a crystalline resin having higher heat resistance than at least the crystalline resin; A self-temperature-controlling heating element composition comprising an elastomer into which a polar functional group having affinity is introduced with the carbon black surface having compatibility.
(2)カーボンブラック表面と親和性を有する極性官能
基が無水マレイン酸基である請求項(1)記載の自己温
度制御発熱体組成物。
(2) The self-temperature-controlling heating element composition according to claim 1, wherein the polar functional group having affinity with the carbon black surface is a maleic anhydride group.
JP63159983A 1988-06-01 1988-06-28 Self-temperature control heating element composition Pending JPH028258A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63159983A JPH028258A (en) 1988-06-28 1988-06-28 Self-temperature control heating element composition
DE68920479T DE68920479T2 (en) 1988-06-01 1989-05-31 Heating mass for self-regulation of the temperature.
EP89109788A EP0344734B1 (en) 1988-06-01 1989-05-31 Temperature self-controlling heating composition
KR1019890007454A KR920003015B1 (en) 1988-06-01 1989-05-31 Temperature self controlling heat radiating composition
CA000601268A CA1337012C (en) 1988-06-01 1989-05-31 Temperature self-controlling heating composition
US07/360,146 US5196145A (en) 1988-06-01 1989-06-01 Temperature self-controlling heating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63159983A JPH028258A (en) 1988-06-28 1988-06-28 Self-temperature control heating element composition

Publications (1)

Publication Number Publication Date
JPH028258A true JPH028258A (en) 1990-01-11

Family

ID=15705439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63159983A Pending JPH028258A (en) 1988-06-01 1988-06-28 Self-temperature control heating element composition

Country Status (1)

Country Link
JP (1) JPH028258A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780820A (en) * 1995-03-08 1998-07-14 Matsushita Electric Industrial Co., Ltd. Film-like heater made of high crystalline graphite film
JP2002532822A (en) * 1998-12-04 2002-10-02 ピージェイオー(インディサーム)リミテッド Conductive material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5160236A (en) * 1974-09-27 1976-05-26 Raychem Corp Seinoteikoondokeisu ojusuru soseibutsu
JPS568443A (en) * 1979-07-03 1981-01-28 Hitachi Cable Ltd Electrically conductive polymer composition having positive temperature coefficient characteristic and heater employing the same
JPH01213977A (en) * 1988-02-20 1989-08-28 Nok Corp Surface-shaped heat emitting body and manufacture of same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5160236A (en) * 1974-09-27 1976-05-26 Raychem Corp Seinoteikoondokeisu ojusuru soseibutsu
JPS568443A (en) * 1979-07-03 1981-01-28 Hitachi Cable Ltd Electrically conductive polymer composition having positive temperature coefficient characteristic and heater employing the same
JPH01213977A (en) * 1988-02-20 1989-08-28 Nok Corp Surface-shaped heat emitting body and manufacture of same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780820A (en) * 1995-03-08 1998-07-14 Matsushita Electric Industrial Co., Ltd. Film-like heater made of high crystalline graphite film
JP2002532822A (en) * 1998-12-04 2002-10-02 ピージェイオー(インディサーム)リミテッド Conductive material
JP4846904B2 (en) * 1998-12-04 2011-12-28 インディサーム・ピーエルシー Conductive material

Similar Documents

Publication Publication Date Title
EP0038714B1 (en) Ptc conductive polymer compositions containing fillers
EP0038718A1 (en) Conductive polymer compositions containing fillers
JPH04167501A (en) Ptc element
CN108517123B (en) Modified composite material using carbon nano tube and graphene and preparation method thereof
JPH08339904A (en) Positive temperature coefficient composition
JPS61123665A (en) Production of electrically conductive resin composition
JP3882622B2 (en) PTC resistor
KR920003015B1 (en) Temperature self controlling heat radiating composition
GB1604904A (en) Electrical devices and heating method
JPH02504333A (en) conductive polymer composition
JPH028258A (en) Self-temperature control heating element composition
JPS6151061A (en) Electrical conductive resin molding material and production thereof
JP3525935B2 (en) Method for producing PTC composition
JPH02170859A (en) Heating element composition
JPS6053560A (en) Conductive polyphenylene sulfide resin composition
JPH0311582A (en) Temperature self-controlling heat generator
JP2002270403A (en) Positive temperature coefficient resistor
JPH01304683A (en) Temperature self controlling heat radiating composition
JPH01304684A (en) Temperature self controlling heat radiating composition
JP4957439B2 (en) Positive resistance temperature characteristic resistor
JPS6237903A (en) Manufacture of positive resistance temperature coefficient heat generating resin composition
JPS63184303A (en) Manufacture of ptc compound
JPH03181566A (en) Heating element composition controlling own temperature
KR100829929B1 (en) A conductive polymer composition comprising a metal salt and a metal oxide, and a ptc device using the same
JP2000228301A (en) Temperature self-control heating element composition