JPH0329108B2 - - Google Patents
Info
- Publication number
- JPH0329108B2 JPH0329108B2 JP5142584A JP5142584A JPH0329108B2 JP H0329108 B2 JPH0329108 B2 JP H0329108B2 JP 5142584 A JP5142584 A JP 5142584A JP 5142584 A JP5142584 A JP 5142584A JP H0329108 B2 JPH0329108 B2 JP H0329108B2
- Authority
- JP
- Japan
- Prior art keywords
- coona
- supercooling
- heat
- heat storage
- supercooling prevention
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000004781 supercooling Methods 0.000 claims description 36
- 239000000463 material Substances 0.000 claims description 32
- 230000002265 prevention Effects 0.000 claims description 24
- 238000005338 heat storage Methods 0.000 claims description 22
- 239000011232 storage material Substances 0.000 claims description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- 239000003463 adsorbent Substances 0.000 claims description 8
- 239000000843 powder Substances 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 239000000758 substrate Substances 0.000 claims description 2
- 239000011734 sodium Substances 0.000 description 26
- 230000008018 melting Effects 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000008023 solidification Effects 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- VZWGHDYJGOMEKT-UHFFFAOYSA-J sodium pyrophosphate decahydrate Chemical group O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O VZWGHDYJGOMEKT-UHFFFAOYSA-J 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、太陽熱、電気エネルギー等を蓄熱し
給湯、暖房に利用される蓄熱材組成物に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat storage material composition that stores solar heat, electrical energy, etc. and is used for hot water supply and space heating.
従来例の構成とその問題点
近年、蓄熱密度が大きく、かつ、一定温度の熱
の取り出しができる潜熱形蓄熱材の給湯、暖房等
への応用研究がさかんに行われている。潜熱形蓄
熱材としては、蓄熱密度・コスト・安全性の点か
ら水和塩型蓄熱材が有力視されている。ところ
が、一般に水和塩型蓄熱材には過冷却、相分難と
いう問題があり実用上の大きな障害となつてい
た。Configuration of conventional examples and their problems In recent years, research has been actively conducted on the application of latent heat storage materials, which have a large heat storage density and can extract heat at a constant temperature, to hot water supply, space heating, etc. As a latent heat type heat storage material, a hydrated salt type heat storage material is considered to be a promising material in terms of heat storage density, cost, and safety. However, hydrated salt type heat storage materials generally have problems such as overcooling and difficulty in phase separation, which has been a major obstacle in practical use.
たとえば、CH3COONa・3H2Oなどのような
水和塩を蓄熱材として用い、凝固時にその融解潜
熱を暖房等に有効に利用するためには、融解・凝
固を順調に繰り返し行わせる必要がある。このた
め過冷却防止用基材が少量蓄熱材に加えられるの
が常である。ここで、過冷却防止用基材とは、蓄
熱材中にあつて、溶解し去ることなく液体状態の
蓄熱材がその融点よりわずかでも冷却されたとき
にただちに不均質核発生作用を発揮して、前記蓄
熱材の微少結晶をその表面に生成し、固化を促進
する作用を有するものである。CH3COONa・
3H2Oの過冷却防止用基材としては特公昭58−
27301号公報に示されるように、CH3COONa・
3H2Oで表面を被覆されたピロリン酸ナトリウ
ム・10水塩Na4P2O7・10H2Oがある。
Na4P2O7・10H2Oを2重量%添加した
CH3COONa・3H2Oは1000回以上、70〜40℃の
ヒートサイクル試験において順調に融解、凝固を
繰り返した。 For example, in order to use hydrated salts such as CH 3 COONa and 3H 2 O as a heat storage material, and to effectively use the latent heat of fusion during solidification for heating, etc., it is necessary to repeat melting and solidification smoothly. be. For this reason, a small amount of a supercooling prevention base material is usually added to the heat storage material. Here, the supercooling prevention base material is a material that is present in the heat storage material and immediately exhibits a heterogeneous nucleation effect when the heat storage material in a liquid state is cooled even slightly below its melting point without dissolving. , which has the effect of generating microcrystals of the heat storage material on its surface and promoting solidification. CH 3 COONa・
As a base material for preventing supercooling of 3H 2 O,
As shown in Publication No. 27301, CH 3 COONa・
There is sodium pyrophosphate decahydrate Na 4 P 2 O 7 10H 2 O whose surface is coated with 3H 2 O.
2% by weight of Na 4 P 2 O 7・10H 2 O was added.
CH 3 COONa・3H 2 O successfully repeated melting and solidification in a heat cycle test of 70 to 40°C over 1000 times.
Na4P2O7・10H2Oの過冷却防止機能の詳細な
原因については現在のところ明らかではないが、
一度表面でCH3COONa・3H2Oの結晶を形成し
たNa4P2O7・10H2O粒子表面にはCH3COONa・
3H2Oが再び融解してしまつた後もなんらかの痕
跡が残りそれが有効にCH3COONa・3H2Oの結
晶化に作用するものと考えられる。単なる吸着
材、例えば、Al2O3、カーボンブラツク、……等
にNa4P2O7・10H2Oと同様の処理をしても一時
的には過冷却防止機能を有するがただちに機能が
低下するということから単純なCH3COONa・
3H2OのNa4P2O7・10H2O吸着理論では説明でき
ない。Na4P2O7・10H2Oは特異な再生機能を有
していると言える。 Although the detailed cause of the supercooling prevention function of Na 4 P 2 O 7・10H 2 O is not clear at present,
CH 3 COONa・3H 2 O crystals are formed on the surface of Na 4 P 2 O 7・10H 2 O particles.
It is thought that even after 3H 2 O has melted again, some trace remains, which effectively acts on the crystallization of CH 3 COONa.3H 2 O. Even if a simple adsorbent such as Al 2 O 3 , carbon black, etc. is treated in the same way as Na 4 P 2 O 7 /10H 2 O, it will temporarily have a supercooling prevention function, but the function will soon disappear. The simple CH 3 COONa・
This cannot be explained by the adsorption theory of Na 4 P 2 O 7 and 10H 2 O on 3H 2 O. It can be said that Na 4 P 2 O 7 ·10H 2 O has a unique regeneration function.
一方、CH3COONa・3H2Oを身体採暖装置、
例えば、蓄熱式ホツトベストとして用いる最大の
利点は蓄熱完了後はコードレスになる点にあり、
実用性を考慮すると短時間に蓄熱を完了し数時間
放熱を持続できるものでなければならない。数時
間の放熱時間を可能とするCH3COONa・3H2O
の量は本質的に多く、かつ、厚みが大となり、短
時間に蓄熱を完了するためにはヒータ線等の加熱
器の出力を大きくとる必要があつた。蓄熱時にヒ
ータ線より供給される熱は、CH3COONa・
3H2Oへの蓄熱および外部への放熱損に費やされ
る。ヒータ線加熱によるCH3COONa・3H2Oの
温度制御は下限がCH3COONa・3H2Oの融点58
℃、上限が過冷却防止用基材であるNa4P2O7・
10H2Oの耐熱温度との間で行われる。その後の
研究でNa4P2O7・10H2Oの耐熱温度け約80℃で
あることが判明した。すると、ヒータ線加熱によ
るCH3COONa・3H2Oの温度制御幅は約20℃と
なり、温度制御器、および、製品のばらつきを考
慮するとこの温度幅内で制御することは非常に困
難である。さらに、通電中何らかの原因でヒータ
線、および、CH3COONa・3H2O収納容器の一
部が極度に断熱された状態、すなわち、局所保温
状態には断熱された部位の外部への放熱ロスは低
下しヒータ線から放出される熱はほとんど
CH3COONa・3H2OおよびNa4P2O7・10H2Oに
供給される。その結果、容易にNa4P2O7・
10H2Oは80℃以上の温度下にさらされる。する
と、Na4P2O7・10H2Oの過冷却防止機能が低下
し、CH3COONa・3H2Oの融解潜熱を有効に利
用することができなかつた。 On the other hand, CH 3 COONa・3H 2 O was used in a body warming device,
For example, the biggest advantage of using it as a heat storage type hot vest is that it becomes cordless after heat storage is completed.
Considering practicality, it must be able to complete heat storage in a short time and maintain heat dissipation for several hours. CH 3 COONa・3H 2 O enables several hours of heat dissipation time
The amount of heat is essentially large and the thickness is large, and in order to complete heat storage in a short time, it is necessary to increase the output of a heater such as a heater wire. The heat supplied from the heater wire during heat storage is CH 3 COONa.
It is spent on heat storage in 3H 2 O and heat radiation loss to the outside. The lower limit of temperature control of CH 3 COONa・3H 2 O by heater wire heating is the melting point of CH 3 COONa・3H 2 O 58
℃, the upper limit is Na 4 P 2 O 7 , which is the base material for preventing supercooling.
It is carried out with a heat-resistant temperature of 10H 2 O. Subsequent research revealed that the heat resistance temperature of Na 4 P 2 O 7.10H 2 O is approximately 80°C. Then, the temperature control range of CH 3 COONa/3H 2 O by heater wire heating is approximately 20°C, and it is extremely difficult to control within this temperature range when considering the variations in temperature controllers and products. Furthermore, in a state where the heater wire and part of the CH 3 COONa/3H 2 O storage container are extremely insulated for some reason while the current is being applied, that is, in a local heat retention state, there is no heat radiation loss from the insulated parts to the outside. Almost no heat is released from the heater wire.
CH 3 COONa・3H 2 O and Na 4 P 2 O 7・10H 2 O are supplied. As a result, Na 4 P 2 O 7・
10H 2 O is exposed to temperatures above 80°C. As a result, the supercooling prevention function of Na 4 P 2 O 7 · 10H 2 O deteriorated, and the latent heat of fusion of CH 3 COONa · 3H 2 O could not be used effectively.
発明の目的
本発明はかかる従来の問題を解消するもので耐
熱温度が高く、安定した過冷却防止機能を有する
過冷却防止材を提供することを目的とする。OBJECTS OF THE INVENTION The present invention solves these conventional problems, and aims to provide a supercooling prevention material that has a high heat resistance and a stable supercooling prevention function.
発明の構成
この目的を達成するために本発明の過冷却防止
材は、過冷却防止用基材を吸着させた多孔性吸着
材の表面を潜熱形蓄熱材で被覆したものである。Structure of the Invention In order to achieve this object, the supercooling prevention material of the present invention is obtained by coating the surface of a porous adsorbent onto which a supercooling prevention base material is adsorbed with a latent heat type heat storage material.
この構成により過冷却防止用基材を多孔性吸着
材に保持できるとともにその際の吸着エネルギー
に見合う耐熱性を過冷却防止用基材に付与でき
る。 With this configuration, the base material for preventing supercooling can be held in the porous adsorbent, and the heat resistance commensurate with the adsorption energy at that time can be imparted to the base material for supercooling prevention.
実施例の説明 以下、本発明の実施例を説明する。Description of examples Examples of the present invention will be described below.
過冷却防止用基材としてNa4P2O7・10H2O50
重量部に蒸留水50重量部を加えて約80℃に加温し
てすべて融解した。そのNa4P2O7水溶液中にカ
ーボン粉末(100メツシユ)40重量部を加えて攪
拌し、自然冷却した。その後、下部に沈殿してい
るカーボン粉末層を取り出して室温中に放置し
た。これによりカーボン粉末の表面および内部に
Na4P2O7・10H2Oの結晶が付着したカーボン粉
末処理品が得られた。これを70℃に加熱されてす
べて融解しているCH3COONa・3H2O100重量部
中に投与して攪拌混合下、約1時間70℃に保持し
た。その後、自然冷却し下部のカーボン粉末処理
品層を取り出し室温中に放置した。これによりカ
ーボン粉末処理品に付着しているNa4P2O7・
10H2O結晶の内部および表面にCH3COONa・
3H2Oが付着した過冷却防止材が得られた。この
過冷却防止材2重量部をCH3COONa・3H2O100
重量部中に入れ、恒温槽中85℃で連続加熱した。
そして、任意の経過時間後取り出して過冷却が40
℃以上で破れるかどうか追跡した。比較対象サン
プルとして特公昭58−27301号公報に示された
CH3COONa・3H2O100重量部とNa4P2O7・
10H2O2重量部から成る組成物を同時に実験に供
した。その結果、比較対象サンプルは約10時間で
過冷却を起こすが、本発明による過冷却防止材を
用いたものは1000時間経過後も安定して融解・凝
固を繰り返した。また、カーボン粉末の代わりに
Al2O3粉末を用いた場合も同様な耐熱温度の向上
を確認した。 Na 4 P 2 O 7・10H 2 O50 as a base material to prevent supercooling
50 parts by weight of distilled water was added to the parts by weight, and the mixture was heated to about 80°C to completely melt it. 40 parts by weight of carbon powder (100 mesh) was added to the Na 4 P 2 O 7 aqueous solution, stirred, and naturally cooled. Thereafter, the carbon powder layer precipitated at the bottom was taken out and left at room temperature. This allows the surface and interior of the carbon powder to
A carbon powder treated product with Na 4 P 2 O 7 ·10H 2 O crystals attached was obtained. This was added to 100 parts by weight of CH 3 COONa.3H 2 O which had been heated to 70° C. and completely melted, and the mixture was kept at 70° C. for about 1 hour while stirring and mixing. Thereafter, it was naturally cooled, and the lower layer treated with carbon powder was taken out and left at room temperature. As a result, the Na 4 P 2 O 7・
CH 3 COONa・ inside and on the surface of the 10H 2 O crystal
A supercooling prevention material to which 3H 2 O was attached was obtained. Add 2 parts by weight of this supercooling prevention material to CH 3 COONa・3H 2 O100
The mixture was poured into parts by weight and continuously heated at 85°C in a constant temperature bath.
Then take it out after any elapsed time and the supercooling will be 40
We tracked whether it would break at temperatures above ℃. Shown in Japanese Patent Publication No. 58-27301 as a comparative sample
CH 3 COONa・3H 2 O 100 parts by weight and Na 4 P 2 O 7・
A composition consisting of 10 parts by weight of H 2 O2 was simultaneously subjected to the experiment. As a result, while the comparison sample underwent supercooling in about 10 hours, the sample using the supercooling prevention material according to the present invention repeatedly melted and solidified stably even after 1000 hours. Also, instead of carbon powder
A similar improvement in heat resistance temperature was confirmed when Al 2 O 3 powder was used.
こうして耐熱温度を80℃から85℃に約5℃向上
させることができた。この原因について以下述べ
る。比較対象サンプルに用いる過冷却防止材の場
合、その母体自身(Na4P2O7・10H2O)の耐熱
温度が過冷却防止材として用いる際の上限温度と
なる。すなわち、過冷却防止機能を有する過冷却
防止材の上限温度はNa4P2O7・10H2Oの融点
(80℃)に一致しNa4P2O7・10H2O表面に形成さ
れたCH3COONa・3H2Oの結晶化の痕跡がその
母体であるNa4P2O7・10H2Oの融解とともに消
失すると考えられる。一方、本発明による過冷却
防止材は過冷却防止用基材であるNa4P2O7・
10H2Oがカーボン粉末、アルミナ粉末、等の多
孔性吸着材に吸着されており吸着エネルギーに見
合う耐熱性が付与されている。すなわち、多孔性
吸着材は過冷却防止用基材の保持体として作用し
CH3COONa・3H2Oの結晶化の痕跡を有する
Na4P2O7・10H2Oを強固に補足できる。そのた
めに過冷却防止材としての耐熱温度を約5℃向上
させることができたと考えられる。 In this way, we were able to improve the heat resistance temperature by about 5 degrees Celsius, from 80 degrees Celsius to 85 degrees Celsius. The cause of this will be discussed below. In the case of the supercooling preventive material used in the comparison sample, the heat resistance temperature of its base material itself (Na 4 P 2 O 7 · 10H 2 O) is the upper limit temperature when used as a supercooling preventive material. In other words, the upper limit temperature of the supercooling prevention material that has the supercooling prevention function matches the melting point (80°C) of Na 4 P 2 O 7 10H 2 O, and the temperature that is formed on the surface of Na 4 P 2 O 7 10H 2 O It is thought that the traces of crystallization of CH 3 COONa.3H 2 O disappear with the melting of its parent material, Na 4 P 2 O 7.10H 2 O. On the other hand, the supercooling prevention material according to the present invention is based on Na 4 P 2 O 7 which is the base material for supercooling prevention.
10H 2 O is adsorbed onto a porous adsorbent such as carbon powder or alumina powder, giving it heat resistance commensurate with the adsorption energy. In other words, the porous adsorbent acts as a holder for the base material to prevent supercooling.
Contains traces of crystallization of CH 3 COONa・3H 2 O
It can strongly supplement Na 4 P 2 O 7・10H 2 O. It is thought that for this reason, the heat resistance temperature as a supercooling prevention material could be increased by about 5°C.
上記実施例では蓄熱材としてCH3COONa・
3H2O、過冷却防止用基材としてNa4P2O7・
10H2Oを用いた。なお、カーボン粉末、アルミ
ナ粉末を本実施例に用いた理由としてはその空孔
径が大きく(500Å以上)Na4P2O7・10H2Oのよ
うに比較的重ばつた分子でも十分補足できるため
である。 In the above example, CH 3 COONa・
3H 2 O, Na 4 P 2 O 7 as a base material to prevent supercooling.
10H2O was used. The reason why carbon powder and alumina powder were used in this example is that their pore diameters are large (500 Å or more) and can sufficiently capture relatively heavy molecules such as Na 4 P 2 O 7 10H 2 O. It is.
上記実施例ではCH3COONa・3H2O−
Na4P2O7・10H2O系に限定して述べたが、その
他の例えばNa4SO4・10H2O−Na2B4O7・10H2O
系等にも適用できることは言うまでもない。 In the above example, CH 3 COONa・3H 2 O−
Although the description has been limited to the Na 4 P 2 O 7・10H 2 O system, other systems such as Na 4 SO 4・10H 2 O−Na 2 B 4 O 7・10H 2 O
It goes without saying that this method can also be applied to other systems.
発明の効果
以上述べたように本発明のもつとも重要な点は
過冷却防止用基材の耐熱性をその基材が多孔性吸
着材に吸着する際の吸着エネルギーにより向上さ
せた点にあり、一般に水和塩型蓄熱材には水和塩
型の過冷却防止用基材が用いられるが
CH3COONa・3H2O以外の水和塩にも十分適用
できる。よつて、本発明による過冷却防止材は応
用範囲が広く、かつそれらの過冷却防止用基材の
耐熱温度を高めることができる点で有効である。Effects of the Invention As stated above, the most important point of the present invention is that the heat resistance of the base material for preventing supercooling is improved by the adsorption energy when the base material adsorbs to the porous adsorbent. Hydrated salt type heat storage materials use a hydrated salt type base material to prevent supercooling.
It is fully applicable to hydrated salts other than CH 3 COONa and 3H 2 O. Therefore, the supercooling prevention material according to the present invention has a wide range of applications and is effective in that it can increase the heat resistance temperature of the supercooling prevention substrate.
Claims (1)
の表面を潜熱形蓄熱材で被覆した過冷却防止材。 2 潜熱形蓄熱材としてCH3COONa・3H2O、
過冷却防止用基材としてNa4P2O7、多孔性吸着
材としてカーボン粉末、またはアルミナ粉末をそ
れぞれ用いる特許請求の範囲第1項記載の過冷却
防止材。[Scope of Claims] 1. A supercooling prevention material in which the surface of a porous adsorbent on which a supercooling prevention substrate is adsorbed is coated with a latent heat type heat storage material. 2 CH 3 COONa・3H 2 O as a latent heat type heat storage material,
The supercooling prevention material according to claim 1, wherein Na 4 P 2 O 7 is used as the supercooling prevention base material, and carbon powder or alumina powder is used as the porous adsorbent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5142584A JPS60195179A (en) | 1984-03-16 | 1984-03-16 | Material to prevent supercooling phenomenon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5142584A JPS60195179A (en) | 1984-03-16 | 1984-03-16 | Material to prevent supercooling phenomenon |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60195179A JPS60195179A (en) | 1985-10-03 |
JPH0329108B2 true JPH0329108B2 (en) | 1991-04-23 |
Family
ID=12886567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5142584A Granted JPS60195179A (en) | 1984-03-16 | 1984-03-16 | Material to prevent supercooling phenomenon |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60195179A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5076554B2 (en) * | 2007-03-02 | 2012-11-21 | Jfeエンジニアリング株式会社 | Aqueous solution containing clathrate hydrate, clathrate hydrate and slurry thereof, method for producing clathrate hydrate slurry, and latent heat storage agent |
WO2008108308A1 (en) * | 2007-03-02 | 2008-09-12 | Jfe Engineering Corporation | Latent heat storage substance, inclusion hydrate or slurry thereof, method for producing inclusion hydrate or slurry thereof, and latent heat storage agent |
JP5003213B2 (en) * | 2007-03-06 | 2012-08-15 | Jfeエンジニアリング株式会社 | Method to increase heat storage rate of heat storage agent, clathrate hydrate |
-
1984
- 1984-03-16 JP JP5142584A patent/JPS60195179A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60195179A (en) | 1985-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6264096B1 (en) | Flux suitable for soldering light metals such as aluminum | |
JPH0329108B2 (en) | ||
JPH0362194B2 (en) | ||
US2692234A (en) | Heat transfer media | |
Wada et al. | Studies on salt hydrates for latent heat storge. VI. Preheating effect on crystallization of sodium acetate trihydrate from aqueous solution with a small amount of disodium hydrogenphosphate | |
Wada et al. | Studies on salt hydrates for latent heat storage. V. Preheating effect on crystallization of sodium acetate trihydrate from aqueous solution with a small amount of sodium pyrophosphate decahydrate. | |
JPH0151515B2 (en) | ||
JPS5827301B2 (en) | Supercooling prevention material and its manufacturing method | |
JPS60219287A (en) | Latent heat storing medium | |
JPS617379A (en) | Production of thermal energy storage element | |
Sharma et al. | Dehydration kinetics of sodium thiosulphate pentahydrate in thermal energy storage | |
JPH0124438B2 (en) | ||
JPH0347889A (en) | Latent heat-accumulating material | |
JPS5866799A (en) | Heat-accumulating material | |
JPH0372675B2 (en) | ||
JPS58176291A (en) | Thermal energy storage material composition | |
JP4195283B2 (en) | Heat storage heat dissipation control method | |
Dunphy et al. | Crystal structure of chlorodifluoro-oxosulphur (VI) hexafluoroarsenate (V) OSClF 2+ AsF 6– | |
JPH03181590A (en) | Latent heat storage material | |
JP2932774B2 (en) | Latent heat storage material | |
Daněk et al. | Thermodynamic Calculation of Phase Diagrams of Systems in which One Component Undergoes Thermal Dissociation | |
Marcus et al. | Solid-liquid phase equilibria of binary salt hydrate mixtures involving ammonium alum | |
JPS6044578A (en) | Thermal energy storage material | |
CN118185592A (en) | ZnCl with low melting point and low cost2Base eutectic molten salt and preparation method and application thereof | |
JPS645239B2 (en) |