JPH0362194B2 - - Google Patents

Info

Publication number
JPH0362194B2
JPH0362194B2 JP59021060A JP2106084A JPH0362194B2 JP H0362194 B2 JPH0362194 B2 JP H0362194B2 JP 59021060 A JP59021060 A JP 59021060A JP 2106084 A JP2106084 A JP 2106084A JP H0362194 B2 JPH0362194 B2 JP H0362194B2
Authority
JP
Japan
Prior art keywords
heat storage
coona
heat
storage material
hpo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59021060A
Other languages
Japanese (ja)
Other versions
JPS60166377A (en
Inventor
Takahito Ishii
Kazuo Yamashita
Hiroshi Uno
Takahiro Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59021060A priority Critical patent/JPS60166377A/en
Publication of JPS60166377A publication Critical patent/JPS60166377A/en
Publication of JPH0362194B2 publication Critical patent/JPH0362194B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、太陽熱、電気エネルギー等を蓄熱し
給湯、暖房に利用される蓄熱材組成物に関する。 従来例の構成とその問題点 近年、蓄熱密度が大きく、かつ、一定温度の熱
の取り出しができる潜熱形蓄熱材の給湯、暖房等
への応用研究がさかんに行なわれている。潜熱形
蓄熱材としては、蓄熱密度、コスト、安全性の点
から水和塩型蓄熱材が有力視されている。ところ
が、一般に水和塩型蓄型蓄熱材には過冷却、相分
離という問題があり実用上の大きな障害となつて
いた。 たとえば、CH3COONa・3H2Oなどのような
水和塩を蓄熱材として用い、凝固時にその融解潜
熱を暖房等に有効に利用するためには、融解・凝
固を順調に繰り返し行なわせる必要がある。この
ため過冷却防止用基材が小量蓄熱材に加えられる
のが常である。ここで、過冷却防止用基材とは、
蓄熱材中にあつて、溶解し去ることなく液体状態
の蓄熱材がその融点よりわずかでも冷却されたと
きにただちに不均質核発生作用を発揮して、前記
蓄熱材の微少結晶をその表面に生成し、固化を促
進する作用を有するものである。CH3COONa・
3H2Oの過冷却防止用基材としては、特公昭58−
27301号公報に示されるように、ピロリン酸ナト
リウムNa4P2O7がある。 Na4P2O7・10H2Oを2重量%添加した
CH3COONa・3H2Oは1000回以上、70〜40℃の
ヒートサイワル試験において順調に融解、凝固を
繰り返した。 一方、CH3COONa・3H2Oを身体採暖装置、
例えば、蓄熱式ホツトベストとして用いる最大の
利点は蓄熱完了後はコードレスになる点にあり、
実用性を考慮すると短時間に蓄熱を完了し数時間
放熱を持続できるものでなければならない。数時
間の放熱時間を可能とするCH3COONa・3H2O
の量は本質的に多く、かつ、厚みが大となり、短
時間に蓄熱を完了するためにはヒータ線等の加熱
器の出力を大きくとる必要があつた。蓄熱時にヒ
ータ線より供給される熱は、CH3COONa・
3H2O、への蓄熱および外部への放熱ロスに費や
される。ヒータ線加熱による蓄熱材の温度制御は
下限がCH3COONa・3H2Oの融点58℃、上限が
過冷却防止材であるNa4P2O7の耐熱温度との間
で行なわれる。その後の研究でNa4P2O7の耐熱
温度は約80℃であることが判明した。ところが、
蓄熱時ヒータ線自身の温度は80℃以上(実測値)
となる。また、正常通電は問題ないが、通電中何
らかの原因でヒータ線およびCH3COONa・
3H2O収納容器の一部が極度に断熱されたとき、
すなわち、局所保温時には外部への放熱ロスは低
下しヒータ線が放出する熱はほとんど
CH3COONa・3H2Oに供給される。その結果、
容易に、CH3COONa・3H2O、Na4P2O7は80℃
以上の温度下にさらされる。すると、
Na4COONa・3H2Oの融解潜熱を有効に利用する
ことができなかつた。 発明の目的 本発明はかかる従来の問題を解消するもので耐
熱温度が高く、安定した融解・凝固を繰り返す蓄
熱材組成物を提供することを目的とする。 発明の構成 この目的を達成するために本発明の蓄熱材組成
物は、CH3COONa・3H2Oからなる蓄熱材と、
Na4P2O7からなる過冷却防止材と、Na2HPO4
らなる加水分解生成物とからなる。 この組成によつて過冷却防止材である
Na4P2O7をその加水分解製生物であるNa2HPO4
との解離平衡により安定化することができる。 実施例の説明 Na4P2O7の過冷却防止機能の詳細な原因につ
いては現在のところ明らかではないが、一度表面
でCH3COONa・3H2Oの結晶を形成した
Na4P2O7粒子表面にはCH3COONa・3H2Oが再
び融解してしまつた後もなんらかの痕跡が残りそ
れが有効にCH3COONa・3H2Oの結晶化に作用
するものと考えられる。単になる吸着材、例え
ば、Al2O3、カーボンブラツク…等にNa4P2O7
10H2Oと同様の処理をしても一時的には過冷却
防止機能を有するがただちに機能が低下するとい
うことから単純なCH3COONa・3H2Oの
Na4P2O7吸着理論では説明できない。Na4P2O7
は特異な再生機能を有していると言える。 Na4P2O7のこの特異性を維持しつつ耐熱温度
の向上を目ざした。とくに、Na4P2O7・10H2O
自身の耐熱性に着目して研究を進めた。 以下本発明の実施例を説明する。 蓄熱材としてCH3COONa・3H2O 8g、過冷
却防止材としてNa4P2O7 0.16g(2wt%)、前記
過冷却防止材の加水分解生成物として無水
Na2HPO4 0.16g(2wt%)を内径8mm、長さ150
mmの円筒型ガラス容器に収納し端部をバーで封じ
た。この容器を恒温槽中85℃で連続加熱した。
時々任意の経過時間後取り出して過冷却が40℃以
上で破れるかどうかを追跡した。なお、
Na4P2O7は、CH3COONa・3H2O 100重量部と
Na4P2O7・10H2O 40重量部を同一の容量に収納
し70℃に加熱してCH3COONa・3H2Oをすべて
融解し、再び冷却して固化させて下部に堆積した
Na4P2O7・10H2Oの部分を分離・乾燥して得た。
比較対象サンプルとしてCH3COONa・3H2O 8
gとNa4P2O7 0.16gから成る組成物を同時に実
験に供した。その結果、比較対象サンプルは約10
時間で過冷却を起こすが、本発明による蓄熱材組
組成物は1000時間経過後も安定して融解・凝固を
くり返した。Na4P2O7、Na2HPO4の各含有量を
変えた場合の耐熱性を第1表に記した(但し、
CH3COONaは3水塩組成である)。Na4P2O7
Na2HPO4の各添加量は0.1〜10wt%の範囲が好ま
しい。これより添加量が少ないと効果が少なく、
多いとCH3COONa・3H2Oの融解潜熱量が低下
するので不適である。
INDUSTRIAL APPLICATION FIELD The present invention relates to a heat storage material composition that stores solar heat, electrical energy, etc. and is used for hot water supply and space heating. Configuration of conventional examples and their problems In recent years, research has been actively conducted on the application of latent heat storage materials, which have a large heat storage density and can extract heat at a constant temperature, to hot water supply, space heating, etc. As a latent heat type heat storage material, a hydrated salt type heat storage material is considered to be a promising material in terms of heat storage density, cost, and safety. However, hydrated salt type heat storage materials generally have problems such as supercooling and phase separation, which poses a major obstacle in practical use. For example, when using hydrated salts such as CH 3 COONa and 3H 2 O as a heat storage material, in order to effectively use the latent heat of fusion during solidification for heating, etc., it is necessary to repeat melting and solidification smoothly. be. For this reason, a small amount of a supercooling prevention base material is usually added to the heat storage material. Here, the supercooling prevention base material is
In a heat storage material, when the heat storage material in a liquid state without being dissolved away is cooled even slightly below its melting point, it immediately exerts a heterogeneous nucleation effect and generates microcrystals of the heat storage material on its surface. It has the effect of promoting solidification. CH 3 COONa・
As a base material for preventing supercooling of 3H 2 O,
As shown in Publication No. 27301, there is sodium pyrophosphate Na 4 P 2 O 7 . 2% by weight of Na 4 P 2 O 7・10H 2 O was added.
CH 3 COONa・3H 2 O repeatedly melted and solidified smoothly in the heat cywal test at 70 to 40°C over 1000 times. On the other hand, CH 3 COONa・3H 2 O was used in a body warming device,
For example, the biggest advantage of using it as a heat storage type hot vest is that it becomes cordless after heat storage is completed.
Considering practicality, it must be able to complete heat storage in a short time and maintain heat dissipation for several hours. CH 3 COONa・3H 2 O enables several hours of heat dissipation time
The amount of heat is essentially large and the thickness is large, and in order to complete heat storage in a short time, it is necessary to increase the output of a heater such as a heater wire. The heat supplied from the heater wire during heat storage is CH 3 COONa.
3H 2 O, is used for heat storage and heat loss to the outside. Temperature control of the heat storage material by heater wire heating is performed between a lower limit of 58° C., the melting point of CH 3 COONa.3H 2 O, and an upper limit of the heat resistance temperature of Na 4 P 2 O 7 , which is a supercooling prevention material. Subsequent research revealed that the heat-resistant temperature of Na 4 P 2 O 7 is approximately 80°C. However,
The temperature of the heater wire itself during heat storage is 80℃ or higher (actual value)
becomes. There is no problem with normal energization, but for some reason during energization the heater wire and CH 3 COONa
3H 2 O When a part of the storage container is extremely insulated,
In other words, when local heat is maintained, heat loss to the outside is reduced, and almost no heat is emitted by the heater wire.
CH 3 COONa・3H 2 O is supplied. the result,
Easily, CH 3 COONa・3H 2 O, Na 4 P 2 O 7 at 80℃
exposed to temperatures above Then,
It was not possible to effectively utilize the latent heat of fusion of Na 4 COONa・3H 2 O. OBJECTS OF THE INVENTION The present invention solves these conventional problems and aims to provide a heat storage material composition that has a high heat resistance temperature and repeats stable melting and solidification. Structure of the Invention In order to achieve this object, the heat storage material composition of the present invention includes a heat storage material composed of CH 3 COONa and 3H 2 O;
It consists of a supercooling prevention material consisting of Na 4 P 2 O 7 and a hydrolysis product consisting of Na 2 HPO 4 . Due to this composition, it is a supercooling prevention material.
Na 4 P 2 O 7 and its hydrolysis product Na 2 HPO 4
It can be stabilized by dissociation equilibrium with Description of Examples The detailed cause of the supercooling prevention function of Na 4 P 2 O 7 is not clear at present, but once CH 3 COONa 3H 2 O crystals were formed on the surface.
It is thought that some trace remains on the surface of the Na 4 P 2 O 7 particles even after CH 3 COONa・3H 2 O has melted again, and that this effectively acts on the crystallization of CH 3 COONa・3H 2 O. It will be done. Simple adsorbents such as Al 2 O 3 , carbon black, etc., as well as Na 4 P 2 O 7 .
Even if treated in the same way as 10H 2 O, it temporarily has a supercooling prevention function, but the function immediately deteriorates, so the simple CH 3 COONa・3H 2 O
This cannot be explained by the Na 4 P 2 O 7 adsorption theory. Na 4 P 2 O 7
It can be said that it has a unique reproducing function. We aimed to improve the heat resistance temperature while maintaining this specificity of Na 4 P 2 O 7 . In particular, Na 4 P 2 O 7・10H 2 O
The research focused on its own heat resistance. Examples of the present invention will be described below. 8 g of CH 3 COONa・3H 2 O as a heat storage material, 0.16 g (2 wt%) of Na 4 P 2 O 7 as a supercooling prevention material, and anhydrous as a hydrolysis product of the supercooling prevention material.
Na 2 HPO 4 0.16g (2wt%) inner diameter 8mm, length 150
It was stored in a mm cylindrical glass container and the end was sealed with a bar. This container was continuously heated at 85° C. in a constant temperature bath.
From time to time, it was taken out after an arbitrary elapsed time to monitor whether the supercooling was broken above 40°C. In addition,
Na 4 P 2 O 7 is CH 3 COONa・3H 2 O 100 parts by weight
40 parts by weight of Na 4 P 2 O 7・10H 2 O were stored in the same volume and heated to 70°C to melt all of the CH 3 COONa・3H 2 O, which was then cooled again to solidify and deposit at the bottom.
The Na 4 P 2 O 7 ·10H 2 O portion was separated and dried.
CH 3 COONa・3H 2 O 8 as a comparison sample
g and 0.16 g of Na 4 P 2 O 7 were simultaneously subjected to experiments. As a result, the comparison sample was approximately 10
Although supercooling occurs over time, the heat storage material assembly composition according to the present invention repeatedly melted and solidified stably even after 1000 hours had passed. Table 1 shows the heat resistance when the contents of Na 4 P 2 O 7 and Na 2 HPO 4 are changed (However,
CH 3 COONa has a trihydrate composition). Na 4 P 2 O 7 ,
The amount of Na 2 HPO 4 added is preferably in the range of 0.1 to 10 wt%. If the amount added is smaller than this, the effect will be less.
If the amount is too large, the latent heat of fusion of CH 3 COONa.3H 2 O will decrease, so it is unsuitable.

【表】【table】

【表】 上記効果の原因究明のため試験後の比較対象サ
ンプルの組成分析を行なつた結果Na2HPO4が見
い出された。このことからNa4P2O7の過冷却防
止機能はCH3COONa・3H2Oが一度固化したこ
とのあるNa4P2O7の表面に帰因するものであり
高温になるとNa4P2O7が加水分解をおこしてそ
の表面が消失したものと考えられる。Na4P2O7
が加水分解すると(1)式によりNa2HPO4が生成す
る。 Na4P2O7+H2O2Na2HPO4 …(1) よつて、Na2HPO4の添加は(1)式の解離平衡を
左にずらす効果があり右項への加水分解速度を著
しく低減しNa4P2O7の耐熱性を実質的に高める
ことができる。((2)式)。 Na4P2O7+10H2O2Na2HPO4 …(2) 発明の効果 以上述べたように本発明の最も重要な点は過冷
却防止材の耐熱性をその加水分解平衡の安定化に
より高めた点にあり、一般に水和塩型蓄熱材には
水和塩型の過冷却防止材が用いられるが
CH3COONa・3H2O以外の水和塩にも十分適用
できる。よつて本発明による蓄熱材組成物は応用
範囲が広く、かつ、それらの過冷却防止材の耐熱
温度を高めることができる点で非常に有効であ
る。
[Table] In order to investigate the cause of the above effect, we conducted a composition analysis of the comparison sample after the test, and as a result, Na 2 HPO 4 was found. From this, the supercooling prevention function of Na 4 P 2 O 7 is attributable to the surface of Na 4 P 2 O 7 , where CH 3 COONa・3H 2 O has once solidified, and at high temperatures Na 4 P It is thought that 2 O 7 caused hydrolysis and its surface disappeared. Na 4 P 2 O 7
When is hydrolyzed, Na 2 HPO 4 is generated according to equation (1). Na 4 P 2 O 7 + H 2 O2Na 2 HPO 4 …(1) Therefore, the addition of Na 2 HPO 4 has the effect of shifting the dissociation equilibrium in equation (1) to the left, significantly reducing the rate of hydrolysis to the right term. The heat resistance of Na 4 P 2 O 7 can be substantially increased. (Equation (2)). Na 4 P 2 O 7 +10H 2 O2Na 2 HPO 4 ...(2) Effects of the invention As stated above, the most important point of the present invention is that the heat resistance of the supercooling prevention material is increased by stabilizing its hydrolysis equilibrium. Generally, a hydrated salt type supercooling prevention material is used for a hydrated salt type heat storage material.
It is fully applicable to hydrated salts other than CH 3 COONa and 3H 2 O. Therefore, the heat storage material composition according to the present invention has a wide range of applications and is very effective in that it can increase the heat resistance temperature of the supercooling prevention material.

Claims (1)

【特許請求の範囲】 1 CH3COONa・3H2Oからなる蓄熱材と、
Na4P2O7からなる過冷却防止材と、Na2HPO4
らなる加水分解生成物とからなる蓄熱材組成物。 2 40〜70wt%のCH3COONa、0.1〜10wt%の
Na4P2O7、0.1〜10wt%のNa2HPO4を含む水溶液
からなる特許請求の範囲第1項記載の蓄熱材組成
物。
[Claims] 1. A heat storage material consisting of CH 3 COONa・3H 2 O;
A heat storage material composition comprising a supercooling prevention material consisting of Na 4 P 2 O 7 and a hydrolysis product consisting of Na 2 HPO 4 . 2 40-70wt% CH3COONa , 0.1-10wt%
The heat storage material composition according to claim 1, comprising an aqueous solution containing Na 4 P 2 O 7 and 0.1 to 10 wt% Na 2 HPO 4 .
JP59021060A 1984-02-07 1984-02-07 Thermal energy storage material composition Granted JPS60166377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59021060A JPS60166377A (en) 1984-02-07 1984-02-07 Thermal energy storage material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59021060A JPS60166377A (en) 1984-02-07 1984-02-07 Thermal energy storage material composition

Publications (2)

Publication Number Publication Date
JPS60166377A JPS60166377A (en) 1985-08-29
JPH0362194B2 true JPH0362194B2 (en) 1991-09-25

Family

ID=12044353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59021060A Granted JPS60166377A (en) 1984-02-07 1984-02-07 Thermal energy storage material composition

Country Status (1)

Country Link
JP (1) JPS60166377A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7121631B2 (en) * 2018-10-29 2022-08-18 東邦瓦斯株式会社 Latent heat storage material composition
CN112480876A (en) * 2020-12-24 2021-03-12 西北大学 Phase change heat storage material compounded by sodium acetate trihydrate and disodium hydrogen phosphate dodecahydrate

Also Published As

Publication number Publication date
JPS60166377A (en) 1985-08-29

Similar Documents

Publication Publication Date Title
JPH0362194B2 (en)
Kleppa et al. Thermochemistry of binary fused nitrates
AU766894B2 (en) Thermal storage composition
JPH02127493A (en) Heat storage material
CN107075353A (en) The accumulator for power plant based on phase-change material (PCM)
JPH0329108B2 (en)
US5244592A (en) Heat transfer liquid of potassium nitrate lithium nitrate and 0 to 38% calcium nitrate
US3345141A (en) Growth of calcite crystals from a molten flux by slow cooling
JPS5922986A (en) Heat-accumulating material
JPH0292987A (en) Cold-storing material composition
JPH0157157B2 (en)
JPS6224033B2 (en)
JPS5866799A (en) Heat-accumulating material
JPS63230784A (en) Latent heat storing material
JPS6367837B2 (en)
JPS6367836B2 (en)
JPS5942034B2 (en) heat storage material
JPH0124438B2 (en)
JPH11323319A (en) Latent heat storage agent composition
JPS6111986B2 (en)
JPS6153383A (en) Heat-storing material
JPS645634B2 (en)
Marcus et al. Solid-liquid phase equilibria of binary salt hydrate mixtures involving ammonium alum
JPS58176291A (en) Thermal energy storage material composition
JPH0140076B2 (en)