JPS63230784A - Latent heat storing material - Google Patents

Latent heat storing material

Info

Publication number
JPS63230784A
JPS63230784A JP62064209A JP6420987A JPS63230784A JP S63230784 A JPS63230784 A JP S63230784A JP 62064209 A JP62064209 A JP 62064209A JP 6420987 A JP6420987 A JP 6420987A JP S63230784 A JPS63230784 A JP S63230784A
Authority
JP
Japan
Prior art keywords
latent heat
phase
anode
heat storage
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62064209A
Other languages
Japanese (ja)
Inventor
Takeshi Sakai
猛 酒井
Koji Kashima
弘次 鹿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62064209A priority Critical patent/JPS63230784A/en
Publication of JPS63230784A publication Critical patent/JPS63230784A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a latent heat storing material provided with stability in repeating heat storing-radiation cycles, from which the latent heat can be surely taken out, by adding an ion capable of forming a metal compd. serving as a nucleating agent on an anode to a latent heat storing material comprising an inorg. or org. hydrated salt as a main component. CONSTITUTION:A water-soluble compd. capable of imparting to an anode material an ion which forms on an anode a metal compd. being water-soluble or becoming water-soluble by heating and serving as a nucleating agent for accomplishing release from a supercooled state is added to a latent heat storing material comprising a main body composed of at least one inorg. or org. hydrated salt capable of, in the absence of any nucleus, undergoing a phase change from a solid phase to a liq. phase by heating at a temp. higher than the phase change temp. and capable of retaining its liq. phase state to a predetermined temp. irrespective of supercooling to an ambient temp. lower than the phase change temp., and a thickener capable of inhibiting phase separation phenomenon, said main body having a pair of electrodes inserted thereinto. Release from a supercooled state and radiation of latent heat are accomplished by passing a current across the electrodes. Thus, there is obtd. a desired latent heat storing material.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、相変化温度以上に加熱されることにより固相
から液相へと相変化し核不在下において相変化湿度以下
の周囲温度まで過冷却されても所定温度までその液相状
態を保持できる潜熱蓄熱材において、その過冷却状態を
電極間に電圧を印加することにより確実に繰り返し解除
することが可能となる潜熱蓄熱材に関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Field of Application) The present invention is characterized in that the phase changes from a solid phase to a liquid phase by heating above the phase change temperature, and in the absence of nuclei, a phase change humidity is achieved. In a latent heat storage material that can maintain its liquid state up to a certain temperature even if it is supercooled to the following ambient temperature, the latent heat that makes it possible to reliably and repeatedly release the supercooled state by applying a voltage between the electrodes. Regarding heat storage materials.

(従来の技術) 無Ilまたは右目水和塩は、一般に固相から液相へと通
常10℃〜100℃の範囲内の固有の相変化温度にて潜
熱を吸収しながら変化し、熱を蓄える。逆に液相から固
相へと変化する時、上記潜熱を放出する特徴を有してい
る。しかし、上記水和塩には、過冷却現象すなわち核不
在下において相変化温度以下の周囲温度まで過冷却され
ても所定温度までその液相状態を保持するという特徴を
有しており、この過冷却状態のまま潜熱量を保存するこ
とが可能となる。そこで従来、剪断応力等のような物理
的刺激を与えたり、種材を接触させたり、ベルチエ効果
、ピエゾ効果を用いたり、電圧を印加させたりずことで
過冷却状態を解除するという提案がなされていた。
BACKGROUND OF THE INVENTION Il-free or right-eye hydrated salts generally change from a solid phase to a liquid phase at a unique phase change temperature, typically within the range of 10°C to 100°C, absorbing latent heat and storing heat. . Conversely, when changing from a liquid phase to a solid phase, it has the characteristic of releasing the latent heat mentioned above. However, the above-mentioned hydrated salt has a supercooling phenomenon, that is, it maintains its liquid phase state up to a predetermined temperature even if it is supercooled to an ambient temperature below the phase change temperature in the absence of nuclei. It becomes possible to preserve the amount of latent heat in a cooled state. Therefore, conventional proposals have been made to release the supercooled state by applying physical stimuli such as shear stress, bringing seed materials into contact, using the Bertier effect, piezo effect, or applying voltage. was.

(発明が解決しようとする問題点) このなかで電圧を印加することにより過冷却状態を解除
する方法においては、過冷却状態が解除可能となるのは
数回に限定され、連続的に繰り返し加熱−冷却−放熱サ
イクルを行なうのは不可能であった。
(Problem to be solved by the invention) Among these, in the method of canceling the supercooling state by applying a voltage, the supercooling state can only be released a few times, and the heating is repeated continuously. - It was not possible to perform a cooling-heat dissipation cycle.

そこで本発明者らは過冷却状態が電圧印加により解除さ
れる原理を把握するため鋭意研究を行なった結果、この
原理は、電極間を流れる電流刺激が過冷却状態の解除を
行なっている訳ではなく電極からのイオンの移動および
電極表面での化合物の析出が過冷却状態の解除の主な原
因となっていることが分かった。
Therefore, the present inventors conducted intensive research to understand the principle by which the supercooled state is released by voltage application, and found that this principle does not mean that the current stimulation flowing between the electrodes releases the supercooled state. It was found that the movement of ions from the electrode and the precipitation of compounds on the electrode surface were the main causes of release of the supercooled state.

このため、従来までのように単に電極間に電圧を印加し
、電流を流すのみでは、電極材イオンの移動による化合
物の析出のため極表面が変化するため電極間の電圧印加
回数を増すにつれ電極表面上に酸化物等の被膜が形成さ
れ徐々に電流密度は低下し、誘導期間も長くなり、R柊
的には過冷却状態を解除することが出来なくなるという
欠点があった。
For this reason, if you simply apply a voltage between the electrodes and flow a current as in the past, the electrode surface will change due to the precipitation of compounds due to the movement of the electrode material ions, so as the number of times the voltage is applied between the electrodes increases, the electrode A film of oxide or the like is formed on the surface, the current density gradually decreases, the induction period becomes longer, and from the point of view of R-Hiragi, there is a drawback that the supercooled state cannot be released.

本発明は上記の事情を考慮してなされたもので、過冷却
状態にあろ水和塩を固相へ相変化させるため電圧を印加
し電極上へのイオンの移動および化合物の析出にて核生
成を°促進させる場合、水和塩を主成分とした潜熱蓄熱
材中に陽極上に水溶性または加熱により水溶性となり、
かつ過冷却、状態を解除するための核生成剤となる金属
化合物を生成するようなイオンを添加することで蓄熱−
放熱サイクルの繰り返し安定性を付加させ確実に潜熱を
取り出し得る潜熱蓄熱材を提供することを目的とする。
The present invention was made in consideration of the above circumstances, and a voltage is applied to phase-change the hydrated salt in a supercooled state to a solid phase, and nucleation occurs through the movement of ions onto the electrode and the precipitation of compounds. When accelerating the temperature, water-soluble or heated water-soluble material is added to the anode in the latent heat storage material mainly composed of hydrated salt.
Heat storage is achieved by adding ions that generate metal compounds that act as nucleating agents to release the supercooled state.
It is an object of the present invention to provide a latent heat storage material that can add stability to repeated heat dissipation cycles and reliably extract latent heat.

[発明の構成] (問題点を解決するための手段と作用)本発明は上記の
目的を達成するために、核不在下において相変化温度以
上に加熱されることにより固相から液相へと相変化し、
その後相変化温度以下の周囲温度まで過冷却されても所
定温度までその液相状態を保持する、無機あるいは有機
水和塩のうち少なくとも1種と、相分離現象を防止する
増粘剤にて構成される潜熱蓄熱材本体中へ、1対の電極
を挿入し、電極間に電流を流すことにより過冷却状態を
解除させ潜熱を放出する潜熱蓄熱材において、陽極上に
水溶性または加熱により水溶性となり、かつ過冷却解除
するための核生成剤となる金属化合物を生成するイオン
を陽極材料に与え得る水溶性化合物を添加することによ
り、蓄熱−放熱サイクルの繰り返し安定性を付加させ確
実に潜熱を取り出し得ることを特徴とするものである。
[Structure of the Invention] (Means and Effects for Solving the Problems) In order to achieve the above object, the present invention provides a process in which a solid phase changes from a solid phase to a liquid phase by heating above the phase change temperature in the absence of nuclei. phase change,
Composed of at least one type of inorganic or organic hydrated salt that maintains its liquid state up to a predetermined temperature even if it is supercooled to an ambient temperature below the phase change temperature, and a thickener that prevents phase separation. In the latent heat storage material, a pair of electrodes is inserted into the main body of the latent heat storage material, and a current is passed between the electrodes to release the supercooled state and release latent heat. By adding a water-soluble compound that can provide the anode material with ions that generate a metal compound that becomes a nucleation agent to release supercooling, it adds stability to the repeated heat storage-heat release cycle and reliably releases latent heat. It is characterized by being removable.

(実施例) 以下図面を参照して本発明の実施例を詳細に説明する。(Example) Embodiments of the present invention will be described in detail below with reference to the drawings.

酢酸ナトリウム無水塩にポリアクリルアミド系凝集剤を
1%添加し、蒸溜水を酢酸ナトリウムが3水和塩となる
のに必要な吊だけ添加し、サイクル安定化イオンとして
硝酸イオンを加えるため硝酸を0.1%添加し、十分に
液相状態になるまで加熱しながら攪拌混合を行ない、過
冷却解除を行なうため銀電極を挿入した。このようにし
てつくられた潜熱蓄熱材を室温まで冷五〇させ、11電
極に電圧を印加することで、過冷却状態を解除した。こ
れにより、過冷却の解除と同時に直ちに発熱を開始し、
55〜58℃まで温度が上昇した。このように加熱(液
相変化)−冷U(過冷却状態)〜電圧印加(発熱)サイ
クルを繰り返し、そのときの電流密度と誘導期間の変化
を観察した結果、従来のようにリイクル安定化イオンを
添加しない場合、第2図のように連続4回のサイクルで
繰り返し回数が増すにつれ徐々に発熱時の電流密度は低
下し誘導期間は長くなり最終的には過冷却状態を解除す
ることが出来なくなる(第1図の曲111a参照)。
Add 1% polyacrylamide flocculant to sodium acetate anhydrous salt, add distilled water in the amount necessary for sodium acetate to become a trihydrate salt, and add nitric acid to 0 to add nitrate ion as a cycle stabilizing ion. .1% was added and stirred and mixed while heating until it became sufficiently liquid phase, and a silver electrode was inserted to remove supercooling. The latent heat storage material thus produced was cooled to room temperature for 50 minutes, and the supercooled state was released by applying voltage to the 11 electrodes. As a result, as soon as supercooling is released, heat generation begins,
The temperature rose to 55-58°C. As a result of repeating the cycle of heating (liquid phase change) - cold U (supercooled state) - voltage application (heating) and observing the changes in current density and induction period, we found that the recycle stabilizing ion When not added, the current density during heat generation gradually decreases as the number of repetitions increases over four consecutive cycles as shown in Figure 2, the induction period becomes longer, and eventually the supercooling state cannot be released. (See song 111a in Figure 1).

しかし、硝酸イオンの添加により第1図の曲線すに示し
たように連続50回の加熱(液相変化)−冷却(過冷却
状態)−電圧印加(発熱)サイクルを繰り返し行なった
後も電流密度に大きな変化は認められず、誘導期間も3
〜10秒と安定して行なうことが出来るようになった。
However, due to the addition of nitrate ions, the current density remained low even after 50 consecutive heating (liquid phase change) - cooling (supercooled state) - voltage application (heat generation) cycles, as shown in the curve in Figure 1. No major changes were observed in the induction period, and the induction period was 3.
Now I can do it stably for ~10 seconds.

これは、陽極である眼上にて一時的に硝MfM結晶が形
成され、これが核となり液相から固相へと発熱しなから
相変化する。その後、加熱により固相より液相へ変化す
るとき、酢酸ナトリウム3水塩より外部へ放出される結
晶水中に核として生成した硝iS!銀は再度溶解し、陽
極である銀表面上は、初期状態に戻る。
This is because a nitrate MfM crystal is temporarily formed on the eye, which is the anode, and this crystal becomes a nucleus, causing a phase change from a liquid phase to a solid phase without generating heat. Thereafter, when the solid phase changes to the liquid phase due to heating, nitric iS is generated as a nucleus in the crystallization water released from sodium acetate trihydrate! The silver dissolves again, and the silver surface, which is the anode, returns to its initial state.

このサイクルにより加熱(液相変化)−冷却(過冷却状
態)−電圧印加(発熱)サイクルを繰り返し行なっても
電流密度、誘導期間をほとんど変化させることなしに連
続して使用することが可能となる。
This cycle makes it possible to use the heating (liquid phase change) - cooling (supercooled state) - voltage application (heat generation) cycle continuously without changing the current density or induction period, even if the cycle is repeated. .

尚、有機水和塩として、酢酸ナトリウム3水和塩、増粘
剤としてポリアクリルアミド系凝集剤、陽極に銀、銅、
鉄、ニッケルもしくはそれらの合金を用いた場合には核
生成剤となる金属化合物を生成するため硝酸イオンを硝
酸または硝酸塩にて添加する。
In addition, sodium acetate trihydrate is used as an organic hydrated salt, polyacrylamide flocculant is used as a thickener, and silver, copper, and
When iron, nickel, or an alloy thereof is used, nitrate ions are added in the form of nitric acid or nitrate to generate a metal compound as a nucleating agent.

又、有機水和塩として、酢酸ナトリウム3水和塩、増粘
剤としてポリアクリルアミド系凝集剤、陽極に亜鉛、鉄
、ニッケル、アルミニウムもしくはそれらの合金を用い
た場合には核生成剤となる金属化合物を生成するため臭
素イオンを臭化ナトリウムなどの臭化物にて添加する。
In addition, sodium acetate trihydrate is used as an organic hydrated salt, a polyacrylamide flocculant is used as a thickener, and when zinc, iron, nickel, aluminum or an alloy thereof is used as an anode, a metal is used as a nucleating agent. Bromine ion is added in the form of a bromide such as sodium bromide to generate the compound.

更に、有機水和塩として、酢酸ナトリウム3水和塩、増
粘剤としてポリアクリルアミド系凝集剤、陽極にスズ、
ニッケル、もしくはそれらの合金を用いた場合には核生
成剤となる金属化合物を生成するため塩素イオンを塩化
カリウムなどの塩化物にて添加する。
Furthermore, sodium acetate trihydrate is used as an organic hydrated salt, a polyacrylamide flocculant is used as a thickener, and tin is used as an anode.
When nickel or an alloy thereof is used, chloride ions are added in the form of a chloride such as potassium chloride in order to generate a metal compound serving as a nucleating agent.

[発明の効果1 以上のように本発明によれば、核不在下において相変化
温度以上に加熱されることにより固相から液相へと相変
化し、その後相変化温度以下の周囲温度まで過冷却され
ても所定温度までその液相状態を保持する、無様あるい
は有機水和塩のうち1種と、相分離現象を防止する増粘
剤にて構成される潜熱蓄熱材本体中へ、1対の電極を挿
入し、電極間に電流を流すことにより過冷却現象を解除
させ潜熱を放出するような潜熱蓄熱材において、陽極上
に水溶性または加熱により水溶性となり、かつ過冷却状
態を解除するための核生成剤となる金属化合物を生成す
るようなイオンを添加することにより、蓄熱−放熱サイ
クルの繰り返し安定性を付加させ確実に潜熱を取り出す
ことが出来るようになった。
[Effect of the Invention 1 As described above, according to the present invention, the phase changes from a solid phase to a liquid phase by being heated above the phase change temperature in the absence of a nucleus, and then heated to an ambient temperature below the phase change temperature. A pair of latent heat storage materials are inserted into the main body of the latent heat storage material, which is composed of one type of amorphous or organic hydrated salt that maintains its liquid phase state up to a predetermined temperature even when cooled, and a thickener that prevents phase separation. In a latent heat storage material that releases latent heat by inserting an electrode and passing a current between the electrodes, the supercooling phenomenon is canceled and latent heat is released. By adding ions that generate metal compounds that serve as nucleating agents for heat generation, it has become possible to add stability to repeated heat storage and heat release cycles and to reliably extract latent heat.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に示した組成での繰り返し回数
に対する電流密度の変化の一例を従来例と比較して示す
特性図、第2図は従来の蓄熱材における電圧印加時から
の電流密度の時間的変化を示す特性図である。 a・・・従来例、b・・・本発明の実施例。 出願人代理人 弁理士 鈴江武彦 米乗り仮、シ@数 休県朝F7 1:bec)
Fig. 1 is a characteristic diagram showing an example of the change in current density with respect to the number of repetitions in the composition shown in the example of the present invention in comparison with a conventional example, and Fig. 2 shows the current from the time of voltage application in a conventional heat storage material. FIG. 3 is a characteristic diagram showing temporal changes in density. a: Conventional example, b: Example of the present invention. Applicant's agent: Patent attorney Takehiko Suzue (Kyoneri Kari, Shi@Sukyuken Asahi F7 1:bec)

Claims (4)

【特許請求の範囲】[Claims] (1)核不在下において相変化温度以上に加熱されるこ
とにより固相から液相へと相変化し、相変化温度以下の
周囲温度まで過冷却されても所定温度までその液相状態
を保持する、無機あるいは有機水和塩のうち少なくとも
1種と、相分離現象を防止する増粘剤にて構成される潜
熱蓄熱材本体中へ、1対の電極を挿入し、電極間に電流
を流すことにより過冷却状態を解除させ潜熱を放出する
潜熱蓄熱材において、陽極上に水溶性または加熱により
水溶性となり、かつ過冷却状態を解除するための核生成
剤となる金属化合物を生成するイオンを陽極材料に与え
得る水溶性化合物を添加することを特徴とする潜熱蓄熱
材。
(1) In the absence of a nucleus, the phase changes from a solid phase to a liquid phase by being heated above the phase change temperature, and the liquid phase state is maintained up to a specified temperature even if supercooled to an ambient temperature below the phase change temperature. A pair of electrodes is inserted into the main body of the latent heat storage material, which is composed of at least one type of inorganic or organic hydrated salt and a thickener that prevents phase separation, and a current is passed between the electrodes. In the latent heat storage material that releases latent heat by releasing the supercooled state, ions that are water-soluble or become water-soluble by heating and generate metal compounds that serve as nucleation agents to release the supercooled state are placed on the anode. A latent heat storage material characterized by adding a water-soluble compound capable of imparting to an anode material.
(2)有機水和塩として、酢酸ナトリウム3水和塩、増
粘剤としてポリアクリルアミド系凝集剤、陽極に銀、銅
、鉄、ニッケルもしくはそれらの合金を用いた場合核生
成剤となる金属化合物を生成するため硝酸イオンを硝酸
または硝酸銀にて添加したことを特徴とする特許請求の
範囲第1項記載の潜熱蓄熱材。
(2) Sodium acetate trihydrate as the organic hydrate salt, a polyacrylamide flocculant as the thickener, and a metal compound as a nucleating agent when silver, copper, iron, nickel, or an alloy thereof is used as the anode. 2. The latent heat storage material according to claim 1, wherein nitrate ions are added in the form of nitric acid or silver nitrate to generate.
(3)有機水和塩として、酢酸ナトリウム3水和塩、増
粘剤としてポリアクリルアミド系凝集剤、陽極に亜鉛、
鉄、ニッケル、アルミニウムもしくはそれらの合金を用
いた場合核生成剤となる金属化合物を生成するため臭素
イオンを臭化ナトリウムなどの臭化物にて添加したこと
を特徴とする特許請求の範囲第1項記載の潜熱蓄熱材。
(3) Sodium acetate trihydrate as the organic hydrate salt, polyacrylamide flocculant as the thickener, zinc as the anode,
Claim 1, characterized in that when iron, nickel, aluminum, or an alloy thereof is used, bromine ions are added in the form of a bromide such as sodium bromide to generate a metal compound that becomes a nucleating agent. latent heat storage material.
(4)有機水和塩として、酢酸ナトリウム3水和塩、増
粘剤としてポリアクリルアミド系凝集剤、陽極にスズ、
ニッケルもしくはそれらの合金を用いた場合核生成剤と
なる金属化合物を生成するため塩素イオンを塩化カリウ
ムなどの塩化物にて添加したことを特徴とする特許請求
の範囲第1項記載の潜熱蓄熱材。
(4) Sodium acetate trihydrate as the organic hydrate salt, polyacrylamide flocculant as the thickener, tin as the anode,
The latent heat storage material according to claim 1, characterized in that when nickel or an alloy thereof is used, chlorine ions are added in the form of a chloride such as potassium chloride in order to generate a metal compound that becomes a nucleating agent. .
JP62064209A 1987-03-20 1987-03-20 Latent heat storing material Pending JPS63230784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62064209A JPS63230784A (en) 1987-03-20 1987-03-20 Latent heat storing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62064209A JPS63230784A (en) 1987-03-20 1987-03-20 Latent heat storing material

Publications (1)

Publication Number Publication Date
JPS63230784A true JPS63230784A (en) 1988-09-27

Family

ID=13251460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62064209A Pending JPS63230784A (en) 1987-03-20 1987-03-20 Latent heat storing material

Country Status (1)

Country Link
JP (1) JPS63230784A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0533808A1 (en) * 1990-06-15 1993-03-31 Prism Tech Inc Reusable warmers of the type employing a super-cooled solution and an activator.
USRE35586E (en) * 1990-06-15 1997-08-19 Prism Enterprises, Inc. Reusable warmers of the type employing a super-cooled solution and an activator
US5954119A (en) * 1994-06-21 1999-09-21 Toyota Jidosha Kabushiki Kaisha Heat accumulator
US9650554B2 (en) 2015-08-06 2017-05-16 Panasonic Corporation Latent heat storage material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0533808A1 (en) * 1990-06-15 1993-03-31 Prism Tech Inc Reusable warmers of the type employing a super-cooled solution and an activator.
US5339796A (en) * 1990-06-15 1994-08-23 Prism Technologies, Inc. Reusable warmers of the type employing a super-cooled solution and an activator
USRE35586E (en) * 1990-06-15 1997-08-19 Prism Enterprises, Inc. Reusable warmers of the type employing a super-cooled solution and an activator
US5954119A (en) * 1994-06-21 1999-09-21 Toyota Jidosha Kabushiki Kaisha Heat accumulator
US9650554B2 (en) 2015-08-06 2017-05-16 Panasonic Corporation Latent heat storage material
EP3127986B1 (en) * 2015-08-06 2022-02-16 Panasonic Corporation Latent heat storage material

Similar Documents

Publication Publication Date Title
EP0103450B1 (en) Latent heat storage and supply system and method
Kleppa et al. Thermochemistry of Charge-Unsymmetrical Binary Fused Halide Systems. II. Mixtures of Magnesium Chloride with the Alkali Chlorides and with Silver Chloride
JP2011524966A5 (en)
JPS63230784A (en) Latent heat storing material
Kleppa et al. Thermochemistry of binary fused nitrates
JPS59168085A (en) Heat regenerating material
US4209312A (en) Controlling size in Glauber's salt crystal formation
JP2018146173A (en) Thermal storage device
US4267879A (en) Method for forming Glauber's salt crystals of reduced size by including a fluorine-containing surfactant
Streicher Dissolution of Aluminum in Sodium Hydroxide Solutions-Effect of Gelatin and Potassium Permanganate
SU842094A1 (en) Heat-accumulating composition based on manganese nitrate crystallohydrate
Miles The breakdown of passive films on active metal anodes by halide ions in oxidizing molten salts
JP4365581B2 (en) Method for activating electrode of heat storage device
JPH07138559A (en) Aqueous solution composition for absorption type heat pump
JPS645239B2 (en)
JPS5945917B2 (en) heat storage device
JP2004205151A (en) Heat radiation control method for heat accumulator
JPH0347889A (en) Latent heat-accumulating material
JP3857781B2 (en) Heat storage device capable of controlling heat dissipation and heat dissipation control method for heat storage device
JPH03128987A (en) Latent heat storage material
JP2001192650A (en) Cold storage material
JP4361266B2 (en) Method for activation treatment of electrode of heat storage device
JPH0362194B2 (en)
JPS63273684A (en) Heat storage material composition
JPS5893779A (en) Thermal energy storing composition